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Always check the class message board before doing any work on the assignment.

Assignment 8, due November 18

Corrections: Fixed question 2: the value function formula (2) got a complete
overhall. The garbled x∆X became the intended x + ∆X. Those who know
LaTeX will know that this is a very easy typo to make. Those who can read
know it should have been an easy typo for me to spot.

1. (Ornstein Unlenbeck backwards and forwards) The notes for Week 7 give
a solution of the backward equation for an Ornstein Uhlenbeck process.
This exercise examines that solution from different points of view.

(a) The backward equation may be rewritten in a way that makes it more
intuitive to mathematicians and physicists with experience working
with physical diffusion processes. The time to go variable is s = T−t.
Write the backward equation for dXt = a(Xt)dt+b(Xt)dWt in terms
of x and s. Show that the final condition in the t variable becomes
an initial condition in the s variable. Show that the solution to
this equation, for all positive values of s, gives the solution to the
backward equation for all final times T > 0. Use the time to go
variable for the rest of this set of exercise 1. It makes the algebra a
little simpler.

(b) Find the ansatz solution for the case dXt = γXtdt+σdWt and γ > 0.
This corresponds to the problem in the notes, with −γ for γ. The
system in the notes would be stable without noise. This system would
be unstable even without noise. The algebra for the two cases is
similar, but the qualitative behavior is different. Show that f(x, s)→
0 as s→∞ exponentially fast. Interpret this by thinking about how
likely it is for XT to be close to zero in the unstable system for large
T .

(c) Consider the stable Ornstein Uhlenbeck problem dXt = −γXtdt +
σdWt. Suppose X0 = 0. Use Ito’s lemma for general stochastic
processes to find the equation for v(t) = E

[
X2

t

]
. Show that the

limiting variance exists: v(t) → v∞ as t → ∞. Find an explicit
formula for v∞. Hint: calculate dv(t) = dE

[
X2

t

]
= E

[
d (Xt)

2
]
.

(d) Suppose X ∼ N (0, v∞). Calculate E
[
e−x2/2

]
. When you are done,

substitute the formula for v∞ and get the expectation as a function
of γ and σ. Show that this is the limit as T →∞ of the solution we
got from the backward equation in Week 7. Explain why this should
be true.

2. (Brownian motion with killing) Let Xt be a Brownian motion with dXt =
dWt starting at some point X0. Suppose V (x) ≥ 0 is a given function,
called the local killing rate. (These Halloween like terms are standard for
this problem. It is an in-homogeneous birth death process, with birth left
out for simplicity.) There is a killing time τ that is an inhomogeneous
exponential:

P(τ ∈ [t, t+ dt] | τ ≥ t) = V (Xt)dt . (1)
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Models like this have many applications. One example is the diffusion
of neutrons in a heterogeneous material with different absorption rate in
different places. Define a value function f(x, t) by

f(x, t) = P(τ > T | τ > t and Xt = x) . (2)

(a) Use the tower property to derive a PDE satisfied by f . One way to
do this is to compare paths that start at x at time t = 0 to paths
that start at x + ∆X at time ∆t. There is a probability V (x)dt to
get killed in this starting interval.

(b) What is the initial or final condition that completely determines f?

(c) Find an explicit solution to this PDE with initial/final conditions for
the killing rate function V (x) = x2/2. Use the ansatz method with
an ansatz that is somewhat Gaussian.

(d) Which starting points have the highest survival probability according
to your explicit solution? Explain why this should be true.

(e) Give a mathematical proof of the following theorem: If V (x) ≥ 0 for
all x and V (x) = 0 only for x = 0 and V (x) is a continuous function
of x with V (x)→∞ as x→∞, then f(x, t) ≤ Ce−mt for some fixed
positive m and any x. Hint: One way is to show that there is a α > 0
so that P(τ > t+ 1 | τ > t) ≤ 1−α. The hard part is that there may
be points where V (0) = 0, to α > 0 depends on the probability of
the particle with Xt = 0 wandering away from x.

3. (Another view of Ito’s lemma for diffusions). Suppose Xt is a diffu-
sion process with drift E[dXt | Ft] = aX(Xt)dt and infinitesimal variance
E
[
(dXt)

2 | Ft

]
= µX(Xt)dt. Suppose Yt = φ(Xt), for some appropriate

function φ. Assume that φ is one-to-one, which means there is a unique
y for any x and a unique x for any y. The inverse function is x = φ−1(y).
You can understand the effect of this change of variables either using Ito’s
lemma or by doing a change of variable in the backward equation. The
results should be the same.

(a) The infinitesimal mean and variance of Y are E[dYt | Ft] = aY (Yt)dt,
and E

[
(dYt)

2 | Ft

]
= µY (Yt)dt. Use Ito’s lemma to find formulas for

aY (y) and µY (y) in terms of aX(x) and µX(x) and φ′ and φ′′. Show
that Yt is a diffusion process.

(b) Write the backward equation for f(x, t) = Ex,t[V (XT )]. Let g(y, t) be
the value function for the Y diffusion process g(y, t) = Ey,t

[
V (φ−1(YT )

]
.

Show that g(φ(x), t) = f(x, t). Write the backward equation for f in
the x variable and the backward equation for g in the y variable. Use
the ordinary chain rule to show that the change of variable y = φ(x)
transforms the backward equation for g into the backward equation
for f .
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(c) Consider the case when St is a geometric Brownian motion with
dSt = rStdt + σS2dWt. Write the backward equation for f(s, t) =
Es,t[V (ST )]. Use ordinary calculus (the chain rule from ordinary
multivariate calculus) to express this equation in the new variable
x = log(s). Show that this is the backward equation for the diffusion
process Xt = log(St).
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