
Stochastic Calculus, Courant Institute, Fall 2013

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2013/index.html

Always check the class message board before doing any work on the assignment.

Assignment 7, due November 4

Corrections: (none yet)

Theory questions:

1. (Poisson simulation) This is a long list of exercises related to the Poisson
process leading to a simulation algorithm for continuous time Markov
chains.

(a) Show that an exponential random variable has the following Markov
type property, for any s > 0 and t > 0:

P(T ∈ [t+ s, t+ s+ ds] | T > t) = P(T ∈ [s, s+ ds]) .

You interpret this as follows: If T is the time something breaks, if it
has not broken by time t, then at time t it is “as good as new” in its
initial state. Do this using the probability density T ∼ f(t) = λe−λt.
Write out the formula for the left side using Bayes’ rule for conditional
probability, and show that the result is equal to the left side, which
is λe−λsds.

(b) Let fn(t1, . . . , tn) be the joint density of the first n arrivels T1, . . . , Tn.
Show that

fn(t1, . . . , tn) =
{
λne−λtn if 0 < t1 < t2 · · · < tn
0 otherwise.

(c) The sets of ordered n−tuples in a cube of side length t is An(t) ⊆
Rn = {t1 < t2 < · · · < tn < t}. Show that vol(An) = 1

n! t
n. Hint:

There are several ways to do this. Choose just one way. (1.) The
cases n = 1 and n = 2 are “obvious”. Do the general case by
induction. Use an integral expression for An(t) as an integral of
An−1(tn) over tn. (2.) The volume of the whole cube is tn. Sup-
pose π is a permutation of the integers 1, . . . , n, and define An,π =
{tπ1 < · · · < tπn

}. For example, if π puts the numbers in the order
(2, 1, 3, . . . , n), then An,π = {t2 < t1 < t3 · · · < tn}. All the sets An,π
have the same volume, and the number of such sets is the number of
permutations, which is n!.

(d) Show that the PDF of Tn (the n−th arrival time) is

fn(tn) = λ (λtn)n−1 e−λtn

(n− 1)!
.

(e) Show that if the number of arrivals in the interval [0, a] is n, then
these n arrival times are uniformly distributed and independent in
[0, a], modulo order. This means, you can generate the n arrival times
by creating n independent uniforms in [0, a] then sorting them.

(f) Use these ideas to complete the demonstration that you can generate
a Poisson process in [0, T ] by first choosing Nt and then choosing Nt
arrival times independently.
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(g) Consider the discrete time approximation of the Poisson process
that puts a hit in the time interval [tj , tj+1] with probability λ∆t,
and otherwise leaves the interval empty. Suppose all hitting events
are independent. This means P

(
N∆t
tj+1

= N∆t
tj

)
= 1 − λ∆t, and

P
(
N∆t
tj+1

= N∆t
tj + 1

)
= λ∆t. Let T1 be the first arrival time for

the Poisson process and T∆t
1 = min

{
tj with N∆t

tj = 1
}

be the first
arrival time for the discrete time approximate Poisson process. Show
that the discrete time probability “density” converges to the true
probability density for T1, which is f(t) = λe−λt, by showing that if
tj is the largest discrete time less than t, then

P
(
T∆t

1 = tj
)

= f(t)∆t+O(∆t2) .

In this limit, tj → t and j →∞ as ∆t→ 0.

(h) Consider a combination of independent Poisson processes with rates
λ1 and λ2 respectively. Let Nt = N1,t+N2,t be the counting function
that counts arrivals from both processes. Show that Nt is a Poisson
process with rate λ = λ1 + λ2. Hint: use the characterization from
part (g).

2. (Stationary states for a linear Gaussian process) Consider the linear Gaus-
sian process in continuous time dXt = −γXtdt+σdWt. Let u(x, t) be the
probability density of Xt. The discrete time approximation is X∆t

t , which
is defined by

X∆t
tj+1

= X∆t
tj − γX

∆t
tj ∆t+ σ

√
∆tZj ,

Where Zj ∼ N (0, 1), i.i.d. Let uj(x) be the probability density of X∆t
tj .

The mean and variance are µj = E
[
X∆t
tj

]
and τ2

j = var
(
X∆t
tj

)
.

(a) Show by induction on j that uj(x) is a Gaussian density for all j.

(b) Find a formula for µj = E
[
X∆t
tj

]
.

(c) Find a recurrence relation for τ2
j , which is a formula for τ2

j+1 in terms
of τ2

j .

(d) Use this recurrence relation, and the limit ∆t→ 0 to find a differen-
tial equation for v(t) = var(Xt).

(e) Write the solution to this differential equation, and use it to find the
formula for u(x, t).

(f) Use similar reasoning to show for the damped driven harmonic oscil-
lator from class that

d

dt
E
[
ω2

0X
2
t + V 2

t

]
= 2γE

[
V 2
t

]
+ σ2 . (1)

Next week we will do this quickly using Ito’s lemma.
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3. Consider the derivation of the linear noisy oscillator model in the notes,
but use a different noise model. Assume that the noise in the velocity
is directly proportional to the speed. This mean that the infinitesimal
variance is proportional to the square of the speed. Write the SDE for
this model. You will have to invent your notation for the constants in the
new model. Derive the analogue of (1) for this model using the reasoning
of problem 2.

Computing: Download and run Assignment7.R. Out of the box you should
get:

> source("Assignment7.R")
Hello
got mean = 0.6947326 , and variance = 0.1081604 , and error bar = 0.001040002

The mean is an estimate of f(0, 0) for some final time and payout (see code for
details). The error in the mean has two sources, the statistical error and the
bias. The error bar reported above is an estimate of the standard deviation of
the mean. If you used 100 times more samples, this should decrease by about a
factor of 10. As you let the number of samples go to infinity, this mean does not
converge to f(0, 0) because ∆t > 0 in the SDE time step approximation. The
bias is the amount by which the finite ∆t mean differs from f(0, 0). We reduce
∆t to reduce the bias.

1. Use the PDE solver from last week to compute the true value of f(0, 0).
Give computational evidence that the Monte Carlo computation of this
week converges to this answer as Ns → ∞ (the number of samples) and
∆t→ 0.

2. Copy the Monte Carlo code in Assignment7.R into the code from Assignment6.R
to get a code that can evaluate f both ways and plot the results in the
same figure. For the parameters of Assignment7.R, evaluate f(x, 0) at
Np = 40 uniformly spaced x values in [−a, a]. Choose the values of Ns
and ∆t that make the finite difference and Monte Carlo calculations agree
to within “plotting accuracy” – which is the size of the symbol in the plot.
Please do not use giant symbols that make this too easy. Note: the ∆t
for the finite difference calculation is determined by ∆x and cannot be
tuned independently. The two time step parameters (for Monte Carlo and
finite differences) will be different. You know that the finite difference
calculation can be made quite accurate with small enough ∆x, so take the
finite difference computation with pretty small ∆x as the exact answer.
Comment on the relative times it takes the two computational methods
to run.

3. Repeat the experiment from part 2 with a sawtooth final condition. Plot
the finite difference and Monte Carlo results in the same figure. The Monte
Carlo method comes out looking better here because its accuracy does not
depend on smoothness of the final condition.
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4. Repeat the experiment from part 3 using one interesting drift value from
Assignment 6. You will have to modify the Monte Carlo path generator
to add in a drift.
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