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Always check the class message board before doing any work on the assignment.

Assignment 9, due November 25

Corrections (typos in problem 1 fixed.)

1. (Hard to reverse forward operator) You can use eigenvalues of generators
to figure see that it is hard to run the forward equation backwards. You
can do this with the Fourier transform, but this exercise does it with the
eigenvalues and eigenvectors associated with linear Gaussian processes.
Some of these calculations seem remarkable. These results were discovered
by trial and error before the slick but opaque approach here was discovered.

Consider the Ornstein Uhlenbeck process

dXt = −γXtdt+ σdWt .

We are going to find the eigenvalues and “eigenvectors” of the operator
in the forward equation ∂tu = L∗u, where L is the generator of the Orn-
stein Uhlenbeck process. Eigenfunctions play the role of eigenvectors. An
eigenfunction and eigenvalue pair is a function vn(x) and eigenvalue, λn
so that

L∗vn(x) = λnvn(x) . (1)

If we solve the forward equation with initial data u(x, 0) = vn(x), the
solution is clearly u(x, t) = eλtvn(x). In particular, if λn > 0, then the
solution grows as time increases, while the solution decays if λn < 0. We
can hope to solve the general initial value problem using eigenfunctions
and eigenvalues. This would mean writing the initial data as a linear
combination of eigenfunctions

u(x, 0) =
∑
n

anvn(x) .

Then the solution would be the sum of the individual eigenfunction solu-
tions

u(x, t) =
∑
n

ane
λntvn(x) . (2)

We don’t expect solutions of the forward equation, which can represent
probability densities, to grow exponentially as t → ∞. Therefore we
expect not to find eigenvalues with λn > 0. Throughout this exercise, we
assume that σ2 = 2γ. This simplifies the eigenfunction formulas.

(a) Show that v0(x) = e−x
2/2 is an eigenfunction with eigenvalue λ0 = 0.

Hint: There is a traditional way to do this, but it will be better for
the rest of this exercise if you use the fact that xe−x

2/2 = −∂xe−x
2/2.

(b) Show that for any integer n, and any sufficiently differentiable func-
tion w(x), we have ∂nx (xw(x)) = x∂nxw(x) + n∂n−1

x w(x).

(c) Show that ∂x (xvn(x)) = ∂n+1
x e−x

2/2 + cnvn(x). Use this to show
that vn is an eigenfunction of L∗ with eigenvalue λn = −γn. Hint:
rearrange the terms in part 1b.
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(d) Show that if u(x, 0) is a probability density, then u(x, t)→ 1√
2π
e−x

2/2

exponentially fast as t → ∞. Hint: it converges to something expo-
nentially fast because of the eigenvalues. That something must be
a probability density if u(x, 0) is a probability density because the
forward equation is for probability densities.

(e) Show that running the forward equation backwards is unstable in the
following way. Suppose

u(x, T ) =
∞∑
n=0

anvn(x)

is given. Show that if u(x, t) exists at times t < T , it is given by

u(x, t) =
∞∑
n=0

en(T−t)anvx(x) .

Conclude that the backward process is exponentially unstable with
arbitrarily large exponents.

(f) Show that if vn(x) = ∂nx e
−x2/2, then vn has the form vn(x) =

Hn(x)e−x
2/2, where Hn(x) is a polynomial of degree n. (This poly-

nomial is what mathematicians call Hn the Hermite polynomial of
degree n. Physicists have their Hermite polynomials too, but the
formula for them is a little different.)

(g) If L is an n×n matrix, then the eigenvalues of L are the same as the
eigenvalues of L∗. Show that this is true for the L of this problem.
Hint: the eigenfunctions of L are gn(x) = Hn(x). You may want to
use the definition of part (1f) in the form of theRogrigues formula:
Hn(x) = ex

2/2∂nx e
−x2/2.

(h) Show, formally, that as T →∞, the value function f(x, 0) = Ex,0[V (XT )]→
const as T → ∞. We showed this in an example using the ansatz
method two weeks ago. You may assume that

V (x) =
∞∑
n=0

anHn(x) .

(i) Repeat with some modifications the argument of part (1e) to show
that running the backward equation forward is exponentially unsta-
ble with an arbitrarily large exponent.

2. (Adjoint in a different pairing) Consider the pairing

〈u, f〉w =
∫ ∞
−∞

u(x)f(x)w(x) dx .

Let L∗w be the adjoint of L with respect to this pairing. Suppose L is the
generator of the Ornstein Uhlenbeck process, and that σ2 = 2γ, and that
w(x) = e−x

2/2. Show that L∗w = L.
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3. Let Xt be the continuous time process Xt = rNt − rλt, where Nt is a
Poisson arrival process with rate λ. This process drifts down at speed rλ.
It also has Poisson arrivals of size r. An arrival comes in time dt with
probability λdt. Write the generator, L, for this process. Show explicitly
that Lx = 0 (that is, Lf = 0 if f(x) = x). In general, show that a
continuous time Markov process is a martingale if and only if Lx = 0.

4. Suppose dXt = µXtdt+σXtdWt. We have the formulaXt = X0e
σWt+(µ−σ2/2)t.

Use this formula to get a formula for u(x, t), which is the probability den-
sity of Xt under the condition that X0 = 0. Write the generator, L, for
this process. Show by explicit calculation that your formula for u(x, t)
satisfies the forward equation.
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