
Stochastic Calculus, Courant Institute, Fall 2013

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2013/index.html

Always check the class message board before doing any work on the assignment.

Assignment 6, due October 28

Corrections: (none yet)

Theory questions:

1. Write a formula using differentials that expresses the statement that in
a small increment of time dt, a process Xt has E[dX | Ft] = −γXtdt,
and var(dXt | Ft) = µXtdt. Use dWt to represent a random variable
independent of Ft that has mean zero and variance dt. Do not try to
solve your stochastic differential equation.

2. (An Ito Leibnitz product formula) SupposeXt = f(Wt, t) and Yt = g(Wt, t).
Show that

d(XtYt) = (dXt)Yt +XtdYt + (dXtdYt) , (1)

where (dXtdYt) is what you get by multiplying the Ito’s lemma expressions
for dX and dY , then keeping only the dW 2

t part, then writing dW 2
t = dt.

Do this by applying Ito’s lemma to the function h(w, t) = f(w, t)g(w, t)
and Zt = h(Wt, t). Show that this works in the example Xt = W 2

t ,
Yt = W 3

t . Compute your answer both directly as d(W 5
t ), and indirectly

using (1).

3. (Finding cancellation) Use an appropriate backward equation to verify
that E[cos(kWt)] = e−k

2t/2. To do this, you need to define a value function
a formula that satisfies the PDE and final condition for this value function.
Also give a direct verification as follows. Write the Gaussian probability
density, u(w, t), for Wt. A trick for the integral I =

∫
cos(kw)e−w

2/2tdw

is: compute ∂kI, use we−w
2/2t = −t∂wew

2/2t, then integrate by parts. You
get ∂tI = (· · · )I. The formula predicts that E[cos(kWt)] is exponentially
small when st.dev.(Wt) =

√
var(Wt)� 1/k. Use the fact that 1/k is the

length scale of the cosine function to give an explanation in that cos(kWt)
is roughly equally likely to be positive as negative.

4. (Backward equation for Brownian motion with drift) If Wt is a Brownian
motion, then Xt = Wt + ut is a Brownian motion with drift speed u. Use
the equations E[∆X | Ft] = u∆t and E

[
(∆X)2 | Ft

]
= ∆t+ (smaller) to

derive the backward equation satisfied by f(x, t) = Ex,t[V (XT )]. Imitate
the steps in Subsection 3.1 of the Week 6 notes that lead to (26) there.
The backward equation for Brownian motion with drift includes a term
that contains ∂xf .

5. (A version of the Girsanov transformation for Brownian motion with
drift.) This exercise is a change of variables in the backward equation
from Exercise 4. You can find the new variables, as we do here, as a
change of variables in the backward equation. We will see later that it
may be derived using the Girsanov re-weighting formula. Make the sub-
stitution f(x, t) = eµxg(x, t) and calculate the PDE that g satisfies. Show
that for the right value of µ, which is related to u, there is no ∂xg in the
g equation. Now make the substitution h(x, t) = ertg(x, t). Show that
for the right value of r, which depends on u, h satisfies the backward
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equation for Brownian motion without drift, which is 0 = ∂th + 1
2∂

2
xh.

Finally, reverse the transformations to write a formula for f(x, t) in terms
of h(x, t).

Finite difference solution of the backward equation

For this exercise, Xt is Brownian motion. We run the Brownian motion up
to time T and receive reward V (XT ), but only if Xt has not touched the “sides”
x = ±a for t ≤ T . The appropriate value function is defined in terms of a
“hitting indicator” function H defined by

H(X[t,T ]) =
{

1 if |Xs| < a for all t ≤ s ≤ T
0 if |Xs| = a for some t ≤ s ≤ T

This means
f(x, t) = Ex,t

[
V (XT )H(X[t,T ])

]
.

The backward equation for this problem is

∂tf +
1
2
∂2
xf = 0 , (2)

with final condition
f(x, T ) = V (x) ,

and boundary condition
f(±a, t) = 0 .

The posted code Assignment6.R computes a finite difference approximation
to the solution using a space step size, ∆x, and a time step size, ∆t. There are
N grid points in space, which are

xj = −a+ (j − 1)∆x .

We take ∆x = 2a/(N − 1), so that x1 = −a and xN = a. The solution is
computed at times tk = T − k∆t. The approximate solution values are

fjk ≈ f(xj , tk) .

The code computes the values fjk by marching from the final time t0 = T to
the desired time tm = 0. Once the numbers fjk are known for 1 ≤ j ≤ N , we
use them to calculate all the fj,k+1. This is a time step.

The time step formulas are based on finite difference approximations to the
derivatives in the backward equation.

∂tf(x, t) ≈ f(x, t)− f(x, t−∆t)
∆t

∂2
xf(x, t) ≈ f(x−∆x, t)− 2f(x, t) + f(x+ ∆x, t)

∆x2
.
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At the grid points, we have, for example, xj + ∆x = xj+1, and tk −∆t = tk+1

These formulas lead to

∂tf(xj , tk) ≈ fjk − fj,k+1

∆t

∂2
xf(xj , tk) ≈ fj−1,k − 2fjk + fj+1,k

∆x2
.

These approximations define finite difference approximation to the backward
equation:

0 =
fjk − fj,k+1

∆t
+

1
2
fj−1,k − 2fjk + fj+1,k

∆x2
. (3)

To take a time step, we solve for the values at the new time level, tk+1, in terms
of the values at the current time level, tk:

fj,k+1 =
∆t

2∆x2
fj−1,k +

(
1− ∆t

∆x2

)
fjk +

∆t
2∆x2

fj+1,k . (4)

This equation has the form

fj,k+1 = c−fj−1,k + c0fjk + c+fj+1,k , (5)

with
c− = c+ =

∆t
2∆x2

, c0 = 1− ∆t
∆x2

.

You can check that c− + c0 + c+ = 1. If ∆t ≤ ∆x2, the coefficients are non-
negative. This is necessary for the method to work, for reasons left unsaid. The
code takes ∆t = 1

2∆x2, or slightly smaller.
Run the code as you downloaded it. You should get three pictures that illus-

trate aspects of the backward equation and the finite difference solution process.
Assignment6Figure1.pdf shows that the finite difference computation gives a
good approximation to a known solution. If V (x, t) = cos(πx/(2a)), the ex-
act solution of the backward equation is f(x, t) = cos(πx/(2a))e−π

2(T−t)/(2a).
(You should check that this satisfies the PDE and the boundary conditions.)
Assignment6Figure2.pdf illustrates the convergence as N → ∞, which is the
same as ∆x→ 0. Solutions have a limit as ∆x→ 0. Assignment6Figure2.pdf
shows the qualitative behavior of solutions. The final condition is a “saw-
tooth” function V (x) = 0 for x < 0, and V (x) = 1 − x/a for x > 0. This
satisfies the boundary conditions and is discontinuous at x = 0. For very
small values of T , the solution smooths out the discontinuity but does little
else. At longer times, the solution approaches the symmetric cosine profile of
Assignment6Figure1.pdf. The pictures you get should be identical to the ones
posted with the Assignment6.R.

1. Experiment with the value of N in the first two experiments to verify the
convergence behavior. Comment on how long it takes the code to fun for
large N . If the running time is a power of N , what power would that be?
The relation ∆t = ∆x2 is important for answering that question.
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2. Derive a finite difference time stepping approximation for the backward
equation for Brownian motion with drift of Exercise 4 that takes the form
(5). Use the finite difference approximation

∂xf(x, t) ≈ f(x+ ∆x, t)− f(x−∆x, t)
2∆x

to find the coefficients c−, c0, and c+. Show that if ∆x is small enough
depending on u, and ∆t ≤ 1

2∆x2, then c−, c0, and c+ are all positive.

3. Modify the Experiment 1 part of the Assignment6.R code to find a related
exact solution of the backward equation for Brownian motion with speed
u drift. Among other things, add an argument u to the fds and cosSol
functions. You must also change the exact solution formula to the one
that depends on u, which you derived in Exercise 5. Use this to check
whether your finite difference approximation with the first derivative term
is correct. In all cases the solution goes to zero as T →∞. Can you give
an intuitive explanation for the fact that the solution goes to zero faster
when u is large?

4. Repeat Experiment 2 with a u value that makes a significant difference in
the solution. See that your method still converges as ∆x→ 0.

5. Repeat Experiment 3 with u > 0 and u < 0. Modify the PlotInfo =
sprintf(...) statement in the graphics part of the Experiment 3 code
so that the value of u appears in the graph. Choose u values that show
the peak of the sawtooth moving to the right or the left, depending on
the value of u. Explain the direction in which the peak moves, depending
on the sign of u and the definition of the value function. You probably
should change the T values, and go from 4 to 3 values.
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