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1 Introduction to the material for the week

This week continues the calculus aspect of stochastic calculus, the limit ∆t→ 0
and the Ito integral. This is one of the most technical classes of the course. Look
for applications in coming weeks. Brownian motion plays a new role this week,
as a source of white noise that drives other continuous time random processes.
Starting this week, Wt usually denotes standard Brownian motion, so that Xt

can denote different random process driven by W in some way. The driving
white noise is written informally as dWt.

White noise is a continuous time analogue of a sequence of i.i.d. random
variables. Let Zn be such a sequence, with E[Zn] = 0 and E

[
Z2

n

]
= 1. These

generate a random walk,

Vn =
n−1∑
k=0

Zk . (1)

The Vn can be expressed in a more dynamical way by saying V0 = 0 and
Vn+1 = Vn + Zn. If the sequence Vn is given, then

Zn = Vn+1 − Vn . (2)

In the continuous time limit, a properly scaled Vn converges to Brownian motion.
The discrete time “independent increments property” is the statement that the
Zn defined by (2) are independent. The discrete time analogue of the fact
that Brownian motion is homogeneous in time is the statement that the Zn are
identically distributed. We can also write

E
[

(Vn − Vm)2 | Fm

]
= n−m ,

Which is the analogue of the corresponding Brownian motion formula.
From their basic definitions, the continuous time white noise and Brownian

motion must be Gaussian. (This is part of the Levy uniqueness theorem.) Sup-
pose that the random variables Zn are i.i.d. but not Gaussian. Even then, the
scaling limits of Vn are Gaussian Brownian motion, and the scaling limit of the
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Zn process, which is harder to define, is Gaussian white noise. The continuous
time scaling limit for Brownian motion is

1√
∆t

Vn
D
⇀Wt , as ∆t→ 0 with tn = n∆t, and tn → t. (3)

The CLT implies that Wt is Gaussian regardless of the distribution of Zn. The
white noise “process” dWt is Gaussian as well, in whatever way it makes sense.

In continuous time, it is simpler to define white noise from Brownian motion
rather than the other way around. The continuous time analogue of (2) is to
write dWt as the source of noise. The continuous time analogue of (1) would be
to define a white noise process Zt somehow, then get Brownian motion as

Wt =
∫ t

0

Zs ds . (4)

The numbers Wt make sense as random variables and the path Wt is a contin-
uous function of t. The numbers Zt do not make sense in the same way.

The Ito integral with respect to Brownian motion is written

Xt =
∫ t

0

fsdWs . (5)

The integrand, is ft. It can be random, but there is an important constraints:
the value of ft must be known at time t. The relation between X and W may
be expressed informally in the Ito differential form

dXt = ftdWt . (6)

The discrete analogue would be

Xn =
n∑

k=0

fn(Vn+1 − Vn) (7)

=
n∑

k=0

fnZn . (8)

The “integrand”, fn is nonanticipating if its value is “known at time n”. The
more formal statement is that the future noise values, Zk for k ≥ n, are inde-
pendent of fn. In this case,

E[Xn −Xn−1] = E[ fnZn] = 0 .

The stronger statement (below) is that Xn is a martingale.
The discrete version (7) is defined even if fn is not non-anticipating. But

the ∆t → 0 does not work for the continuous time Ito integral (5) unless ft

is adapted to the filtration generated by W . If Ft is generated by the path
W[0,t], then ft must be measurable in Ft. The Ito integral is different from
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other stochastic integrals (e.g. Stratonovich) in that the increment dWt is taken
to be in the future of t and therefore independent of f[0,t]. This implies that

E[ dXt | Ft] = ftE[ dWt | Ft] = 0 , (9)

and
E
[
dX2

t | Ft

]
= f2

t E
[
dW 2

t | Ft

]
= f2

t dt . (10)

The Ito integral is important because more or less any continuous time con-
tinuous path stochastic process Xt can be expressed in terms of it. A martingale
is a process with the mean zero property (9). More or less any such martingale
can be represented as an Ito integral (5). This is in the spirit of the central limit
theorem. In the continuous time limit, a process is determined by its mean and
variance. If the mean is zero, it is only the variance, which is f2

t .
The mathematics this week is reasonably precise yet not fully rigorous. You

should be able to understand it even if you have not studied “mathematical
analysis”. This material is not “for culture”. You are expected to master it
along with the rest of the course. If this were not possible, or not important,
the material would not be here.

The approach taken here is not the standard approach using approximation
by “simple functions” and the Ito isometry formula. You can find the standard
approach in the book by Oksendal, for example. The standard approach is
simpler but relies more results from measure theory. The approach here will look
almost the same as the standard approach if you do it completely rigorously,
which we do not.

2 Pathwise convergence and the Borel Cantelli
lemma

Section 3 constructs a sequence of approximations, Xm
t , that converges to the

Ito integral as m→∞. This section describes some technical tools that help us
prove such limits. The method a version of the standard Borel Cantelli lemma.
This section is written without the usual motivations. You may need to read it
twice to see how things fit together.

Suppose am > 0 is a sequence of numbers with a finite sum

s =
∞∑

m=1

am <∞ . (11)

Let rn be the tail sum
rn =

∑
m>n

am .

Then rn → 0 as n→∞. The proof of this is that the partial sums

sn =
n∑

m=1

am
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converge to s, and sn + rn = s for any n, so s− sn = rn → 0 as k →∞.
Now suppose bm is a sequence of numbers, not necessarily positive, and

consider the sum

x =
∞∑

m=1

bm . (12)

The sum converges absolutely if

∞∑
m=1

|bm| <∞ .

You can prove that the sum converges absolutely by finding am > 0 that satisfy
|bm| ≤ am and (11). For example, suppose bm = 1

m2 cos(mt), with t being some
fixed number. Rather than spending time trying to figure out the sum

∞∑
m=1

|bm| =
∞∑

m=1

1
m2
|cos(mt)| ,

you can just say |bm| ≤ am = 1
m2 and know that

∞∑
m=1

am =
∞∑

m=1

1
m2

<∞ .

The partial sums for (12) are

xn =
n∑

m=1

bm .

By definition, the sum (12) converges, and is equal to x, if xn → x as n → ∞.
If we have an upper bound sequence am, then

|x− xn| =

∣∣∣∣∣∑
m>n

bm

∣∣∣∣∣ ≤ ∑
m>n

|bm| ≤
∑
m>n

aj = rn → 0 ,

as n→∞.
We apply this idea to proving convergence of a sequence. Suppose xn is

a given sequence of numbers, and we want to show it converges to a limit as
n→∞. We define the sequence of differences bm = xm − xm−1. We define the
first b assuming that x0 = 0, which gives b1 = x1. Then the xn limit is the same
as the bm sum:

x = lim
n→∞

xn = lim
n→∞

n∑
m=1

bm =
∞∑

m=1

bm

If we can find am that satisfies the conditions

|xm − xm−1| = |bm| ≤ am ,

∞∑
m=1

am <∞ ,
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that proves that the xn limit exists.
Suppose Am is a sequence of non-negative random numbers with a random

sum

S =
∞∑

m=1

Am .

An example would be

Am = Y 2
m , with Ym ∼ N (0,

1
m2

) .

Typically, the Am can be arbitrarily large and so it might happen that S =∑
Am =∞. We hope to show that the probability it will happen is zero. The

event S = ∞ is a measurable set, which in some sense means it is a possible
outcome. But if P(S =∞) = 0, you will never see that outcome. We say that
an event D ⊂ Ω happens almost surely if P(D) = 1. This is abbreviated as a.s.,
as in S <∞ almost surely, or S <∞ a.s. Other expressions are a.e., for almost
everywhere, and p.p., for presque partout (almost everywhere, in French). One
can distinguish between outcomes that are impossible, which would be ω /∈ Ω,
and events that have probability zero. We will ignore this distinction most of
the time.

Our strategy is to show that S <∞ a.s. by showing that E[S] <∞. If the
expected value is finite:

E[S] = E

[ ∞∑
m=1

Am

]
=
∞∑

j=m

E[Am] <∞ ,

then the sum is finite, almost surely:

S =
∞∑

m=1

Am <∞ , a.s.

In particular, let Xm
t be a sequence of random paths. Suppose there is a se-

quence of numbers, not random, so that

E
[ ∣∣Xm+1

t −Xm
t

∣∣] ≤ am , with
∞∑

m=1

am <∞ . (13)

Then you know that the following limit exists almost surely

Xt = lim
j→∞

Xm
t . (14)

This is our version of the Borel Cantelli lemma. We calculate expected values
to verify the hypothesis (13), then we conclude that the limit exists pathwise
almost surely.

Although these are the major quantitative arguments, they are not com-
plete mathematical proofs. For example, we did not give a full definition of
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the probability space or probability measures involved. We did not give the
mathematical definition of expectation with respect to a probability measure.
We did not prove that E[

∑
Am] =

∑
E[Am]. You can find details like these in

a graduate level course on theoretical probability, such as the Courant Institute
course Probability Limit Theorems.

3 Riemann sums for the Ito integral

We use the following Riemann sum approximation for the Ito integral (5):

Xm
t =

∑
tj<t

ftj ∆Wj . (15)

The notation is
∆t = 2−m , (16)

tj = j∆t , (17)

Wt is a standard Brownian motion, and

∆Wj = Wtj+1 −Wtj , (18)

We always assume that ft is measurable with respect to Ft, which is the formal
way of saying that “ft is known at time t”. We will show that the sequence of
approximations (15) converges as m → ∞ for almost every Brownian motion
path. This limit will be measurable in Ft because Xt is a function of W[0,t].

The Riemann sum approximation (15) needs lots of explanation. The Brow-
nian motion increment used at time tj (18) is in the future of tj . The ftj are
measurable in Ftj

(or progressively measurable, or non-anticipating, or adapted
to the filtration Ft), so ∆Wj independent of ftj

. In particular,

E
[
ftj

∆Wj | Ftj

]
= 0 , (19)

and
E
[ (
ftj

∆Wj

)2 | Ftj

]
= f2

tj
E
[

∆W 2
j | Ftj

]
= f2

tj
∆t . (20)

The Riemann sum definition (15) definies Xm
t for all t. It gives a path that

is discontinuous at the times tj . Sometimes it is convenient to re-define Xm
t

by linear interpolation between tj and tj+1 so that it is continuous. Those
subtleties do not matter this week. We mention them because they seem to
play a big role in other treatments of the subject.

Taking m → ∞ has the effect of sending ∆tm = 2−m to zero. This is not
the same as just letting ∆t→ 0, because not all possible small values of ∆t are
considered. The m → ∞ approach simplifies the technical details in two ways.
One is that the time steps ∆tm converge to zero quickly. The other is that it is
easy to compare the ∆tm and ∆tm+1 = 1

2∆tm approximations. Ultimately, we
want to understand the integral (5) rather than the technical approximations
used to define it.
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We assume that the integrand ft is continuous in some way. Specifically, we
assume that for any T , there is a CT so that if t ≤ T and s > 0, then

E
[

(ft+s − ft)
2 | Ft

]
≤ CT s . (21)

This allows integrands like ft = Wt, or ft = tWt. Some of the integrands we
use later in the course do not satisfy this hypotheses, but most are close. We
will re-examine the conditions on ft below to see what is really necessary.

Here is the strategy for proving that the limit

Xt = lim
m→∞

Xm
t

exists. We use the criterion (13), and seek an upper bound am so that

E
[ ∣∣Xm+1

t −Xm
t

∣∣] ≤ am . (22)

We do this, in turn, by finding a2
m so that

E
[ (
Xm+1

t −Xm
t

)2] ≤ a2
m . (23)

The Cauchy Schwarz inequality (see below) implies that (22) is a consequence
of (23). In fact, if U is any random variable, then the Cauchy Schwarz implies
that

E[ |U |] ≤
√

E[U2] . (24)

One can also derive (24) using Jensen’s inequality, but that takes longer to
explain.

The Cauchy Schwartz inequality for random variables is the following the-
orem. Suppose U and V are any two random variables (correlated or not),
then

E[UV ] ≤
√

E[U2] E[V 2] . (25)

A small trick gets (24) from this. Define V from U as V = 1 if U ≥ 0, and
V = −1 if U < 0, so that UV = |U | and E

[
V 2
]

= 1. We prove the Cauchy
Schwarz inequality (25) using (U − αV )2, which is non-negative for any α.
Therefore

0 ≤ E
[

(U − αV )2
]

= E
[
U2
]
− 2αE[UV ] + α2E

[
V 2
]
.

We minimize the right side by taking α = E[UV ] /E
[
V 2
]
. Putting this in the

second expression gives

0 ≤ E
[
U2
]
− E[UV ]2

E[V 2]
.

Multiply through by E
[
V 2
]

and you get (25), which implies (24). And (24) is
the reason our desired (22) follows from the more convenient (23).
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Calculating squares, as in (23) rather than (22), is informative because it can
reveal cancellation in a sum. Consider a generic sequence of random variables
Yk with E[Yk] = 0, and look at the sums

Sm =
m∑

k=1

Yk .

We say there is cancellation in the sum if

|Sm| �
m∑

k=1

|Yk| .

The symbol � means “is much less than”. It is a little vague, as is the rest of
this motivational paragraph. A sum has cancellation if the positive terms are
nearly balanced by the negative terms. This requires the terms to be different,
obviously. for example, suppose Yk = Y for all k. Then Sm = mY , and there
is no cancellation. The opposite extreme is the case where Yk ∼ Y but are
independent. In that case, we calculate

E
[
S2

m

]
= E

( m∑
k=1

Yk

)2
 .

You can see how to expand the square on the right by writing

(a+ b+ c)2 = (a+ b+ c)(a+ b+ c)

= a2 + ab+ ac+ ba+ b2 + bc+ ca+ cb+ c2 .

In the same way (
m∑

k=1

Yk

)2

=

 m∑
j=1

Yj

( m∑
k=1

Yk

)

=
m∑

j=1

m∑
k=1

YjYk .

The diagonal terms are the terms on the right with j = k, by analogy to the
diagonal entries of a matrix. The off diagonal terms are the ones with j 6= k.
The diagonal terms have expected value

E
[
Y 2

k

]
= E

[
Y 2
]
.

The off diagonal terms, if Yk is independent of Yj for k 6= j, are

E[YjYk] = E[Yj ] E[Yk] = 0 .

Therefore, adding the diagonal and off diagonal terms,

E
[
S2

m

]
=

m∑
k=1

E
[
Y 2

k

]
+
∑
j 6=k

E[YjYk] =
m∑

k=1

E
[
Y 2
]

= mσ2
Y .
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The Cauchy Schwarz inequality turns this into an estimate for |Sm|:

E[ |Sm|] ≤
√
m
√
σ2

Y .

Thus, although Sm is the sum of m terms, it is only on the order of
√
m because

of cancellation. We found the cancellation by computing the expected square.
With all this motivation, we estimate

E
[ (
Xm+1

t −Xm
t

)2]
.

The time increments in the Xm
t sum are of the form

[tmj , t
m
j+1] = [j∆tm, (j + 1)∆tm] .

This time interval contributes ftm
j

(Wtm
j+1
−Wtm

j
) to Xm

t . This level m interval
consists of exactly two level m+ 1 intervals:

[tmj , t
m
j+1] = [tm+1

2j , tm+1
2j+1] ∪ [tm+1

2j+1, t
m+1
2j+2] .

You can verify this starting from the fact that ∆tm+1 = 1
2∆tm, so tm+1

2j =
2j∆tm+1 = 2j 1

2∆tm = tmj . The following notation simplifies the discussion.
We fix m and leave out the m superscripts and subscripts, writing tj for tmj , etc.
We write tj+ 1

2
= (j + 1

2 )∆t for the midpoint of the level m interval [tmj , t
m
j+1].

In this notation, we have

[tj , tj+1] = [tj , tj+ 1
2
] ∪ [tj+ 1

2
, tj+1] .

For even more simplicity, we write skip the t’s and write fj+ 1
2

for ft
j+ 1

2
, and

Wj+ 1
2

for Wt
j+ 1

2
, etc. In this notation, we have

Xm+1
t =

∑
tj<t

[
fj

(
Wj+ 1

2
−Wj

)
+ fj+ 1

2

(
Wj+1 −Wj+ 1

2

)]
+Q .

The Q on the end is the term that may result from Xm+1
t having an odd number

of terms in its sum. In that case, Q is the last term. It makes a negligible
contribution to the sum. We subtract from Xm+1

t the Xm
t sum

Xm
t =

∑
tj<t

fj (Wj+1 −Wj) .

The result is

Xm+1
t −Xm

t =
∑
tj<t

(
fj+ 1

2
− fj

)(
Wj+1 −Wj+ 1

2

)
+Q . (26)

Now the calculation starts.
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Denote a typical term in the sum on the right of (26) as

Yj =
(
fj+ 1

2
− fj

)(
Wj+1 −Wj+ 1

2

)
.

It is clear from the definition that

E
[
Yj | Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)
E
[
Wj+1 −Wj+ 1

2
| Fj+ 1

2

]
= 0 .

It follows from the tower property that E[Yj | Fj ] = 0. The off diagonal ex-
pected values are zero. To see this, suppose k < j. Then Yk is known in Fj ,
so

E[YkYj | Fj ] = Yk E[Yj | Fj ] = 0 .

We calculate the diagonal terms in two tower property steps, starting with

E
[
Y 2

j | Fj+ 1
2

]
= E

[(
fj+ 1

2
− fj

)2 (
Wj+1 −Wj+ 1

2

)2
∣∣∣∣Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)2

E
[(
Wj+1 −Wj+ 1

2

)2
∣∣∣∣Fj+ 1

2

]
=
(
fj+ 1

2
− fj

)2 ∆t
2
.

Now we use (21) and go from Fj+ 1
2

to Fj , using the previous result and the
tower property:

E
[
Y 2

j | Fj

]
= E

[(
fj+ 1

2
− fj

)2

| Fj

]
∆t
2
≤ C∆t2 .

One more application of the tower property gives

E
[
Y 2

j

]
= E

[
E
[
Y 2

j | Fj

]]
≤ E

[
C∆t2

]
= C∆t2 . (27)

This is the estimate we need.
The expected square is the sum of the diagonal terms (27):

E
[ (
Xm+1

t −Xm
t

)2]
=
∑
tj≤t

E
[
Y 2

j

]
= C

∑
tj≤t

∆t2m .

Note that
∑

tm
j <t ∆tm ≤ t. Therefore∑

tm
j <t

C∆t2m ≤ C∆tm
∑
tm
j <t

∆t ≤ C t∆tm .

That leads to
E
[ (
Xm+1

t −Xm
t

)2] ≤ Ct∆tm = Ct2−m . (28)
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The Cauchy Schwarz inequality (24) gives

E
[ ∣∣Xm+1

t −Xm
t

∣∣] ≤ Ct2−m/2 . (29)

If you have not seen this before, you might be worried that what is called Ct

in (29) is the square root of what is called Ct in (28). Mathematicians use C,
to mean “some constant”. This constant, the value of C, could be different in
different places. Similarly, Ct means “some constant whose value depends on
t”. It is not called Ct,m because its value does not depend on m. The part
corresponding to Q, which we have ignored until now, can indeed be ignored
(check if you don’t believe me).

We can now apply the Borel Cantelli lemma. The estimate (29) implies that
the hypotheses (13) are satisfied, with am = Ct2−m/2 and therefore

∑
am <∞.

This implies that the Riemann sums (15) have a limit as m→∞.
We used the powers of two in two ways. First, it made it easy to compare Xm

t

to Xm+1
t . Second, it made the sum on the right of (13) a convergent geometric

series. If we had taken ∆tm = 1
m and proved the estimate (29), that would not

have proven convergence as m → ∞, because
∑
am would be infinite in that

case. It is possible to prove convergence of the approximations (in hopefully
clear notation) X∆t

t as ∆t → 0, but we do not have the time for that proof in
this course.

It is possible to prove a stronger uniform convergence theorem. In fact,
we may sometimes assume uniform convergence in coming weeks. We describe
uniform convergence using the maximum difference up to some time T :

Dm
T = max

t≤T

∣∣Xm+1
t −Xm

t

∣∣ .
There is a well known theorem in probability (“Well known to those who know
it well” – Mal Kalos) called Doob’s martingale inequality that uses what we
already proved to show that if ∆tm = 2−m, then

E[Dm
T ] ≤ CT ∆tm .

The assumption (21) can be relaxed. For example, it suffices to take E
[

(ft+s − ft)
2
]
≤

Cs, rather than the conditional expectation. This allows discontinuous inte-
grands that depend on hitting times. It is possible to substitute a power of s
less than 1, such as

√
s.

4 Example

There are a few Ito integrals that can be computed directly from the defini-
tion. Ito’s lemma, which we will see next week, is a better approach actual
calculations. Ito’s lemma is the stochastic integral analogue of the fundamental
theorem of calculus. Riemann sums define the integral in ordinary calculus.
But it is easier to integrate by anti-differentiation than by taking the limit of
Riemann sums.
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The first example is

Xt =
∫ t

0

WsdWs . (30)

The Riemann sum approximation is

Xm
t =

∑
tj<t

Wtj

(
Wtj+1 −Wtj

)
.

The trick for doing this is

Wtj
=

1
2
(
Wtj+1 +Wtj

)
− 1

2
(
Wtj+1 −Wtj

)
.

This leads to

Xm
t =

1
2

∑
tj<t

(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
−1

2

∑
tj<t

(
Wtj+1 −Wtj

) (
Wtj+1 −Wtj

)
.

A general term in the first sum is(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
= W 2

tj+1
−W 2

tj
.

Therefore, the first sum is a telescoping sum,1 which is a sum of the form

(a− b) + (b− c) + · · ·+ (x− y) + (y − z) = a− z .

Let tn = max {tj | tj < t}, then the first sum is 1
2

(
W 2

tn+1
−W 2

0

)
. This simplifies

more because W0 = 0 to 1
2W

2
tn+1

. Clearly, Wtn+1 →Wt as ∆t→ 0.
The second sum involves

S =
∑
tj<t

∆W 2
j . (31)

The mean and variance describe the answer as precisely as we need. For the
mean, we have E

[
∆W 2

j

]
= ∆t, so

E[S] =
∑
tj<t

∆t = tn → t as ∆t→ 0 .

For the variance, the terms ∆Wj are independent, and var
(
∆W 2

j

)
= 2∆t2

(recall: ∆Wj is Gaussian and we know the fourth moments of a Gaussian)
Therefore

var(S) = 2∆t

∑
tj<t

∆t

 = 2∆t tn ≤ 2t2−m .

1The term comes from a collapsing telescope. You can find pictures of these on the web.
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These two calculations show that S → t as m→∞. Therefore

Xm
t →

1
2
(
W 2

t − t
)

as m→∞ .

This gives the famous result∫ t

0

WsdWs =
1
2
(
W 2

t − t
)
. (32)

We have much to say about this result, starting with what it is not. It is
not the answer you would get if Wt were a differentiable function of t. If Wt is
differentiable, then dWs = dW

ds ds, and∫ t

0

WsdWs =
∫ t

0

Ws
dW

ds
ds =

1
2

∫ t

0

d

ds
W 2

s ds =
1
2
W 2

t .

The Ito result (32) is different. The Ito calculus for rough functions like Brow-
nian motion gives results that are not what you would get using the ordinary
calculus. In ordinary calculus, the sum (31) converges to zero as ∆t→ 0. That
is because ∆W 2

j scales like ∆t2 if Wt is a differentiable function of t, so S is like
∆t
∑

tj<t ∆t = ∆t t. But ∆W scales like ∆t for Brownian motion. That is why
S makes a positive contribution to the Ito integral.

The wrong answer 1
2W

2
t is wrong because it is not a martingale. A martingale

is a stochastic process so that if t > s, then

E[Xt | Fs] = Xs . (33)

The Ito integral is a martingale. But

E
[
W 2

t | Fs

]
= W 2

s + (t− s) ,

so W 2
t is not a martingale (see Section 5). The correct formula (32) is a mar-

tingale. The “correction” W 2
t →W 2

t − t makes this happen.
This example illustrates the general principle that ∆Wj must be in the future

of fj in the Riemann sum approximation (15). This implies that E[ fj∆Wj ] = 0,
and the stronger statement that E[ fj∆Wj | Fj ] = fj E[ ∆Wj | Fj ] = 0. Sup-
pose we violate this and propose a “trapezoid rule” approximation

(Wrong)
∫ tj+1

t=tj

Wt dWt ≈
Wtj+1 +Wtj

2
(
Wtj+1 −Wtj

)
. (Wrong)

This leads to the incorrect integral approximation

(Wrong)
∫ t

0

Ws dWs ≈
1
2

∑
tj<t

(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
. (Wrong)

You can check that this is the telescoping sum part of the correct approximation
and converges to 1

2W
2
t , with out the correction that makes it a martingale. The
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problem here is that ∆Wj is not in the future of the trapezoid rule approximation
1
2

(
ftj+1 + ftj

)
. For the integrand of this example, ft = Wt, one easily checks

that

E
[

1
2
(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)]
=

1
2

∆t 6= 0 .

It would be OK to get a non-zero expectation if it were ∆t2, because the total
contribution from these is O(∆t) and vanishes as ∆t→ 0. But this O(∆t) error
makes an O(1) contribution when you add up over j.

5 Properties of the Ito integral

This section discusses two properties of the Ito integral: (1) the martingale
property, (2) the Ito isometry formula.

Two easy steps verify the martingale property. Step one is to say that we
can define the Ito integral with a different start time as∫ t

a

fsdWs = lim
m→∞

∑
a≤tj<t

ftj

(
Wtj+1 −Wtj

)
. (34)

This has the additivity property∫ a

0

fsdWs +
∫ t

a

fsdWs =
∫ t

0

fsdWs .

Step two is that

E
[ ∫ t

a

fsdWs

∣∣∣Fa

]
= 0 .

This is because the right side of (34) has expected value zero. That is because
all the terms on the right are in the future of Fa. That zero expectation is
preserved in the limit ∆t → 0. A general theorem in probability says that if
Ym is a family of random variables and Ym → Y as m → ∞, and if another
technical condition is satisfied (discussed in Week 8), then E[Ym] → E[Y ] as
m→∞.

When we use these facts together, we conclude that

E
[ ∫ t

0

fsdWs

∣∣∣Fa

]
= E

[ ∫ a

0

fsdWs

∣∣∣Fa

]
+ E

[ ∫ t

a

fsdWs

∣∣∣Fa

]
= E

[ ∫ a

0

fsdWs

∣∣∣Fa

]
= Xa .

This is the martingale property for Xt.
The Ito isometry formula is

E

[(∫ t

0

fsdWs

)2
]

=
∫ t

0

E
[
f2

s

]
ds . (35)
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The variance of the Ito integral is equal the the ordinary integral of the expected
square of the integrand. We explain the idea first informally, then more formally
in the next paragraph. Suppose [s, s + dt] and [s′, s′ + dt] are two small time
intervals of length dt > 0. Let dWs = Ws+dt−Ws and dWs′ = Ws′+dt−Ws′ be
the corresponding Brownian motion increments. Then

E[ fsdWsfs′dWs′ ] =
{

0 if s 6= s′

E
[
f2

s

]
ds if s = s′ .

The unequal time formula on the top line reflects that either dWs of dWs′ is
in the future of everything else in the formula. The equal time formula on the
bottom line reflects the informal E

[
(dWs)2 | Fs

]
= dt. Then

(∫ t

0

fsdWs

)2

=
∫ t

0

fsdWs ·
∫ t

0

fs′dWs′

=
∫ t

0

∫ t

0

fsfs′dWsWs′ .

Taking expectations,

E

[(∫ t

0

fsdWs

)2
]

=
∫ t

0

∫ t

0

E[ fsdfs′dWsWs′ ]

=
∫ t

0

E
[
f2

s

]
ds .

A more formal version of this argument is similar to the informal one. We
just use the Riemann sum approximation. Only the diagonal terms in the double
sum have non-zero expected value:

E


∑

tj<t

ftj ∆Wtj

2
 = E

∑
tj<t

∑
tk<t

ftjftk
∆Wtj ∆Wtk


=
∑
tj<t

∑
tk<t

E
[
ftjftk

∆Wtj ∆Wtk

]
=
∑
tj<t

E
[
f2

tj
E
[

∆W 2
tj
| Ftj

]]
=
∑
tj<t

E
[
f2

tj

]
∆t .

The last line is the Riemann sum approximation to the right side of (35).
Let us check the Ito isometry formula on the example (32). For the Ito

integral part we have (recall that X ∼ N (0, σ2) implies var
(
X2
)

= 2σ4)

var
(∫ t

0

WsdWs

)
=

1
4

var
(
W 2

t − t
)

=
1
4

var
(
W 2

t

)
=

1
4

2t2 =
t2

2
.
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For the Riemann integral part, we have∫ t

0

E
[
W 2

s

]
ds =

∫ t

0

s ds =
t2

2
.

As the Ito isometry formula (35) says, these are equal.
A simpler example is fs = s2, and

Xt =
∫ t

0

s2dWs .

This is more typical of general Ito integrals in that Xt is not a function of Wt

alone. Since X is a linear function of W , X is Gaussian. Since X is an Ito in-
tegral, E[Xt] = 0. Therefore, we characterize the distribution of Xt completely
by finding its variance. The Ito isometry formula gives (f2

s = E
[
f2

s

]
= s4)

var(Xt) =
∫ t

0

s4 ds =
s5

5
.
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