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1 Introduction to the material for the week

A diffusion process is a Markov process in continuous time with a continuous
state space and continuous sample paths. This course is largely about diffusion
processes. Partial differential equations (PDEs) of diffusion type are important
tools for studying diffusion processes. Conversely, diffusion processes give insight
into solutions of diffusion type partial differential equations. We have seen two
diffusion processes so far, Brownian motion and the Ornstein Uhlenbeck process.
This week, we discuss the partial differential equations associated with these two
processes.

We start with the forward equation associated with Brownian motion. Let
Xt be a standard Brownian motion with probability density u(x, t). This prob-
ability density satisfies the heat equation, or diffusion equation, which is

∂tu = 1
2∂

2
xu . (1)

This PDE allows us to solve the initial value problem. Suppose s is a time and
the probability density Xs ∼ u(x, s) is known, then (1) determines u(x, t) for
t ≥ s. The initial value problem has a solution for more or less any initial
condition u(x, s). If u(x, s) is a probability density, you can find x(x, t) for t > s
by: first choosing Xs ∼ u(·, s), then letting Xt for t > s be a Brownian motion.
The probability density of Xt, u(x, t) satisfies the heat equation. By contrast,
the heat generally cannot be run “backwards”. If you give a probability density
u(x, s), there probably is no function u(x, t) defined for t < s that satisfies
the heat equation for t < s and the specified values u(x, s). Running the heat
equation backwards is ill posed.1

The Brownian motion interpretation provides a solution formula for the heat
equation

u(x, t) =
1√

2π(t− s)

∫ ∞
−∞

e−(x−y)2/2(t−s)u(y, s) ds . (2)

1Stating a problem or task is posing the problem. If the task or mathematical problem has
no solution that makes sense, the problem is poorly stated, or ill posed.
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This formula may be expressed more abstractly as

u(x, t) =
∫ ∞
−∞

G(x− y, t− s)u(y, s) ds , (3)

where the function
G(x, t) =

1√
2πt

e−x
2/2t

is called the fundamental solution, or the heat kernel, or the transition density.
You recognize it as the probability of a Gaussian with mean zero and variance
t. This is the probability density of Xt if X0 = 0 and X is standard Brownian
motion.

We can think of the function u(x, t) as an abstract vector and write it u(t).
We did this already in Week 2, where the occupation probabilities un,j =
P(Xn = j) were thought of as components of the row vector un. The solu-
tion formula (3) produces the function u(t) from the data u(s). We write this
abstractly as

u(t) = G(t− s)u(s) . (4)

The operator, G, is something like an infinite dimensional matrix. The abstract
expression (4) is shorthand for the more concrete formula (3), just as matrix
multiplication is shorthand for the actual sums involved. The particular opera-
tors G(t) have the semigroup property

G(t) = G(t− s)G(s) , (5)

as long as t, s, and t− s are all positive.2 This is because u(t) = G(t)u(0), and
u(s) = G(s)u(0), so u(t) = G(t− s) [G(s)u(0)] = [G(t− s)G(s)]u(0).

You can make a long list of ways the heat equation helps understand the
behavior of Brownian motion. We can write formulas for hitting probabilities by
writing solutions of (1) that satisfy the correct boundary conditions. This will
allow us to explain the simulation results in question (4c) of assignment 3. You
do not have to understand probability to check that a function u(x, t) satisfies
the heat equation, only calculus.

The backward equation for Brownian motion is

∂tf + 1
2∂

2
xf = 0 . (6)

This is the equation satisfied by expected values

f(x, t) = E[V (XT )|Xt = x] , (7)

if T ≥ t. The final condition is the obvious statement that f(x, T ) = V (x).
The PDE (6) allows you to move backwards in time to determine values of f

2A mathematical group is a collection of objects that you can multiply and invert, like
the group of invertible matrices of a given size. A semigroup allows multiplication but not
necessarily inversion. If the operators G(t) were defined for t < 0 and the formula (5) still
applied, then the operators would form a group. Our operators are only half a group because
they are defined only for t ≥ 0.
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for t < T from f(T ). The backward equation differs from the forward equation
only by a sign, but this is a big difference. Moving forward with the backward
equation is just as ill posed as moving backward with the forward. In particular,
suppose you have a desired function f(x, 0) and you want to know what function
V (x) gives rise to it using (7). Unless your function f(0) is very special (details
below), there is no V at all.

2 The heat equation

This section describes the heat equation and some of its solutions. This will
help us understand Brownian motion, both qualitatively (general properties)
and quantitatively (specific formulas).

The heat equation is used to model things other than probability. For ex-
ample it can be the flow of heat in a metal rod. Here, u(x, t) is the temperature
at location x at time t. The temperature is modeled by ∂tu = D∂2

xu, where the
diffusion coefficient, D, depends on the material (metal, stone, ..), and the units
(seconds, days, centimeters, meters, degrees C, ..). The heat equation has the
value D = 1

2 . Changing units, or rescaling, or non-dimensionalizing can replace
D with 1

2 . For example, you can use t′ = Dt, or x′ =
√
Dx.

The heat flow picture suggests that heat will flow from high temperature
to low temperature regions. The fluctuations in u(x, t) will smooth out and
relax over time and the heat redistributes itself. The total amount of heat in
an interval [a, b] at time t is3

∫ b

a

u(x, t) dx .

You understand the flow of heat by differentiating with respect to time and
using the heat equation

d

dt

∫ b

a

u(x, t) dx =
∫ b

a

∂tu(x, t) dx = 1
2

∫ b

a

∂2
xu(x, t) dx = 1

2 (∂xu(b, t)− ∂xu(a, t)) .

The heat flux,
F (x, t) = − 1

2∂xu(x, t) , (8)

puts this into the conservation form

d

dt

∫ b

a

u(x, t) dx =
∫ b

a

∂tu(x, t) dx = F (a, t)− F (b, t) . (9)

The heat flus (8) is the rate at which heat is flowing across x at time t. If
F is positive, heat flows from left to right. The specific formula (8) is Fick’s
law, which says that heat flows downhill toward lower temperature at a rate

3If you are one of those people who knows the technical distinction between heat and
temperature, I say “choose units of temperature in which the specific heat is one”.
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proportional to the temperature gradient. If ∂xu > 0, then heat flows from right
to left in the direction opposite the temperature gradient. The conservation
equation (9) gives the rate of change of the amount of heat in [a, b] as the rate
of flow in, F (a, t), minus the rate of flow out, F (b, t). Of course, either of these
numbers could be negative.

The heat equation has a family of solutions that are exponential in “space”
(the x variable). These are

u(x, t) = A(t)eikx . (10)

This is an ansatz, which is a hypothesized functional form for the solution.
Calculating the time and space derivatives, this ansatz satisfies the heat equation
if (here Ȧ = dA/dt)

Ȧeikx = 1
2 (−k2)Aeikx .

We cancel the common exponential factor and see that (10) is a solution if

Ȧ = − 1
2k

2A .

This leads to A(t) = A(0)e−k
2t/2, and

u(x, t) = eikxe−k
2t/2 .

The formula eiθ = cos(θ) + i sin(θ) tells us that the real part of u is

v(x, t) = cos(kx)e−k
2t/2 .

You cannot v as a probability density because it has negative values. But it
gives insight into that the heat equation does. A large k, which is a high wave
number, or (less accurately) frequency, leads to rapid decay, e−k

2t/2. This is
because positive and negative “heat” is close together and does not have to
diffuse far to cancel out.

Another function that satisfies the heat equation is

u(x, t) = t−1/2e−x
2/(2t) . (11)

The relevant calculations are

u
∂t−→
{
∂tt
−1/2

}
e−x

2/(2t) + t−1/2
{
e−x

2/(2t)
}

= − 1
2 t
−1u+

x2

2t2
u ,

and

u
∂x−→ − x

t
t−1/2e−x

2/(2t)

∂x−→ − 1
t
u+

x2

t2
u .

4



This shows that ∂tu does equal 1
2∂

2
xu. This solution illustrates the spreading of

heat. The maximum of u is 1/
√
t, which is at x = 0. This is large for small t

and goes to zero as t→∞. We see the characteristic width by writing u as

u(x, t) =
1√
t
e
− 1

2

“
x√
t

”2

.

This gives u(x, t) as a function of the similarity variable x√
t
, except for the

outside overall scale factor 1√
t
. Therefore, the characteristic width is on the

order of
√
t. This is the order of the distance in x you have to go to get from

the maximum value (x = 0) to, say, half the maximum value.
The heat equation preserves total heat in the sense that

d

dt

∫ ∞
−∞

u(x, t) dx = 0 . (12)

This follows from the conservation law (8) and (9) if ∂xu → 0 as x → ±∞.
You can check by direct integration that the Gaussian solution (11) satisfies
this global conservation. But there is a dumber way. The total mass of the
bump shaped Gaussian heat distribution (11) is roughly equal to the height
multiplied by the width of the bump. The height is t−1/2 and the width is t1/2.
The product is a constant.

There are methods for building general solutions of the heat equation from
particular solutions such as the plane wave (10) or the Gaussian (11). The heat
equation PDE is linear, which means that if u1(x, t) and u2(x, t) are solutions,
then u(x, t) = c1u1(x, t) + c2u2(x, t) is also a solution. This is the superposition
principle. The graph of c1u1 + c2u2 is the superposition (one on top of the
other) of the graphs of u1 and u2. The equation is translation invariant, or
homogeneous in space and time, which means that if u(x, t) is a solution, then
v(x, t) = u(x − x0, t − t0) is a solution. The equation has the scaling property
that if u(x, t) is a solution, then uλ(x, t) = u(λx, λ2t) is a solution. This scaling
relation is “one power of t is two powers of x”, or x2 scales like t.

Here are some simple illustrations. You can put a Gaussian bump of any
height and with any center:

c√
t
e−(x−x0)2/2t .

You can combine (superpose) them to make “multibump” solutions

u(x, t) =
c1√
t
e−(x−x1)2/2t +

c2√
t
e−(x−x2)2/2t .

The k = 1 plane wave u(x, t) = sin(x)e−t/2 may be rescaled to give the general
plane wave: uλ(x, t) = sin(λx)e−λ

2t/2, which is the same as (10). Changing the
length scale by a factor of λ changes the time scale, which is the decay rate in
this case, by a factor of λ2. The Gaussian solutions are self similar in the sense
that uλ(x, t) = Cλu(x, t). The exponent calculation is x2/t→ (λ2x2)/(λ2t).
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The solution formula (2) is an application of the superposition principle with
integrals instead of sums. We explain it here, and take s = 0 for simplicity. The
total heat (or total probability, or total mass, depending on the interpretation)
of the Gaussian bump is

√
2π. You can see that simply by taking t = 1. It is

simpler to work with a Gaussian solution with total mass equal to one. When
you center the normalized bump at a point y, you get

1√
2πt

e−(x−y)2/2t . (13)

As t → 0, this solution concentrates all its heat in a collapsing neighborhood
of y. Therefore, it is the solution that results from an initial condition that
concentrates a unit amount of heat at the point y. This is expressed using the
Dirac delta function as u(x, t)→ δ(x−y) as t→ 0. It shows that the normalized,
centered Gaussian (13) is the solution to the initial value problem for the heat
equation with initial condition u(x, 0) = δ(x − y). More generally, the formula
(c/
√

2πt e−(x−y)2/2t says what happens at later time to an amount c of heat at y
at time zero. For general initial heat distribution u(y, 0), the amount of heat in a
dy neighbornood of y is u(y, 0)dy. This contributes (u(y, 0)/

√
2πt e−(x−y)2/2t to

the solution u(x, t). We get the total solution by adding all these contribution.
The result is

u(x, t) =
∫ ∞
y=−∞

u(y, 0)
1√
2πt

e−(x−y)2/2t .

This is the formula (2).

3 The forward equation and Brownian motion

We argue that the probability density of Brownian motion satisfies the heat
equation (1). Suppose u0(x) is a probability density and we choose X0 ∼ u0.
Suppose we then start a Brownian motion path from X0. Then Xt − X0 ∼
N (0, t) and the joint density of X0 and Xt is

u(x0, xt, t) = u0(x0)
1√
2πt

e−(xt−x0)2/2t .

The probability density of Xt is the integral of the joint density

u(xt, t) =
∫
u(x0, xt, t) dx0 =

∫
u0(x0)

1√
2πt

e−(xt−x0)2/2t dx0 .

If you substitute y for x0 and x for xt, you get (2). This shows that the
probability density of Xt is equal to the solution of the heat equation evaluated
at time t.

4 Hitting probabilities and hitting times

If Xt is a stochastic process with continuous sample paths, the hitting time for
a closed set A is τA = min {t | Xt ∈ a}. This is a random variable because
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the hitting time depends on the path. For one dimensional Brownian motion
starting at X0 = 0, we define τa = min {t | Xt = a}. Let fa(t) be the probability
density of τa. We will find formulas for fa(t) and the survival probability Sa(t) =
P(τa ≥ t). Clearly fa(t) = −∂tSa(t), the survival is (up to a constant) the
negative of the CDF of τ .

There are two related approaches to hitting times and survival probabilities
for Brownian motion in one dimension. One uses the heat equation with a
boundary condition at a. The other uses the Kolmogorov reflection principle.
The reflection principle seems simpler, but it has two drawbacks. One is that I
have no idea how Kolmogorov could have discovered it without first doing it the
hard way, with the PDE. The other is that the PDE method is more general.

The PDE approach makes use of the PDF of surviving particles. This is
defined by

P(Xt ∈ [x, x+ dx]|τa > t) = ua(x, t)dx . (14)

Stopped Brownian motion gives a different description of the same thing. This
is

Yt =
{
Xt if t < τa
a if t ≥ τa

The process moves with Xt until X touches a, then it stops. The density (14)
is the density of Yt except at x = a, where the Y density has a δ component.
Another notation for stopped Brownian motion uses the wedge notation t∧ s =
min(t, s). The formula is Yt = Xt∧τa

. If t < τa, this gives Yt = Xt. If t ≥ τa,
this gives Yt = Xτa , which is a because τa is the hitting time of a.

The conditional probability density ua(x, t) satisfies the heat equation except
at a. We do not give a proof of this, only some plausibility arguments. First,
(see this week’s homework assignment), it is true for a stopped random walk
approximation to stopped Brownian motion. Second, if Xt is not at a and has
not been stopped, then it acts like ordinary Brownian motion, at least for a
short time. In particular,

ua(x, t+ ∆t) ≈
∫
G(x− y,∆t)ua(y, t) dy ,

if ∆t is small. The right side satisfies the heat equation, so the left should as
well if ∆t is small.

The conditional probability satisfies the boundary condition ua(x, t)→ 0 as
x→ a. This would be the same as u(a, t) = 0 if we knew that u was continuous
(it is but we didn’t show it). The boundary condition u(a, t) = 0 is called
an absorbing boundary condition because it represents the physical fact that
particles that touch a get stuck and do not re-enter the region x 6= a. We
will not give a proof that the density for stopped Brownian motion satisfies the
absorbing boundary condition, but we give two plausibility arguments. The
first is that it is true in the approximating stopped random walk. The second
involves the picture of Brownian motion as constantly moving back and forth.
It (almost) never moves in the same direction for a positive amount of time. If
Xt = a, then (almost surely) there are times t1 < t and t2 < t so that Xt1 > a
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and Xt2 < a. The closer y is close to a, the less likely it is that Xs 6= a for all
s < t.

Accepting the two above claims, we can find hitting probabilities by finding
solutions of the heat equation with absorbing boundary conditions. Let us
assume that X0 = 0 and the absorbing boundary is at a > 0. We want a
function ua(x, t) that is defined for x ≤ a that satisfies the initial condition
ua(x, t) → δ(x) as t → 0, for (x < a) and the absorbing boundary condition
ua(a, t) = 0. The trick that does this is the method of images from physics.
A point x < a has an image point, x′ > a, that is the same distance from a.
The image point is x′ = a + (a − x) = 2a − x. If x < a, then x′ > a and
|x− a| = |x′ − a|, and x′ → a as x → a. The density function ua(x, t) starts
out defined only for x ≤ a. The trick is to extend the definition of ua beyond a
by odd reflection. That is,

ua(x′, t) = −ua(x, t) . (15)

The oddness of the extended function implies that ua(x, t) → 0 as x → a from
either direction. The only direction we originally cared about was from x < a,
but the other is true also.

We create an odd solution of the heat equation by taking odd initial data.
We know ua(x, 0) needs a point mass at x = 0. To make the initial data odd,
we add a negative point mass also at the image of 0, which is x∗ = 2a. The
resulting initial data is

ua(x, 0) = δ(x)− δ(x− 2a) .

The initial data has changed, but the part for x ≤ a is the same. The solution
is the superposition of the pieces from the two delta functions:

ua(x, t) =
1√
2πt

e−x
2/2t − 1√

2πt
e−(x−2a)2/2t . (16)

This function satisfies all three of our requirements. It has the right initial data,
at least for x ≤ a. It satisfies the heat equation for all x ≤ a. It satisfies the
heat equation also for x > a, which is interesting but irrelevant. It satisfies the
absorbing boundary condition. It is a continuous function of x for t > 0 and
has ua(a, t) = 0.

The formula (16) answers many questions about stopped Brownian motion
and absorbing boundaries. The survival probability at time t is

Sa(t) =
∫ a

−∞
ua(x, t) dx . (17)

This is because ua was the probability density of surviving Brownian motion
paths. You can check that the method of images formula (16) has ua(x, t) > 0
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if x < a. The probability density of τa is

fa(t) = − d

dt
Sa(t)

= −
∫ a

−∞
∂tua(x, t) dx

= − 1
2

∫ a

−∞
∂2
xua(x, t) dx

fa(t) = − 1
2∂xua(a, t) . (18)

Without using the specific formula (16) we know the right side of (18) is positive.
That is because ua(x, t) is going from positive values for x < a to zero when
x = a. That makes ∂xua(a, t) negative (at least not positive) and f(t) positive
(at least not negative). The formula (18) reinforces the interpretation (see (8)
of − 1

2∂xu as a probability flux. It is the rate at which probability leaves the
continuation region, x < 0.

The formula for the hitting time probability density is found by differenti-
ating (16) with respect to x and setting x = a. The two terms from the right
turn out to be equal.

fa(t) =

√
2
π

a

t3/2
e−a

2/2t . (19)

The reader is invited to verify by explicit integration that√
2
π
a

∫ ∞
0

1
t3/2

e−a
2/2t dt = 1 .

This illustrates some features of Brownian motion.
Look at the formula as t → 0. The exponent has t in the denominator, so

fa(t)→ 0 as t→ 0 exponentially. It is extremely, exponentially, unlikely for Xt

to hit a in a short time. The probability starts being significantly different from
zero when the exponent is not a large negative number, which is when t is on
the order of a2. This is the (time) = (length)2 aspect of Brownian motion.

Now look at the formula as t → ∞. The exponent converges to zero, so
fa(t) ≈ Ct−3/2. (We know the constant, but it just gets in the way.) This
integrates to a statement about the survival probability

Sa(t) =
∫ ∞
t

fa(t′) dt′ ≈ C
∫ ∞
t

t′3/2 dt′ = Ct−1/2 .

The probability to survive a long time goes to zero as t → ∞, but slowly as
1/
√
t.

The maximum of a Brownian motion up to time t is

Mt = max
0≤s≤t

Xs .

The hitting time formulas above also give formulas for the distribution of Mt.
Let Gt(a) = P(Mt ≤ a) be the CDF of Mt. This is nearly the same as a survival
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probability. Suppose X0 = 0 and a > 0 as above. Then the event Mt < a is
the same as Xs < a for all s ∈ [0, t], which is the same as τa > t. Let gt(a) be
the PDF of Mt. Then g(a) = d

daG(a). Since Gt(a) = Sa(t), we can find g by
differentiating the formula (17) with respect to a and using (16). This is not
hard, but it is slightly involved because Sa(t) depends on a in two ways – the
limit of integration and the integrand ua(x, t).

There is another approach through the Kolmogorov reflection principle. This
is a re-interpretation of the survival probability integral (17). Start with the
observation that ∫ ∞

−∞

1√
2πt

e−x
2/2t dx = 1 .

The integral (17) is less than 1 for two reasons. One reason is that the survival
probability integral omits the part of the above integral from x > a. The other
is the negative contribution from the image “charge”. It is obvious (draw a
picture) that ∫ ∞

a

1√
2πt

e−x
2/2t dx =

∫ a

−∞

1√
2πt

e−(x−2a)2/2t dx

Also, the left side is P(Xt > a). Therefore

Sa(t) = 1− 2P(Xt > a) . (20)

We derived this formula by calculating integrals. But once we see it we can look
for a simple explanation.

The simple explanation given by Kolmogorov depends on two properties
of Brownian motion: it is symmetric (as likely to go up by ∆X as down by
∆X), and it is Markov (after it hits level a, it continues as a Brownian motion
starting at a). Let Pa be the set of paths that reach the level a before time t.
The reflection principle is the symmetry condition that

P
(
Xt > a | X[0,t] ∈ Pa

)
= P

(
Xt < a | X[0,t] ∈ Pa

)
.

This says that a path that touches level a at some time τ < t is equally likely to
be outside at time t (Xt > a) as inside (Xt < a). If τa is the hitting time, then
Xτa = a. If τa < t then the probabilities for the path from time τa to time t are
symmetric about a. In particular, the probabilities to be above a and below a
are the same. A more precise version of this argument would say that if s < t,
then

P(Xt > a | τa = s) = P(Xt < a | τa = s) ,

then integrate over s in the range 0 ≤ s ≤ t. But it takes some mathematical
work to define the conditional probabilities, since P(τa = s) = 0 so you cannot
use Bayes’ rule directly. Anyway, the reflection principle says that exactly half
of the paths (half in the sense of probability) that ever touch the level a are
above level a at time t. That is exactly (20).
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5 Backward equation for Brownian motion

The backward equation is a PDE satisfied by conditional probabilities. Suppose
there is a “reward” function V (x) and you receive V (Xt) depending on the value
of a Brownian motion path. The value function is the conditional expectation
of the reward given a location at time t < T :

f(x, t) = E[ V (XT ) | Xt = x] . (21)

There other common notations for this. The expression E∗[ · · · ] means that the
expectation is taken with respect to the probability distribution in the subscript.
For example, if Y ∼ N (µ, σ2), we might write

Eµ,σ2

[
eY
]

= eµ+σ2/2 .

We write Ex,t[ · · · ] for expectation with respect to paths X with Xt = x. The
value function in this notation is

f(x, t) = Ex,t[V (XT )] .

A third equivalent way uses the filtration associated with X, which is Ft. The
random variable E[ · · · |Ft] is a function ofX[0,t]. The Markov property simplifies
X[0,t] to Xt if the random variable depends only on the future of t. Therefore,
E[V (XT ) | Ft] is a function of Xt, which we call f(x, t). Therefore the following
definition is equivalent to (21):

f(Xt, t) = E[V (XT ) | Ft] . (22)

The backward equation satisfied by f may be derived using the tower prop-
erty. This can be used to compare f(·, t) to f(·, t + ∆t) for small ∆t. The
“physics” behind this is that ∆X will be small too, so f(x, t) can be determined
from f(x + ∆x, t + ∆t), at least approximately, using Taylor series. These
relations become exact in the limit ∆t→ 0.

The σ−algebra Ft+∆t has a little more information than Ft. Therefore, if
Y is any random variable

E[ E[Y | Ft+∆t] | Ft] = E[Y | Ft] .

We apply this general principle with Y = V (XT ) and make use of (22), which
leads to

E[ f(Xt+∆t, t+ ∆t) | Ft] = f(Xt) .

We write Xt+∆t = Xt + ∆x and expand f(Xt+∆t, t+ ∆t) in a Taylor series.

f(Xt+∆t, t+ ∆t) = f(Xt, t)
+ ∂xf(Xt, t)∆X
+ ∂tf(Xt, t)∆t

+ 1
2∂

2
xf(Xt, t)∆X2

+O(|∆X|3) +O(|∆X|∆t) +O(∆t2) .
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The three remainder terms on the last line are the sizes of the three lowest order
Taylor series terms left out. Now take the expectation of both sides conditioning
on Ft and pull out of the expectation anything that is known in Ft:

E[ f(Xt+∆t, t+ ∆t | Ft] = f(Xt, t)
+ ∂xf(Xt, t)E[ ∆X | Ft]
+ ∂tf(Xt, t)∆t

+ 1
2∂

2
xf(Xt, t)E

[
∆X2 | Ft

]
+O

(
E
[
|∆X|3 | Ft

])
+O (E[ |∆X| | Ft] ∆t) +O(∆t2) .

The two terms on the top line are equal because of the tower property. The
next line is zero because Brownian motion is symmetric and E[ ∆X | Ft] = 0.
For the fourth line, use the independent increments property and the variance
of Brownian motion increments to get E

[
∆X2 | Ft

]
= ∆t. We also know the

scaling relations E[ |∆X|] = C∆t1/2 and E
[
|∆X|3

]
= C∆t3/2. Put all of these

in and cancel the leading power of ∆t:

0 = ∂tf(Xt, t) + 1
2∂

2
xf(Xt, t) +O

(
∆t1/2

)
.

Taking ∆t→ 0 shows that f satisfies the backward equation (6).
We can find several explicit solutions to the backward equation that illustrate

the properties of Brownian motion. One is f(x, t) = x2+T−t. This corresponds
to final conditions V (XT ) = X2

T . It tells us that if X0 = 0, then E[V (XT )] =
E
[
X2
T

]
= f(0, 0) = T . This is the variance of standard Brownian motion.

Another well known calculation is the expected value of eaXT starting from
X0 = 0. For this, we want f(x, t) that satisfies (6) and final condition f(x, T ) =
eax. We try the ansatz f(x, t) = Aeax−bt. Putting this into the equation gives

−bAeax−bt + 1
2a

2Aeax−bt = 0 .

Therefore, f(x, t) = Aeax−bt. Matching the final condition gives

eax = Aeax−a
2T/2 =⇒ A = ea

2T/2 .

The final solution is
f(x, t) = eax+a2(T−t)/2 .

If X0 = 0, we find E
[
eaXT

]
= ea

2T/2. We verify that this is the right answer
by noting that Y = aXt ∼ N (0, a2T ).

You can add boundary conditions to the backward equation to take into
account absorbing boundaries. Suppose you get a reward W (t) if you first
touch a barrier at time t, which is τa = t. Consider the problem: run a Brownian
motion starting at X0 = 0 to time τa∧T . For a > 0, the value function is defined
for t ≤ T and x ≤ a. The final condition at t = T is f(x, T ) = V (x) as before.
The boundary condition at x = a is f(a, t) = W (t). A more precise statement
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of the boundary condition is f(x, t) → W (t) as x → a. This is similar to the
boundary condition u(x, t)→ 0 as x→ a. As you approach a, your probability
of not hitting a in a short amount of time goes to zero. This implies that as
Xt → a, the conditional probability that τ < t + ε goes to zero. You might
think that the survival probability calculations above would prove this. But
those were based on the boundary u(a, t) = 0 boundary condition, which we did
not prove. It would be a circular argument.
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