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1 Introduction to the material for the week

This week we take the limit ∆t → 0. The limit is a process Xt that is defined
for all t in some range, such as t ∈ [0, T ]. The process takes place in continuous
time. This week, Xt is a continuous function of t. The process has continuous
sample paths. It is natural to suppose that the limit of a Markov process is
a continuous time Markov process. The limits we obtain this week will be
either Brownian motion or the Ornstein Uhlenbeck process. Both of these are
Gaussian. We will see how such processes arise as the limits of discrete time
Gaussian processes (week 1) or discrete time random walks and urn processes
(week 2).

The scalings of random processes are different from the scalings of differen-
tiable paths you see in ordinary ∆t→ 0 calculus. Consider a small but non-zero
∆t. The net change in X over that interval is ∆X = Xt+∆t−Xt. If a path has
well defined velocity, Vt = dX/dt, then ∆X ≈ V∆t. Mathematicians say that
∆X is on the order of ∆t, because ∆X is approximately proportional to ∆t for
small1 ∆t. In this linear scaling, reducing ∆t by a factor of 2 (say) reduces ∆X
approximately by the same factor of 2.

Brownian motion, and the Ornstein Uhlenbeck process, have more compli-
cated scalings. There is one scaling for ∆X, and a different one for E[∆X]. The
change itself, ∆X, is on the order of

√
∆t. If ∆t is small, this is larger than

the ∆t scaling differentiable processes have. Brownian motion moves much fur-
ther in a small amount of time than differentiable processes do. The change in
expected value is smaller, on the order of ∆t. It is impossible for the expected
value to change by order

√
∆t, because the total change in the expected value

over a finite time interval would be infinite. The Brownian motion manages to
have ∆X on the order of

√
∆t through cancellation. The sign of ∆X goes back

and forth, so that the net change is far smaller than the sum of |∆X| over many
small intervals of time. That is |∆X1 + ∆X2 + · · · | << |∆X1|+ |∆X2|+ · · · .

1This terminology is different from scientists’ order of magnitude, which means roughly a
power of ten. It does not make sense to compare ∆X to ∆t in the order of magnitude sense
because they have different units.
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Brownian motion and the Ornstein Uhlenbeck process are Markov processes.
The standard filtration consists of the family of σ−algebras, Ft, which are
generated by X[0,t] (the path up to time t). The Markov property for Xt is
that the conditional probability of X[t,T ], conditioning on all the information in
Ft, is determined by Xt alone. The infinitesimal mean, or infinitesimal drift is
E[∆X|Ft], in the limit ∆t→ 0. The infinitesimal variance is var(∆X | Ft). We
will see that both of these scale linearly with ∆t as ∆t → 0. This allows us to
define the infinitesimal drift coefficient,

µ(Xt)∆t ≈ E[Xt+∆t −Xt | Ft] , (1)

and the infinitesimal variance, or noise coefficient

σ2(Xt)∆t ≈ var(Xt+∆t −Xt | Ft) . (2)

The conditional expectation with respect to a σ−algebra requires the left side
to be a function that is measurable with respect to Ft. The Xt that appears
on the left sides is consistent with this. The Markov property says that only Xt

can appear on the left sides, because the right sides are statements about the
future of Ft, which depend on Xt alone.

The properties (1) and (2) are central this course. This week, they tell us
how to take the continuous time limit ∆t→ 0 of discrete time Gaussian Markov
processes or random walks. More precisely, they tell us how a family of processes
must be scaled with ∆t to get a limit as ∆t→ 0. You choose the scalings so that
(1) and (2) work out. The rest follows, as it does in the central limit theorem.
The fact that continuous time limits exist may be thought of as an extension of
the CLT. The infinitesimal mean and variance of the approximating processes
determine the limiting process completely.

Brownian motion and Ornstein Uhlenbeck processes are characterized by
their µ and σ2. Brownian motion has constant µ and σ2, independent of Xt.
The standard Brownian motion has µ = 0, and σ2 = 1, and X0 = 0. If µ 6= 0,
you have Brownian motion with drift. If σ2 6= 1, you have a general Brown-
ian motion. Brownian motion is also called the Wiener process, after Norbert
Wiener. We often use Wt to denote a standard Brownian motion. The Orn-
stein Uhlenbeck process has constant σ, but a linear drift µ(Xt) = −γXt. Both
Brownian motion and Ornstein are Gaussian processes. If σ2 is a function of
Xt or if µ is a nonlinear function of Xt, then Xt is unlikely to be Gaussian.

2 Path space and probability measure

The probability space Ω for continuous random processes may be taken to be the
set of continuous functions of t defined for 0 ≤ t ≤ T , with the extra condition
that the path starts at 0 for t = 0. The value of the path at time t is xt. We
require x0 = 0. The set of continuous functions is written C([0, T ]). We say
x ∈ C([0, T ]) if xt is a continuous function of t, so x represents the whole path
and xt is the value at a specific time.
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You might be more used to writing x(t) for a continuous function of t. No
harm will come from expressing paths this way, but the xt notation is more
common in probability. It makes the notation for continuous time and discrete
time paths similar. For discrete time, x is a vector of values and xk is the value
at index k. The set of paths with x0 = 0 is called C0([0, T ]). (Warning: In other
parts of mathematics, C0 refers to functions that have “compact support”. Not
here. In still other parts of mathematics, C0 refers to any continuous function,
and Ck refers to functions that have k continuous derivatives. Not here.) For
us this week, the probability space is Ω = C0([0, T ]), the space of continuous
functions with x0 = 0.

A probability measure is a function that gives the probability of any measur-
able event A. We denote this as P (A). The probability measures we have seen
until now have been given in concrete ways. For discrete probability (week 2),

P (A) =
∑
ω∈A

P (ω) .

Other probability measures are given by probability densities. If Ω = Rd (the
space of d component random variables), we usually call the random outcome
x rather than ω. A probability density is a function u(x) with the properties
that u(x) > 0 for all x and ∫

Rd

u(x) dx = 1 .

The probability of an event A ⊆ Ω is

P (A) =
∫
A

u(x) dx .

The notion of abstract probability measure collects what these two exam-
ples have in common – numbers that act like probabilities associated with sets.
The formal definition of a probability measure involves a σ−algebra, F , on a
probability space, Ω. For each A ∈ F , there is a number P (A), which is called
the “probability of A. The abstract definition does not ask the numbers P (A)
to be defined in any specific way. They form a probability measure if they have
the following properties:

Positivity. P (A) ≥ 0 for every A ∈ F . This really should be called “non-
negativity”, but often is not.

Additivity. If A ∈ F and B ∈ F are disjoint events, then P (A ∪ B) =
P (A) + P (B).

Totality. P (Ω) = 1.

Countable additivity. Let Ak be an increasing sequence of events. “Increas-
ing” means that Ak ⊂ Ak+1 for all k. Let A be the union of all those events.
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The countable additivity of F implies that A ∈ F . Countable additivity of P is

P (∪∞k=1Ak) = lim
k→∞

P (Ak) . (3)

We can derive many other properties of probability measures in a straight-
forward way from these. For example, if A ∈ F , then P (Ac) = 1− P (A). This
is because A and Ac are disjoint, so P (A) + P (Ac) = P (A ∪ Ac) = P (Ω) = 1.
For another example, suppose Ak are a decreasing family of events (meaning
that Ak+1 ⊆ Ak). Then countable additivity implies that

lim
k→∞

P (Ak) = P (∩∞k=1Ak) . (4)

This just restates the countable additivity property (3). You can see that (3)
implies (4) as follows. If Ak is a decreasing family of events, then Bk = Ack is
an increasing family of events (think this through). It is easy to show that if
A = ∪Ak and B = ∪Bk, then Ac = B. (If ω ∈ A then ω ∈ Ak for all k – the
definition of intersection – so ω /∈ Bk for all k, thus ω /∈ ∪Bk. Conversely, if
ω /∈ A, then there is a k with ω /∈ Ak. But this implies that ω ∈ Ack = Bk, so
ω ∈ B. This is what mathematicians call a “routine verification”.)

A probability measure on our path space Ω = C0([0, T ]) must be of the
abstract kind. It cannot be given by probabilities because the space is not
discrete. It cannot be given by a probability density because the space is not
finite dimensional. In most of the examples in this course, our probability
measures can be defined in a ∆t → 0 process. Define t∆tk = k∆t. Let F∆t be
the σ−algebra of information you get by observing a path at the set of times
t∆tk . For example, the event

A = {Xtk ≤ 1, for all tk < T} (5)

is measurable in F∆t (We often neglect to write ∆t everywhere it should go, as
in tk rather than t∆tk .). If ∆t is not a rational number, then the event {X2 > 0}
is not measurable in F∆t, because t = 2 is not one of the observation times tk.
A more important event not in F∆t is

A = {Xt ≤ 1, for all t ∈ [0, T ]} . (6)

3 Kinds of convergence

Suppose we have a family of processes X∆t
t , and we want to take ∆t → 0

and find a limit process Xt. There are two kinds of convergence, distributional
convergence, and pathwise convergence. Distributional convergence refers to the
probability distribution of X∆t

t rather than the numbers. It is written with a
half arrow, X∆t

t ⇀ Xt as ∆t → 0, or possibly X∆t
t

D
⇀ Xt. The CLT is an

example of distributional convergence. If Z ∼ N (0, 1) and Yk are i.i.d., mean
zero, variance 1, then Xn = 1√

n
converges to Z is distribution, which means that

the distribution of Xn converges to N (0, 1). But the numbers Xn have nothing
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to do with the numbers Z, so we do not expect that Xn → Z as n → ∞. We
write Xn

D
⇀ N (0, 1) of Xn

D
⇀ Z as n→∞, which is convergence in distribution.

Later in the course, starting in week 5, there will be examples of sequences
that converge pathwise.

4 Discrete time Gaussian process

Consider a linear Gaussian recurrence relation of the form (27) from week 1,
but in the one dimensional case. We write this as

Xn+1 = aXn + bZn . (7)

We want Xn to represent, perhaps approximately, the value of a continuous
time process at time tn = n∆t. We guess that we can substitute (7) into (1)
and (2) to find the scalings of a and b with ∆t. We naturally use Fn instead of
Ft on the right. The result for (1) is

µ(Xn)∆t = aXn .

To get µ = 0 for Brownian motion, we would take a = 0. To get µ(x) = −γx for
the Ornstein Uhlenbeck process, we should take a = −γ∆t. The a coefficient
in the recurrence relation should scale linearly with ∆t to get finite, non-zero,
drift coefficient in the continuous time limiting process.

Calibrating the noise coefficient gives scalings characteristic of continuous
time stochastic processes. Inserting (7) into (2), with Fn for Ft, we find

σ2(Xn)∆t = b2 .

Brownian motion and the Ornstein Uhlenbeck process have constant σ2, which
suggests the scaling b = σ

√
∆t. These results, put together, suggest that the

way to approximate the Ornstein Uhlenbeck process by a discrete Gaussian
recurrence relation is

X∆t
n+1 = −γ∆tX∆t

n + σ
√

∆tZn . (8)

Let Xt be the continuous time Ornstein Uhlenbeck process. We define a discrete
time approximation to it using (8) and

X∆t
tn = X∆t

n .

Note the inconsistent notation. The subscript on the left side of the equation
refers to time, but the subscript on the right refers to the number of time steps.
These are related by tn = n∆t.

Let us assume for now that the approximation converges as ∆t → 0 in
the sense of distributions. There is much discussion of convergence later in
the course. But assuming it converges, (8) gives a Monte Carlo method for
estimating things about the Ornstein Uhlenbeck process. You can approximate
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the values of Xt for t between time steps using linear interpolation if necessary.
If tn < t < tn+1, you can use the definition

X∆t
t = X∆t

tn +
t− tn

tn+1 − tn

(
X∆t
tn+1
−X∆t

tn

)
.

The values X∆t
tn are defined by, say, (8). Now you can take the limit ∆t → 0

and ask about the limiting distribution of X∆t
[0,T ] in path space. The limiting

probability distribution is the distribution of Brownian motion or the Ornstein
Uhlenbeck process.

5 Brownian motion

Many of the most important properties of Brownian motion follow from the
limiting process described in Section 4.

5.1 Independent increments property

The increment of Brownian motion is Wt −Ws. We often suppose t > s, but
in many formulas it is not strictly necessary. We could consider the increment
of a more general process, which would be Xt −Xs. The increment is the net
change in W over the time interval [s, t].

Consider two time intervals that do not overlap: [s1, t1], and [s2, t2], with
s1 ≤ t1 ≤ s2 ≤ t2. The independent increments property of Brownian motion
is that increments over non-overlapping intervals are independent. The random
variables X1 = Wt1 −Ws1 and X2 = Wt2 −Ws2 are independent. The intervals
are allowed to touch endpoints, which would be t1 = s2, but they are not allowed
to have any interior in common. The cases s1 = t1 and s2 = t2 are allowed but
trivial.

The independent increments property applies to any number of non-overlapping
intervals. If s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · , then the corresponding increments, X1,
X2, X3, . . ., are an independent family of random variables. Their joint PDF is
a product.

The approximate sample paths for standard Brownian motion are given by
(8) with γ = 0 and σ = 1. The exact Brownian motion distribution in path
space is the limit of the distributions of the approximating paths, as discussed
in Section 4. Suppose that the interval endpoints are time step times, such
as s1 = tk1 , t1 = tl1 , and so on. The increment of W in the interval [s1, t1]
is determined by the random variables Zj for s1 ≤ tj < t1. These Zj are
independent for non-overlapping intervals of time. In the discrete approximation
there may be small dependences because one ∆t time step variable Zj is a
member of, say, [s1, t1] and [s2, t2]. This overlap disappears in the limit ∆t→ 0.
The possible dependence between the random variables disappears too.
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5.2 Mean and variance

The mean of a Brownian motion increment is zero.

E[Wt −Ws] = 0 . (9)

The variance of a Brownian motion increment is equal to the size of the time
interval:

var(Wt −Ws) = E
[
(Wt −Ws)

2
]

= t− s . (10)

This is an easy consequence of (8) with γ = 0 and σ = 1. If s = tk and t = tn,
then the increment is

W∆t
tn −W

∆t
tk

=
√

∆t (Zk + · · ·+ Zn−1) .

Since the Zj are independent, the variance is

∆t (1 + 1 + · · ·+ 1) = ∆t (n− k) = tn − tk = t− s .

5.3 The martingale property

The independent increments property upgrades the simple statements to condi-
tional expectations. Suppose Fs is the σ−algebra that knows about W[0,s]. This
is the σ−algebra generated by W[0,s]. The is part of the Brownian motion path
is determined by the increments of Brownian motion in the interval [0, s]. But
all of these are independent of Wt−Ws. The increment Wt−Ws is independent
of any information in Fs. In particular, we have the conditional expectations

E[Wt −Ws|Fs] = 0 . (11)

The variance of a Brownian motion increment is equal to the size of the time
interval:

var(Wt −Ws|Fs) = E
[
(Wt −Ws)

2 |Fs
]

= t− s . (12)

The formula (11) is called the martingale property. It can be expressed as

E[Wt|Fs] = Ws . (13)

To understand this, recall the the left side is a function of the path that is known
in Fs. The value Ws qualifies; it is determined (trivially) by the the path W[0,s].
The variance formula (12) may be re-expressed in a similar way:

E
[
W 2
t |Fs

]
= E

[
(Ws + [Wt −Ws])

2 |Fs
]

= E
[
W 2
s + 2Ws [Wt −Ws] + [Wt −Ws]

2 |Fs
]

= W 2
s + 2WsE[Wt −Ws|Fs] + E

[
(Wt −Ws)

2 |Fs
]

E
[
W 2
t |Fs

]
= W 2

s + (t− s) .

We used the martingale property, and the fact that a number can be pulled out
of the expectation if it is known in Fs.
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6 Ornstein Uhlenbeck process

The Ornstein Uhlenbeck process is the continuous time analogue of a scalar
Gaussian discrete time recurrence relation. Let Xt be a process that satisfies (1)
and (2) with µ(Xt) = −γXt and constant σ2. Suppose u(x, t) is the probability
density for Xt. Since u is the limit of Gaussians, as we saw in Section 4, u itself
should be Gaussian. Therefore, u(x, t) is completely determined by its mean
and variance. We give arguments that are derived from those in Week 1 to find
the mean and variance.

The mean is simple

µt+∆t = E[Xt+∆t]
= E[Xt + ∆X]
= E[Xt] + E[E[∆X|Ft]]
= µt + E[−γXt∆t+ (smaller)]
= µt − γE[Xt] ∆t+ (smaller)

µt+∆t = µt − γµt∆t+ (smaller) .

The last line shows that
∂tµt = −γµt . (14)

This is the analogue of (28) from Week 1.
An orthogonality property of conditional expectation makes the variance

calculation easy. Suppose F is a σ−algebra, X is a random variable, and Y =
E[X|F ]. Then

var(X) = E
[
(X − Y )2

]
+ var(Y ) . (15)

The main step in the proof is to establish the simpler formula

E
[
X2
]

= E
[
(X − Y )2

]
+ E

[
Y 2
]
. (16)

The formula (16) implies (15). If µ = E[X], then var(X) = E
[
(X − µ)2

]
, and

E[X − µ|F ] = Y −µ. So we get (15) by applying (16) with X −µ instead of X.
Note that

E
[
X2
]

= E
[
([X − Y ] + Y )2

]
= E

[
(X − Y )2

]
+ 2E[(X − Y )Y ] + E

[
Y 2
]
.

The formula (16) follows from the orthogonality relation that, in turn, depends
on the tower property and the fact that E[Y |F ] = Y :

E[(X − Y )Y ] = E[ E[(X − Y )Y | F ] ]
= E[ E[ X − Y | F ] Y ]
= E[ (Y − Y ) Y ]
= 0 .
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To summarize, we just showed that X−E[X] is orthogonal to E[X] in the sense
that E[(X − Y )Y ] = 0. The formula (16) is the Pythagorean relation that
follows from this orthogonality. The variance formula (15) is just the mean zero
case of this Pythagorean relation.

The variance calculation for the Ornstein Uhlenbeck process uses the Pythagorean
relation (15) in Ft. The basic mean value relation (1) may be re-written for Orn-
stein Uhlenbeck as

E[Xt+∆t|Ft] = Xt + µ(Xt)∆t+ (smaller) = Xt − γXt∆t+ (smaller) .

Let σ2
t = var(Xt). Then (third line justified below)

σ2
t+∆t = var(Xt+∆t)

= E
[
(Xt+1 −Xt + γXt∆t+ (smaller))2

]
+ var

(
(Xt − γXt∆t+ (smaller))2

)
= σ2∆t+ (1− γ∆t)2 var(Xt) + (smaller)

= σ2
t +

(
σ2 − 2γσ2

t

)
∆t+ (smaller) .

This implies that σ2
2 satisfies the scalar continuous time version of (29) from

Week 1, which is
∂tσ

2
t = σ2 − 2γσ2

t . (17)

Both (14) and (17) have simple exponential solutions. We see that µt goes
to zero at the exponential rate γ, while σ2

t goes to σ2/(2γ) at the exponential
rate 2γ. The probability density of Xt is

u(x, t) =
1√

2πσ2
t

e−(x−µt)2/(2σ2
t ) . (18)

This distribution has a limit as t → ∞ that is the statistical steady state for
the Ornstein Uhlenbeck process.
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