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1 Reweighting

Suppose X is a random variable with probability density u(x). Then the ex-
pected value of f(X) is

Eu[ f(X)] =
∫
f(x)u(x) dx . (1)

Suppose v(x) is a different probability density. The likelihood ratio is

L(x) =
u(x)
v(x)

. (2)

The expectation (1) can be expressed as

Eu[ f(X)] =
∫
f(x)u(x) dx

=
∫
f(x)

u(x)
v(x)

v(x) dx

Eu[ f(X)] = Ev[ f(X)L(X)] . (3)

This formula represents reweighting. The likelihood ratio, L(x) turn u into v.
The expectation value is unchanged because L is included in the expectation
with respect to v.

This section is about Girsanov theory, which is reweighting one diffusion
process to get a different diffusion process. The specific topics are:

1. When are two diffusions related by a reweighting? Answer: if they have
the same noise. You can adjust the drift by reweighting, but not the noise.

2. If two diffusions are related by a reweighting, what likelihood ratio L(x[1,T ])?
The path x[0,T ] is the random variable and L is a function of the random
variable. Answer: L(x[0,T ]) is given in terms of a stochastic integral. We
give a direct derivation, which is straightforward but might be considered
complicated. Then we show how to verify that the stochastic integral for-
mula is correct if you are presented with it. This is considered (by me) a
less useful approach, albeit more common.
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3. What are the theoretical and practical uses of reweighting?

1.1 Gaussian examples

You can understand most important things about reweighting using Gaussian
examples, including the three items listed above. We go through this doing first
a one dimensional Gaussian random variable, then a discrete time Gaussian
process, then the Ornstein Uhlenbeck process.

1.1.1 Scalar Gaussian

Suppose X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2). The two probability densities

are

X1 ∼ u(x) =
1√

2πσ2
1

e−(x−µ1)2/2σ2
1

X2 ∼ v(x) =
1√

2πσ2
2

e−(x−µ2)2/2σ2
2 .

The likelihood ratio (2) is

u(x)
v(x)

=
σ2

σ1
e
− 1

2

»„
x−µ1
σ2

1

«2

−
„
x−µ2
σ2

2

«2–
. (4)

This answers question 1 above: you can reweight any one dimensional normal
to get any other one dimensional normal.

The reweighting expectation formula (3) for one dimensional Gaussians there-
fore takes the form

Eµ1,σ1 [ f(X)] = Eµ2,σ2 [ f(X)L(X)]

=
σ2

σ1
Eµ2,σ2

[
f(X)e

− 1
2

»„
X−µ1
σ2

1

«2

−
„
X−µ2
σ2

2

«2–]
. (5)

The case σ1 = σ2 is most common. The likelihood ratio formula (4) is much
simpler in that case. The reweighting formula (5) simplifies to

Eµ1,σ[ f(X)] = e−
(µ1−µ2)2

2σ2 Eµ2,σ

[
f(X)e

µ1−µ2
σ2 X

]
. (6)

The simple case σ = 1, µ2 = 0, µ1 = µ helps us interpret this formula:

Eµ,1[ f(X)] = e−µ
2/2 E0,1

[
f(X) eµX

]
.

The factor eµX in the expectation “pulls” the expectation from 0 in the µ
direction. If µ > 0, it weights positive X values more and negative X values less.
A physical interpretation (for those who have studied statistical physics) is that
there is a force, µ, with potential energy PE = −µX. Ignoring the temperature,
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eµX is how we take this into account. The prefactor e−µ
2/2 renormalizes the

expression to be a probability distribution. Otherwise, we would get an answer
larger than 1 from f = 1.

Importance sampling is a Monte Carlo technique that uses reweighting to
handle rare event problems. A rare event is one that happens with small prob-
ability. Direct Monte Carlo simulation is not accurate for rare events because
they are rare. Suppose, for instance, that P(A) = 10−6. If you draw N = 105

Monte Carlo samples, there is a 90% chance none of them are in A. As a result,
you learn that P (A) is probably not much larger than 10−5, but you don’t know
whether A happens once in a hundred thousand, or once in a million, or even
less.

In Monte Carlo terminology, you draw samples, Xj , from a distribution u(x).
A hit is a sample Xj ∈ A. The fraction of hits in N samples is a Monte Carlo
estimate of P (A). If you draw 105 samples and get zero hits, those samples are
all wasted. More generally, suppose you want to evaluate M = Eu[ f(X)]. The
vanilla Monte Carlo estimator with N samples is

M̂u =
1
N

N∑
j=1

f(Xj) . (7)

The vanilla estimator is inaccurate if Pu(f(X) 6= 0) is small. We estimate
Pu(X ∈ A) using the indicator function f(x) = 1A(x).

Importance sampling means choosing a distribution v(x) so that Pv(X ∈ A)
is much larger than Pu(X ∈ A). The importance sampler estimate of M =
Pu(X ∈ A) is

M̂v =
1
N

N∑
j=1

1A(Xj)L(Xj) , (8)

If v is well chosen, then there are many hits in the v simulation. The estimator is
small, not because there are few hits, but because the hits are counted with small
weights L(Xj). The variance of the fancy estimator (8) can be much smaller
than the variance of the vanilla estimator (7). In the interest of full disclosure,
a bad important sampling strategy can make the variance worse. There is no
theorem stating that var

(
M̂v

)
≤ var

(
M̂u

)
. Monte Carlo practitioners can tell

you stories of the opposite.
For example, suppose X ∼ N (0, 1) and we want to know P(X > K), for

some largeK. Assignment 10 shows that importance sampling with v = N (K, 1)
is much more efficient than vanilla Monte Carlo.

1.1.2 Discrete time Gaussian process

Suppose X0 = x0 is given and not random, and then

Xk+1 = aXk + bZk , (9)

where the Zk ∼ N (0, 1) are i.i.d. The path up to time T isX[1:T ] = (X1, X2, . . . , XT ).
Let u(x[1:T ]) be the joint PDF of (X1, . . . , XT ). Suppose v(x[1:T ]) is the PDF
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corresponding to a different process. Suppose f(x[1:T ]) is some function of the
path, such as

f(x[1:T ]) = max
1≤k≤T

xk .

The reweighting formula (3) with (2) applies in this case, with x replaced by
x[1:T ].

We calculate L(x[1:T ]) for the case when v corresponds to the symmetric
random walk with no tendency to return to the origin:

Xk+1 = Xk + bZk . (10)

We need expressions for u(x[1:T ]) and v(x[1:T ]). We start with u, but the rea-
soning for v is similar. Xk being a Markov process we have the product formula
for the joint density

u(x1, . . . , xT ) = u(x1|x0)u(x2|x1) · · · u(xT |xT−1) .

Note that x0 appears on the right but not on the left. That is because it
is not a random variable. The transition densities u(xk+1|xk) are Gaussian:
u(·|xk) = N (axk, b2). This leads to the formula

u(xk+1|xk) =
1√

2πb2
e−(xk+1−axk)2/2b2 .

Therefore,

u(x[1:T ]) = (2π)−T/2 b−T exp

[
−1
2b2

T−1∑
k=0

(xk+1 − axk)2

]
. (11)

The expression for v(x[1:T ]) is similar, with a = 1.
Direct computation of L(x[1:T ]) = u(x[1:T ])/v(x[1:T ]) gives a starting point

L(x[1:T ]) = exp

{
−1
2b2

T−1∑
k=0

[
(xk+1 − axk)2 − (xk+1 − xk)2

]}
.

We do some algebra in the exponent

(xk+1 − axk)2 − (xk+1 − xk)2

= (xk+1 − xk + (1− a)xk)2 − (xk+1 − xk)2

= (xk+1 − xk + (1− a)xk)2 − (xk+1 − xk)2

= 2(1− a)xk (xk+1 − xk) + (1− a)2x2
k .

This leads to the expression for L we want:

L(x[1:T ]) = exp

[
a− 1
b2

L−1∑
k=0

xk (xk+1 − xk)

]
exp

[
−(a− 1)2

2b2

L−1∑
k=0

x2
k

]
. (12)
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Here are two Monte Carlo approaches to computing E
[
f(X[1:T ])

]
. This is

approximate C++ style code, with norm() producing a new standard normal
each call. Figure 1 is the vanilla Monte Carlo with the process (9). Figure 1.1.2
is the vanilla Monte Carlo with the process (10) and likelihood ratio given by
(12). Both codes (barring bugs) are “correct” in the sense that they converge
to the exact answer as N → ∞. But the importance sampler could be much
more (or, alas, less) accurate for moderate N .

double X[T+1]; // a path, with X[0] given
X[0] = given value
sum = 0.; // initialize
for j = 1, ... N { // N = number of MC samples
for k = 0, ... T-1 { // T = number of steps in a path
X[k+1] = a*X[k] + b*norm();
}
sum = sum + f(X); // A function of the whole path

}
A = sum/N; // The estimate of E[f(X)]

Figure 1: Vanilla Monte Carlo estimator of E[ f(X)].

In finance, people often talk about different probability measures as this or
that world. There is one world governed by (9) in which the process Xk is
mean reverting. There is another world governed by (10) in which the Xk are a
Gaussian martingale. The expected value of f(X) in the mean reverting world
is equal to the weighted expected value in the martingale world. The weight
factor is (12).

1.1.3 Continuous time Gaussian process

The Ornstein Uhlenbeck process is

dXt = −γXtdt+ σdWt . (13)

We want to express expectations of path functionals in this mean reverting world
in terms of expectations in the world in which Xt is a Brownian motion. The
problem is that continuous time processes do not have associated probability
densities. It turns out that the likelihood ratio L(x) can exist even the densities
u(x) and v(x) do not.

A discrete approximation of the Ornstein Uhlenbeck process shows how this
is possible. Use the usual conventions, small ∆t, discrete times tk = k∆t, and
Xk ≈ Xtk . The approximations are dXt ← (Xtk+1 −Xtk)← (Xk+1 −Xk), and
Xtdt← Xk∆t, and dWt ←

√
∆tZk. We write the discrete approximation, then

rewrite it in the form (9) to identify the parameters a and b as they depend on
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double X[T+1]; // a path, with X[0] given
X[0] = given value
sum = 0.; // initialize
for j = 1, ... N { // N = number of MC samples

// create a path
for k = 0, ... T-1 { // T = number of steps in a path
X[k+1] = X[k] + b*norm(); // The recurrence with a = 1
}

// calculate the likelihood function
double s1 = 0.; // The sums in the likelihood fn.
double s2 = 0.;
for k = 0, ... T-1 { // T = number of steps in a path
s1 = s1 + x[k]*(x[k+1] - x[k];
s2 = s2 + x[k]*x[k];
}
L = exp( (a-1)/(b*b)*s1) * exp( (a-1)*(a-1)/(2*b*b)*s2 );
sum = sum + L*f(X); // The function weighted by L(X)

}
A = sum/N; // The estimate of E[f(X)]

Figure 2: Importance sampling Monte Carlo estimator of Eu[ f(X)] =
Ev[L(X)f(X)].

∆t, γ, and σ:

Xk+1 −Xk = −γXk∆t+ σ
√

∆tZk

Xk+1 = (1− γ∆t)Xk + σ
√

∆tZk (14)

This has the form (9) with a = (1− γ∆t) and b = σ
√

∆t. The first exponent of
(12) is

a− 1
b2

L−1∑
k=0

xk (xk+1 − xk) =
−γ
σ2

∑
tk<T

xk (xk+1 − xk)→ −γ
σ2

∫ T

0

xt dxt . (15)

The second exponent is

−(a− 1)2

2b2

L−1∑
k=0

x2
k =
−γ2∆t

2σ2

∑
kk<T

x2
k →

−γ2

2σ2

∫ T

0

x2
t dt .

The limit as ∆t→ 0 of the likelihood ratio seems to be

L(x[0,T ]) = e
−γ
σ2

R T
0 xt dxt e

−γ2

2σ2

R T
0 x2

t dt . (16)

That’s a stochastic integral in the first exponent and a Riemann integral in the
second.
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It’s common to denote measures in path space with capital letters such as P
and Q. So, suppose the P world is one in which Xt is the Ornstein Uhlenbeck
process (13), and Q is the world in which Xt is a Brownian motion with variance
σ2t and X0 = x0. Suppose f(x[0,T ]) is a path functional. The reweighting
formula is

EP
[
f(X[0,T ])

]
= EQ

[
e
−γ
σ2

R T
0 Xt dXt e

−γ2

2σ2

R T
0 X2

t dt f(X[0,T ])
]
. (17)

1.2 Absolutely continuous, completely singular, ...

The reweighting formula for the Ornstein Uhlenbeck process is an example of
something that happens often in fancy probability. You have two probability
measures, P and Q, neither of which have densities, but which are related to
each other through reweighting. The random outcome in the general abstract
setting is ω ∈ Ω. Most of our examples have a path x[0,T ] in place of ω as
the random outcome. Suppose that L(ω) is a non-negative function so that for
“every” function,

EP [ f(ω)] = EQ[ f(ω)L(ω)] . (18)

Integration with respect to a probability measure is written

EP [ f(ω)] =
∫

Ω

f(ω) dP (ω) .

Therefore, we can express (18) as∫
Ω

f(ω) dP (ω) =
∫

Ω

f(ω)L(ω) dQ(ω) . (19)

Assuming we can put in “any” function f , this reduces to an identity about
measures

dP (ω) = L(ω)dQ(ω) ,

which is more commonly written

L(ω) =
dP (ω)
dQ(ω)

. (20)

The quantity on the right is called the Radon Nikodym derivative of measure P
with respect to measure Q. If the random outcome is x ∈ Rn and the measures
are given by probability densities dP (x) = u(x)dx and dQ(x) = v(x)dx, then
the Radon Nikodym derivative is the likelihood ratio

dP (x)
dQ(x)

=
u(x)dx
v(x)dx

=
u(x)
v(x)

.

In abstract spaces, it’s common that the left side is well defined even though
there is no u and v. Of course, the actual definition of the formal ratio (20) is
either the expectation relation (18), or the equivalent integral expression (19).
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If there is such an L, we say that the measure P is absolutely continuous with
respect to the measure Q.

For a given pair of probability measures P and Q, there may or may not be a
function L relating them. Here’s a simple test. Suppose there is an event, A ⊂ Ω
with P (A) = 1 and Q(A) = 0. Choose f(ω) = 1A(ω). Clearly, 1A(ω) ≥ 0 for
all ω, and in the Q measure 1A(ω) = 0 almost surely. If f(ω) ≥ 0 for all ω, and
EQ[ f(ω)] = 0, then f(ω) = 0 almost surely with respect to Q. In particular,
if L(ω) is any function, then 1A(ω)L(ω) = 0 almost surely with respect to Q.
This implies that

EP [ 1A(ω)] = EQ[L(ω)1A(ω)] .

But the left side is one and the right side is zero. Therefore, there is no L in
this case.

1.3 Girsanov’s theorem

Suppose P and Q are measures in continuous time path space given by diffusion
processes that satisfy

P : E[ ∆Xt | Ft] = aP (Xt)∆t+ µP (Xt)∆t+ o(∆t)
Q : E[ ∆Xt | Ft] = aQ(Xt)∆t+ µQ(Xt)∆t+ o(∆t) .

}
(21)

Girsanov’s theorem determines when there is an L(X[0,T ]) so that for “any”
path functional f(x[0,T ]),

EP
[
f(X[0,T ])

]
= EQ

[
L(X[0,T ])f(X[0,T ])

]
.

The answer is simple. If µP (x) > 0 for all x, then P and Q are equivalent
measures if and only if

µP (x) = µQ(x) for all x. (22)

As an “if and only if” theorem, Girsanov’s theorem has two parts. The “only
if” part is that if µP 6= µQ, then P and Q are completely singular with respect
to each other. In other words, the equality of the noise coefficients is a necessary
condition for the measures to be equivalent. We give the straightforward and
quick argument for this first. The “if” part states that the equality (22) is a
sufficient condition for P and Q to be equivalent. That is deeper and harder
and, in practice, more interesting. The main point of the sufficiency argument is
Girsanov’s formula, which is an explicit stochastic integral formula for L(x[0,T ]).

The idea of the “only if” part appeared already in Section 1.2; you can
recover the noise coefficient from a single path. For a general µ(x), this comes
from the quadratic variation

[X]t = lim
∆t→0

∑
tk<t

(
Xtk+1 −Xtk

)2
, (23)

and the formula

[X]t =
∫ t

0

µ(Xs) ds . (24)
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Now, let A be the set of paths x[0,T ], such that the limit (23) exists, and satisfies

d

dt
[X]t = µP (Xt) ,

for all t. This set has probability P (A) = 1 in the P process and probability
Q(A) = 0 in the Q process. This shows that P and Q are completely singular
with respect to each other.

To be very very picky, we could wonder what happens if µP (x) = µQ(x) for
some X values but not others. Consider the event

B = {µP (Xt) = µQ(Xt) for all t ∈ [0, T ]} .

You could imagine that this the probability of B is larger than zero but less
than one. This is very very unlikely in a practical application. But if it would
happen, the probability measures P and Q would not be equivalent, but would
not be completely singular either. If µP (x) > c > 0, then a P measure path has
positive probability to reach any point, including points where µP 6= µQ.

1.3.1 Girsanov’s formua, an informal derivation

There is an informal derivation of Girsanov’s formula that is similar to the
derivation of the Ornstein Uhlenbeck formula (16). We suppose that µP (x) =
µQ(x) = µ(x) for all x and write an approximate formulas that correspond to
the exact ones for Gaussian processes, (12) and (15), etc. We put ourselves in
the P world and assume also that the transition densities for Xt in the P world
are approximately Gaussian. Define x∆t

[1:nT ] as the discrete time “observations”
of the continuous time proces xt. The values are x∆t

k = xtk , with tk = k∆t.
The number of observations is nT = max {tk with tk < T}. We denote the
PFD of x∆t

[1:nT ] ∈ RnT in the P or Q measures as UP (x∆t
[1:nT ]) and UQ(x∆t

[1:nT ])
respectively. The observation sequence forms a Markov chain, so the joint PDF
is the product of transition probabilities

u(x∆t
k+1 | x∆t

k ) .

The transition densities are approximately Gaussian if ∆t is small. The condi-
tional mean and variance is given by (21). The formulas that correspond to the
data are

X∆t
k+1 ∼ N (X∆t

k + aP (X∆t
k )∆t, µ(X∆t

k )∆t) (approximately),

uP (x∆t
k+1 | x∆t

k ) ≈ 1√
2πµ(x∆t

k )∆t)
exp

{
−
(
x∆t
k+1 − x∆t

k − aP (x∆t
k )∆t

)2
2µ(x∆t

k )∆t

}
.

(25)

We get

L∆t(x∆t
[1:nT ]) =

UP (x∆t
[1:nT ])

UQ(x∆t
[1:nT ])
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as we did in Section 1.1.3 by multiplying the Gaussian factors (25) and cancelling
common terms. The prefactors cancel from the numerator and denominator
because µp = µQ. We write the result as

L∆t(x∆t
[1:nT ]) = eH(x∆t

[1:nT ]) ,

with an exponent given by

H(x∆t
[1:nT ]) =

∑
tk<T

−
(
x∆t
k+1 − x∆t

k − aP (x∆t
k )∆t

)2 +
(
x∆t
k+1 − x∆t

k − aQ(x∆t
k )∆t

)2
2µ(x∆t

k )∆t
.

The algebra continues as in Section 1.1.3 by simplifying the difference in the
numerator

−
(
x∆t
k+1 − x∆t

k − aP (x∆t
k )∆t

)2
+
(
x∆t
k+1 − x∆t

k − aQ(x∆t
k )∆t

)2
= −

(
x∆t
k+1 − x∆t

k − aQ(x∆t
k )∆t−

[
aP (x∆t

k )− aQ(x∆t
k )
]

∆t
)2

+
(
x∆t
k+1 − x∆t

k − aQ(x∆t
k )∆t

)2
= 2

(
x∆t
k+1 − x∆t

k

) [
aP (x∆t

k )− aQ(x∆t
k )
]

∆t

−
[
aP (x∆t

k )− aQ(x∆t
k )
]
aQ(x∆t

k )∆t2 .

We plug these two last terms into the H expression and get H as a sum of
terms that correspond to the stochastic integral and Riemann integral terms in
Section 1.1.3; H(x∆t

[1:nT ]) = HS(x∆t
[1:nT ]) +HR(x∆t

[1:nT ]), where

HS(x∆t
[1:nT ]) =

∑
tk<T

(
x∆t
k+1 − x∆t

k

) [
aP (x∆t

k )− aQ(x∆t
k )
]

µ(x∆t
k )

, (26)

and

HR(x∆t
[1:nT ]) =

∑
tk<T

−
[
aP (x∆t

k )− aQ(x∆t
k )
]
aQ(x∆t

k )
2µ(x∆t

k )
∆t . (27)

The ∆t→ 0 limits of these are

HS(x[0,T ]) =
∫ T

0

aP (xt)− aQ(xt)
µ(xt)

dxt ,

and

HR(x[0,T ]) = −
∫ T

0

[aP (xt)− aQ(xt)] aQ(xt)
2µ(xt)

dt .

Finally, we substitute these to get the ∆t → 0 limit of L∆t. The result is
Girsanov’s formula

L(x[0,t]) = exp
(∫ t

0

aP (xs)− aQ(xs)
µ(xs)

dxs

)
exp

(
−
∫ t

0

[aP (xs)− aQ(xs)] aQ(xs)
2µ(xs)

ds

)
.

(28)
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1.3.2 Digression on Ito differentiation

We will be doing some Ito calculations in the next sections. It is useful to state
the general Ito differentiation rule that are needed. There is really just one dif-
ferentiation rule, but a multi-component one. This single version of Ito’s lemma
leads to specific rules for differentiating products, quotients, exponentials, etc.

There are many differentiation rules in ordinary calculus too. But with
multivariate calculus you can get by with just one, the chain rule for partial
derivatives. If g(x) = f(u(x), v(x)), then

dg

dx
= ∂uf(u(x), v(x))

du

dx
+ ∂vf(u(x), v(x))

dv

dx
. (29)

The partial derivatives on the right are called partial because each one deter-
mines a part of the total change in f . There are the parts coming from the
change in u and the change in v respectively. According to the chain rule, the
total change in f is the sum of the two partial changes, one that comes from
changing u but fixing v, and one that comes from fixing u and changing v.

We illustrate by giving a complicated derivation of a simple differentia-
tion formula. take f(u, v) = uv, and u(x) = x and v(x) = x. Then g(x) =
u(x)v(x) = x2. The derivative formula (29) then gives

d

dx
x2 =

(
du

dx

)
x+ x

(
dv

dx

)
= 1 · x+ x · 1 = 2x .

The general version of Ito’s lemma is as follows. Let Xt ∈ Rn be an
n−component Ito process. Suppose Yt ∈ Rm = f(Xt). Suppose that all partial
derivatives up to second order of f(x) make sense. Suppose that the infinitesimal
drift and noise coefficients of Xt are

E[ ∆Xt | Ft] = aXt ∆t+ o(∆t)

E
[

(∆Xt) (∆Xt)
t | Ft

]
= µXt ∆t+ o(∆t) ,

where aXt is an n−component vector and µXt is an n×n non-negative symmetric
matrix. Then Yt is an Ito process with drift and noise given by

E[ ∆Yt | Ft] = aYt ∆t+ o(∆t)

E
[

(∆Yt) (∆Yt)
t | Ft

]
= µYt ∆t+ o(∆t) .

We get aYt and µYt as follows. Differentiate Yj,t = fj(Xt) to get (using the
summation convention for indices k and l)

dYj,t = dfj(Xt) =
∂fj
∂xk

dXk,t +
1
2

∂2fj
∂xk∂xl

dXk,tdXl,t .

The expectation of dYj,t is

aYj,tdt = E[ dYj,t | Ft] =
(
∂fj
∂xk

aXk,t +
1
2

∂2fj
∂xk∂xl

µXkl,t

)
dt .

11



The noise coefficient for Y is (summing over l and m)

µYjk,tdt = E[ dYj,tdYk,t | Ft]

=
∂fj
∂xl

∂fk
∂xm

E[ dXldXm | Ft]

=
∂fj
∂xl

∂fk
∂xm

µXlm,tdt .

You can put these formulas in matrix form, such as

µYt = (Df(Xt))µXt (Df(Xt))
t
.

Where Df is the Jacobian matrix of f . We will not use these formulas as much
as the computations behind them in specific cases.

As a first application, we compute the differential of

Yt = e
R t
0 msdWs .

The Ito process in the exponent is

Xt =
∫ t

0

msdWs .

This satisfies dXt = mtdWt. The “Ito term” involves E
[

(dXt)
2 | Ft

]
= m2

tdt.
The differential of Yt is

dYt =
∂ex

∂x
dXt +

1
2
∂2ex

∂x2
E
[

(dXt)
2
]

= eXt mtdWt +
1
2
eXtm2

tdt

d
(
e
R t
0 msdWs

)
= e

R t
0 msdWsmtdWt +

1
2
e
R t
0 msdWsm2

tdt .

Here’s a more complicated example, the ratio of the value at time t to the
average value

Yt =
1
Xt

1
t

∫ t

0

Xsds .

Suppose Xt is a geometric Brownian motion that satisfies Xt = rXtdt+σXtdWt.
To compute the differential, define Ut = Xt and Vt = 1

t

∫ t
0
Xsds. Define

f(u, v) = v
u . For differentiation, we need

∂uf(u, v) = − v

u2

∂vf(u, v) =
1
u

∂2
uf(u, v) =

v

u3

∂u∂vf(u, v) = − 1
u2

∂2
vf(u, v) = 0 .
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The relevant differentials are

dUt = dXt = rXtdt+ σXtdWt

dVt =
(
−1
t2

∫ t

0

Xsds

)
dt+

1
t
Xtdt

E
[

(dUt)
2 | Ft

]
= σ2X2

t dt

E[ dUtdVt | Ft] = 0

E
[

(dVt)
2 | Ft

]
= 0 .

Therefore,

dYt =
−rXtdt− σXtdWt

tX2
t

∫ t

0

Xsds

+
−1
t2Xt

(∫ t

0

Xsds

)
dt+

dt

t
+

σ2

tXt

(∫ t

0

Xsds

)
dt .

This is not a beautiful formula. It just shows the workings of the Ito calculus
in a systematic if uninspired way. If the integral in the numerator had been

Vt =
∫ t

0

XsdWs ,

then we would have had E[ dUtdVt | Ft] = σX2
t dt.

1.3.3 Digression on weak and strong solutions

There are two reasons we might write

dXt = b(Xt)dWt . (30)

The more obvious reason would be that Xt is a function of W[0,t], and the
differential of Xt is b(Xt)dWt. The less obvious and less correct but more
common reason is to express the view that Xt is a diffusion process that satisfies

E[ dXt | Ft] = 0 , E
[

(dXt)
2 | Ft

]
= b(Xt)2dt . (31)

The first interpretation is called strong. The second is weak. It comes up in
stochastic modeling – we think we know the infinitesimal mean and variance
of a stochastic process. There is no hypothetical Brownian motion Wt in the
model, only a hypothetical infinitesimal mean and variance (31). The strong
form (30) is just a convenient way of expressing the weak form (31). The strong
form is more convenient largely because it’s shorter and seems less technical.

There is a mathematical connection between the forms that gives an excuse,
sort of, for confusing weak and strong forms. This is a martingale representation
theorem, which goes something like this. Suppose there is a filtration Ft and
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an Ito process that is a martingale and satisfies (31). Then there is a Brownian
motion Wt that is progressively measurable with respect to Ft so that

Xt −X0 =
∫ t

0

bsdWs ,

where bs is the square root of the b2s in (31). Most of our theory – in particular
the generator, forward and backward equations, etc., require only the weak
form.

The martingale representation theorem is not much harder than the Levi
uniqueness theorem: if Xt is an Ito process with E

[
(dXt)

2 | Ft
]

= dt, then Xt

is a standard Brownian motion with Gaussian transition densities and all the
other properties of Brownian motion. This is sort of a central limit theorem.
We know the conditional variance is E

[
(Xt −Xs)

2 | Fs
]

= (t−s). This follows
from the infinitesimal variance property. We also know that increments of X
over disjoint intervals are uncorrelated. But we don’t know these increments are
independent, or Gaussian. Levi has a clever proof that is like one of the proofs
of the ordinary CLT.

1.3.4 Application to Brownian motion

Suppose the Q measure is Brownian motion and the P measure is Brownian
motion with a fixed drift velocity a. In the general formula (28), we have µ = 1,
and aQ = 0, and aP = a. The first integral in (28) simplifies to

a

∫ t

0

dxs = a(xt − x0) .

The second integral simplifies to −a2t/2. Assuming x0 = 0, this leads to

Ea[ f(Xt)] = e−a
2t/2EBM

[
f(Xt)eaXt

]
.

Let uP (x, t) and uQ(x, t) be the probability densities for Xt under Brownian
motion with drift (P ) and without drift (Q). We then have

uP (x, t) = e−a
2t/2eaxuQ(x, t) . (32)

We have seen this relationship already. The forward PDE for uP is

∂tuP = L∗PuP =
1
2
∂2
xuP − a∂xuP , (33)

while the forward equation for uQ is just the heat equation

∂tuQ = L∗QuQ =
1
2
∂2
xuQ . (34)

The change of variables (32) converts a solution of (34) to a solution of (33).
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1.3.5 Reweighting of Brownian motion

There is an approach to Girsanov re-weighting that does the hard part only for
Brownian motion, a case where the hard part is easier. Suppose that in the Q
measure Wt is a standard Brownian motion. We seek a re-weighting to give Wt

a net drift with rate mt = m(Wt, t). That is, in the P measure,

EP [ dWt | Ft] = m(Wt, t)dt = mtdt . (35)

The change of measure formula (28) simplifies in this case. It leads you to
consider the integral

Lt = exp
[∫ t

0

msdWs −
1
2

∫ t

0

m2
sds

]
. (36)

We can verify that this formula accomplishes (35). It pulls the mean of dWt

from 0 to mtdt. To verify the sign, suppose mt > 0, then the integral (36) gives
paths Wt the go up more weight than paths that go down.

We write mt = m(Wt, t) so the re-weighted process will be a Markov process.
The formulas are more complicated if the drift at time t is a function of the path
at earlier times.

The first step of the verification is that EQ[Lt] = 1. This is necessary
because EP [ 1] = EQ[Lt]. We do this by showing that Lt is a martingale with
respect to Q. Since L0 = 1, this implies that EQ[Lt] = 1. This is an exercise in
our general Ito calculus. The exponent is

Ht =
∫ t

0

msdWs −
1
2

∫ t

0

m2
sds .

Its differential is dHt = mtdWt − 1
2m

2
tdt. The differential of Lt = eHt is

dLt = eHtdHt +
1
2
eHtE

[
(dHt)

2 | Ft
]
.

It does not matter whether the expectation E
[
dH2

t | Ft
]

is taken with respect

to P or Q, because re-weighting changes only E[ dHt | Ft], not E
[

(dHt)
2 | Ft

]
.

We have E
[

(dHt)
2 | Ft

]
= m2

tdt in either measure. These dHt calculations can
be substituted to find dLt = mtdWt, which implies that Lt is a martingale.

The next calculation verifies (35). This is a conditional expectation. We
need to verify that if you condition on Ft, the change of measure formula is the
natural. A Markov process “starts over” at each time t, so the weighting should
have the same property. If F (w[t1,t2]) is a function that depends on the path
only between times t1 and t2, then

EP
[
F (W[t1,t2]) | Ft1

]
= EQ

[
F (W[t1,t2]) exp

(∫ t2

t1

mtdWt −
∫ t2

t1

1
2
m2
tdt

)
| Ft1

]
.
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This formula is “obvious”. It is easy to check using the simple formula for
conditional expectation in discrete cases. We may have more to say about it
below.

Assuming the formula, the calculation is

EP [ dWt | Ft] = EQ
[
dWte

R t+dt
t

mtdWt− 1
2

R t+dt
t

m2
tdt | Ft

]
= EQ

[
dWt

(
1 +mtdWt −−

1
2
m2
tdt

)
| Ft

]
= EQ[ dWt | Ft] +mtEQ

[
dW 2

t | Ft
]

= mtdt .

The general change of measure follows from this as follows. In theQmeasure,
Wt is a Brownian motion. But in the P measure, Wt has a drift mtdt. A process
with that drift removed is

dBt = dWt −mtdt . (37)

In the P measure, Bt is a standard Brownian motion. Now suppose a process
is described in the P measure by

dXt = aP (Xt)dt+ bP (Xt)dBt .

This means that in the P “world”, Xt is a diffusion process with drift aP (x)dt
and infinitesimal variance bP (x)2dt. We find the description of Xt in the Q
measure by substituting (37)

dXt = aP (Xt)dt+ bP (Xt) [dWt −mtdt]
= [aP (Xt)−mtbP (Xt)] dt+ bP (Xt)dWt .

In the Q measure, dWt is a standard Brownian motion. this implies that in the
Q measure Xt has drift aQ = aP (Xt) −mtbP (Xt). This again shows that you
can adjust the drift but cannot change the infinitesimal variance.

Reweighting preserves sets of probability zero. If A is an event, and if L(x) =
dP (x)
dQ(x) is a reweighting formula that turns Q into P , then P (A) = 0 if and only
if Q(A) = 0. For example, suppose X0 = and A is the event that Xt > 0 for
all t < ε. More precisely, A is the event that there is an ε > 0 so that Xt > 0
for all t < ε. It is easy to show Q(A) = 0 if Q is Brownian motion measure.
Therefore, P (A) = 0 for any measure equivalent to Brownian motion measure,
which includes fixed and time dependent drift. Suppose bt is a function of t
with | ddtbt| < ∞ and b0 = 0. Let A be the event Xt > bt for all t < ε. Define
a new process Yt = Xt − bt. If the X process is equivalent to Brownian motion
measure, then the Y process is too (Girsanov). In that case, P (A) = 0 here too.
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