
Week 6

Ito’s lemma for Brownian motion

Jonathan Goodman

October 21, 2013

1 Introduction to the material for the week

Ito’s lemma is the big thing this week. It plays the role in stochastic calculus
that the fundamental theorem of calculus plays in ordinary calculus. Most
actual calculations in stochastic calculus use some form of Ito’s lemma. Ito’s
lemma is one of a family of facts that make up the Ito calculus. We use it both
as a language for expressing models, and as a set of tools for reasoning about
models.

We give a standard example from ordinary calculus to illustrate reasoning
and modeling with differentials. Let Nt denote the number of bacteria in a dish.
We model Nt as growing with simple rate r. In a small increment of time dt,
the model is that N increases by an amount

dNt = rNtdt . (1)

The increase in the number of bacteria, in a small amount of time, is proportional
to the number and the time interval, with r as the constant of proportionality.
Here we used calculus as a modeling tool. We next use calculus as an analysis
tool, and calculate d (Aert) = rAertdt. So, if Nt = Aert, then Nt satisfies the
model equation (1). We pin down the constant A by matching initial conditions.
If N0 is given, then N0 = A, so we have Nt = N0e

rt. This allows us to
estimate the doubling time, which is T so that NT = 2N0. Some algebra leads
to T = 1

r log(2) = .693
r . This is a non-trivial prediction from the model (1).

Here is a similar example for a stochastic process Xt that could model a stock
price. We suppose that in the time interval dt that Xt changes by a random
amount whose size is proportional to Xt. In stock terms, the probability to go
from 100 to 102 is the same as the probability to go from 10 to 10.2. A simple
way to do this is to make dX proportional to Xt and dWt, as in

dXt = σXtdWt . (2)

Here, we used stochastic calculus to create a mathematical model. Ito’s lemma
is an analysis tool that allows us to solve this model with the formula Xt =
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X0e
σWt−σ

2
2 t. This implies, for example, that

P(XT > X0) = P
(
Wt >

σt

2

)
.

This may be expressed in terms of the cumulative normal using the trick Wt ∼√
tZ, where Z ∼ N (0, 1), since both Wt and

√
tZ are Gaussian with mean zero

and variance t. Therefore P
(
Wt >

σt
2

)
= P

(
Z > σ

√
t

2

)
, and

P(XT > X0) = 1−N
(
σ
√
t

2

)
≈ 1√

2πσ2t
e−σ

2t/2 .

The last approximation comes from a useful approximation to N(z) when z is
large. We conclude that it is exponentially unlikely to have XT > X0 in the
stock “growth” model (2).

There is more than one version of Ito’s lemma. The one discussed this week
is about the time derivative of stochastic processes f(Wt, t), where f(w, t) is a
differentiable function of its arguments. In future weeks we will discuss more
functions, such as f(Xt, t), where Xt is a more general diffusion process.

Informally, the Ito differential is

df = f(Wt+dt, t+ dt)− f(Wt, t) .

This is the change in f over a small increment of time dt. If you add together
(integrate) the values of df over a range of times, you get the total change in f .
If Xt is any process, then

Xb −Xa =
∫ b

a

dXs . (3)

If you want to call something dXt, it should have this property. In particular,
the differential formula dXt = µtdt+ σtdWt, means that

Xb −Xa =
∫ b

a

µs ds+
∫ b

a

σs dWs . (4)

The first integral on the right is an ordinary integral. The second is the Ito
integral from last week. The Ito integral is well defined provided σt is an adapted
process.

Ito’s lemma for Brownian motion is

df(Wt, t) = ∂wf(Wt, t)dWt +
1
2
∂2
wf(Wt, t)dt+ ∂tf(Wt, t)dt . (5)

An informal derivation starts by expanding df in Taylor series in dW and dt up
to second order in dW and first order in dt,

df = ∂wf dW +
1
2
∂2
wf (dW )2 + ∂tf dt .
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We get (5) from this using (dWt)2 = dt. The formula (dWt)2 = dt cannot be
exactly true, because (dWt)2 is random and dt is not random. It is true that
E
[

(dWt)2|Ft
]

= dt, but Ito’s lemma is about more than expectations.
The real theorem of Ito’s lemma, in the spirit of (4), is

f(Wb, b)− f(Wa, a)

=
∫ b

a

∂wf(Wt, t)dWt +
∫ b

a

(
1
2
∂2
wf(Wt, t) + ∂tf(Wt, t)

)
dt (6)

Everything here is has been defined. The second integral on the right is an
ordinary Riemann integral. The first integral on the right is the Ito integral
defined last week. We give an informal proof of this in Section 2.

You see the convenience of Ito’s lemma by re-doing the example from last
week

Xt =
∫ t

0

WsdWs .

A first guess from ordinary calculus might be Xt = 1
2W

2
t . Let us take the Ito

differential of 1
2W

2
t . For this, we take f(w, t) = 1

2w, and we calculate the terms
in (5):

∂wf = w , ∂2
wf = 1 , ∂tf = 0 .

Therefore, (5) gives

d

(
1
2
W 2
t

)
= WtdWt +

1
2
dt .

Therefore,

1
2
W 2
t −

1
2
W 2

0 =
∫ t

0

WsdWs +
1
2

∫ t

0

ds

=
∫ t

0

WsdWs +
1
2
t .

You just rearrange this and recall that W0 = 0, and you get the formula from
Week 5:

Xt =
∫ t

0

WsdWs =
1
2
W 2
t −

1
2
t .

This is quicker than the telescoping sum stuff from Week 5.
Another example is the solution of the stochastic differential equation, or ,

SDE, (2). A first guess might be Xt = X0e
σWt . This is the solution you would

get, using ordinary calculus, if Wt were a differentiable function of t. So let us
try f(w, t) = X0e

σw. This time, the calculations are

∂wf = σf , ∂2
wf = σ2f , ∂tf = 0 .

We then get

d
(
X0e

σWt
)

= σ
(
X0e

σWt
)
dWt +

1
2
σ2
(
X0e

σWt
)
dt .
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We see that Xt = X0e
σWt does not satisfy the SDE (2). We can get rid of the

second term on the right by trying a more complicated solution

Xt = X0e
σWt− 1

2σ
2t . (7)

We take the Ito differential of this expression using f(w, t) = X0e
σw− 1

2σ
2t. The

result is
∂wf = σf , ∂2

wf = σ2f , ∂tf = −1
2
σ2f .

Now, if we set Xt = f(Wt, t), we get

dXt = ∂wf(Wt, t)dWt +
1
2
∂2
wf(Wt, t)dt+ ∂tf(Wt, t)dt

dXt = σXtdWt +
1
2
σ2Xtdt−

1
2
σ2Xtdt

= σXtdWt

This is the SDE (2). The Ito calculus has produced the solution formula (7).
Ito’s lemma gives a convenient way to figure out the backward equation for

many problems. Ito’s lemma and the martingale (mean zero) property of Ito
integrals work together to tell you how to evaluate conditional expectations.
Consider the Ito integral

XT =
∫ T

0

gsdWs .

Then

E[XT | Ft] = E
[ ∫ t

0

gsdWs | Ft
]

+ E

[∫ T

t

gsdWs | Ft

]
The first term is completely known at time t, so the expectation is irrelevant.
The second term is zero, because dWs is in the future of gs and Ft. Therefore

E

[∫ T

0

gsdWs | Ft

]
=
∫ t

0

gsdWs .

Now suppose f(w, t) is the value function

f(w, t) = E[V (WT ) |Wt = w] . (8)

The integral form of Ito’s lemma (6)

V (WT )− f(Wt, t) =
∫ T

t

df(Ws, s)

=
∫ T

t

∂wf(Ws, s)dWs +
∫ T

t

(
∂tf(Ws, s) +

1
2
∂2
wf(Ws, s)

)
ds

Take the conditional expectation in Ft. In view of the definition (8), the left
side gives

E[V (WT ) | Ft]− f(Wt, t) = 0 .
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The conditional expectation of the Ito integral on the right also vanishes, as we
just said. Therefore

E

[∫ T

t

(
∂tf(Ws, s) +

1
2
∂2
wf(Ws, s)

)
ds | Ft

]
= 0 .

The simplest way for this to happen is for the integrand to vanish identically.
The equation you get by setting the integrand to zero is

∂tf +
1
2
∂2
wf = 0 . (9)

We can turn the logic around to a form mathematicians like better. The above
calculations show the following. If you solve the backward equation (9) for t ≤ T
with final conditions f(w, t) = V (w), then f(Wt, t) = E[V (WT ) | Ft], which is
the same as (8). That is to say, the function you get by solving the backward
equation is the value function.

The derivation here is quicker than the one in Week 4. Ito’s lemma does all
the heavy lifting.

2 Informal proof of Ito’s lemma

This section explains how to prove Ito’s lemma in the integral formula (6). We
will prove it under the assumption that f(w, t) is a differentiable function of
its arguments up to third derivatives. We assume all mixed partial derivatives
up to that order exist and are bounded. That means

∣∣∂3
wf(w, t)

∣∣ ≤ C, and∣∣∂2
t f(w, t)

∣∣ ≤ C, and
∣∣∂2
w∂tf(w, t)

∣∣ ≤ C, and so on.
We use the notation of Week 5, with ∆t = 2−m, and tj = j∆t. The change

in any quantity, Q, from tj to tj+1 is ∆Qj . We use the subscript j for tj , as in
Wj instead of Wtj . For example, ∆fj = f(Wj + ∆Wj , tj + ∆t)− f(Wj , tj). In
this notation, the left side of (6) is

f(Wb, b)− f(Wa, a) ≈
∑

a≤tj<b

∆fj . (10)

The right side is a telescoping sum, which is equal to the left side if b = n∆t
and a = m∆t for some integers m < n. When ∆t and ∆W are small, there is
a Taylor series approximation of ∆fj . The leading order terms in the Taylor
series combine to form the integrals on the right of (6). The remainder terms
add up to something that goes to zero as ∆t→ 0.

Suppose w and t are some numbers and ∆w and ∆t are some small changes.
Define ∆f = f(w + ∆w, t + ∆t) − f(w, t). The Taylor series, up to the order
we need, is

∆f = ∂wf(w, t)∆w + 1
2∂

2
wf(w, t)∆w2 + ∂tf(w, t)∆t (11)

+O
(∣∣∆w3

∣∣)+O (|∆w|∆t) +O
(∣∣∆t2∣∣) . (12)
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The big O quantities on the second line refer to things bounded by a multiple
of what’s in the big O, so O

(∣∣∆w3
∣∣) means: “some quantity Q so that there

is a C with |Q| ≤ C
∣∣∆w3

∣∣”. The error terms on the second line correspond
to the highest order neglected terms in the Taylor series. These are (constants
omitted) ∂3

wf(w, t)∆w3, and ∂w∂tf(w, t)∆w∆t, and ∂2
t f(w, t)∆t2. The Taylor

remainder theorem tells us that if the derivatives of the appropriate order are
bounded (third derivatives in this case), then the errors are on the order of the
neglected terms.

The sum on the right of (10) now breaks up into six sums, one for each term
on the right of (11) and (12):∑

a≤tj<b

∆fj = S1 + S2 + S3 + S4 + S5 + S6 .

We consider them one by one. It does not take long.
The first is

S1 =
∑

a≤tj<b

∂wf(Wj , tj)∆Wj .

In the limit ∆t→ 0 (more precisely, m→∞ with ∆t = 2−m), this converges to∫ b

a

∂wf(Ws, s)dWs .

The second is
S2 =

∑
a≤tj<b

1
2∂

2
wf(Wj , tj)∆W 2

j . (13)

This is the term in the Ito calculus that has no analogue in ordinary calculus.
We come back to it after the others. The third is

S3 =
∑

a≤tj<b

∂tf(Wj , tj)∆t .

As ∆t→ 0 this one converges to∫ b

a

∂tf(Ws, s) ds .

The first error sum is

|S4| ≤ C
∑

a≤tj<b

∣∣∆W 3
j

∣∣ .
This is random, so we evaluate its expected value. We know from experience
that E

[ ∣∣∆W 3
j

∣∣] scales like ∆t3/2, which is one half power of ∆t for each power
of ∆W . Therefore

E[S4] ≤ C
∑

a≤tj<b

∆t3/2 = C∆t1/2
∑

a≤tj<b

∆t = C(b− a)∆t1/2 .
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The second error term goes the same way, as E[ |∆Wj |∆t] also scales as ∆t3/2.
The last error term has

|S6| ≤ C
∑

a≤tj<b

∆t2 = C(b− a)∆t .

Last week we showed that if
∞∑
m=1

E[ |S4,m|] <∞ , (14)

then S4,m → 0 as m→∞, almost surely. We just showed that

E[ |S4,m|] ≤ Ct∆t1/2m = Ct

(
1√
2

)−m
,

which bounds the sum (14) by a convergent geometric series. The same argu-
ments apply to S5 and S6. Together they show that the total contribution of
the error terms (12) vanishes in the limit ∆t→ 0.

The trick in this sort of analysis is distinguishing between small terms and
tiny terms. Small terms, such as fj∆W 2

j , add up to something important. Tiny
terms, such as fj∆Wj∆t add up to something small. Suppose, for simplicity,
that t = 1. Then the number of times tj < t is 1/∆t. Therefore, if Hj is a term
of order ∆t, then ∑

tj<1

Hj

can be O(∆t)/∆t, which is order 1. The sum does not go to zero as ∆t → 0.
This makes Hj a small term. Terms like fj∆W 2

j are small in this sense, because∣∣fj∆W 2
j

∣∣ is order ∆t. Terms that are smaller, such as fj∆Wj∆t, are tiny.
It comes now to the sum (13). The

(
∆W 2

j

)
↔ ∆t connection suggests we

write
(∆Wj)

2 = ∆t+Rj ,

Clearly

E[Rj | Fj ] = 0 , and E
[
R2
j | Fj

]
= var(Rj | Fj) = 2∆t2 .

Now,

S2 =
∑

a≤tj<b

1
2∂

2
wf(Wj , tj)∆t +

∑
a≤tj<b

1
2∂

2
wf(Wj , tj)Rj

= S2,1 + S2,2 .

The first term converges to the Riemann integral∫ b

a

1
2∂

2
wf(Ws, s) ds .
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The second term converges to zero almost surely. We see this using the now
familiar trick of calculating E

[
S2

2,2

]
. This becomes a double sum over tj and

tk. The off diagonal terms, the ones with j 6= k vanish. If j > k, we see this as
usual:

E
[ (

1
2∂

2
wf(Wj , tj)Rj

) (
1
2∂

2
wf(Wk, tj)Rk

)
| Fj

]
= E[Rj | Fj ]

1
4
∂2
wf(Wj , tj)∂2

wf(Wk, tj)Rk ,

and the right side vanishes. The conditional expectation of a diagonal term is

1
4

E
[ (
∂2
wf(Wj , tj)Rj

)2 | Fj] =
1
4
(
∂2
wf(Wj , tj)

)2
E
[
R2
j | Fj

]
=

1
2
(
∂2
wf(Wj , tj)

)2
∆t2

These calculations show that in E
[
S2

2,2

]
, the diagonal terms, which are the only

non-zero ones, sum to ≤ C(b− a)∆t.

3 Backward equations

Suppose W[0,T ] is a standard Brownian motion path for 0 ≤ t ≤ T . A function
of Brownian motion, Φ(W[0,T ]), is a number whose value is determined by the
path. A simple example is Φ(W[0,T ]) = V (WT ), which we discussed above.
There are many many others (In each case, V is some function of one variable.):

Φ(W[0,T ]) =
∫ T

0

V (Wt) dt (15)

Φ(W[0,T ]) = exp

(∫ T

0

V (Wt) dt

)
(16)

Φ(W[0,T ]) = V ( max
0≤t≤T

|Wt|) (17)

Φ(W[0,T ]) = V (τa ∧ T ) (18)

Φ(W[0,T ]) =

(∫ τa∧T

0

V (Wt) dt

)
(19)

A function of a path is often called a functional. A functional that depends on
more than just WT is called path dependent. The five examples above are path
dependent functionals.

An important part of stochastic calculus is finding E
[

Φ(W[0,T ])
]

for these
and other functionals. In specific applications, the quantity of interest often is
one of these. Moreover, evaluating expectation values is how we we learn about
Brownian motion paths. For example, calculating values of (17) helps prove
that Brownian motion paths are continuous functions of t.

There are backward equation approaches to many of these functionals. The
trick is to find the right value function. Ito’s lemma will tell you the PDE (partial
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differential equation). The rest, the final conditions, and possible boundary
conditions, are usually obvious.

The functional (15) is an additive function (integrate means add up over
time). An engineer might call it a “running cost” and a finance person a “run-
ning reward”. An appropriate value function for this problem is

f(Wt, t) = E

[∫ T

t

V (Ws)ds | Ft

]
. (20)

Ito’s lemma gives

f(WT , T )−f(Wt, t) =
∫ T

t

fw(Ws, s)dWs+
∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds .

The definition (20) gives f(WT , T ) = 0. Therefore, as in the Introduction,

f(Wt, t) = −E

[∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds | Ft

]
.

We set the two expressions for f equal:

E

[∫ T

t

V (Ws)ds | Ft

]
= −E

[∫ T

t

(
1
2
fww(Ws, s) + ft(Ws, s)

)
ds | Ft

]
.

The natural way to achieve this is to set the integrands equal to each other,
which gives

1
2
fww(w, s) + ft(w, s) + V (w) = 0 . (21)

The final condition for this PDE is f(w, T ) = 0. The PDE then determines the
values f(w, s) for s < T . Now that we have guessed the backward equation, we
can show that it is right by Ito differentiation once more. If f(w, s) satisfies the
backward equation (21), then f(Wt, t) satisfies (20).

Here is a slightly better way to say this. From ordinary calculus, we get

d

(∫ T

t

V (Ws)ds | Ft

)
= −V (Wt)dt .

We pause to consider this. The stochastic process

Xt =
∫ T

t

V (Ws)ds

is a differentiable function of t. Its derivative with respect to t follows from the
ordinary rules of calculus, the fundamental theorem in this case

dX

dt

∫ T

t

V (Ws)ds = −V (Wt) .
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This is true for any continuous function Wt whether or not it is random. Con-
ditioning on Ft just ties down the value of Wt. From Ito’s lemma, any function
f(w, s) satisfies

E[ df(Wt, t) | Ft] =
(

1
2
fww(Ws, s) + ft(Ws, s)

)
dt .

Taking expectations on both sides of (20) gives(
1
2
fww(Ws, s) + ft(Ws, s)

)
dt = −V (Wt)dt ,

which is the backward equation (21).
Consider the specific example

f(w, t) = Ew,t

[∫ T

t

W 2
s dt

]
.

We could find the solution by direct calculations, since there is a simple formula
Ew,t

[
W 2
s

]
= Ew,t

[
W 2
t + (Ws −Wt)

2
]

= w2 +(s− t). Instead we use the ansatz

method. Suppose the solution has the form f(w, t) = A(t)w2 +B(t). It is easy
to plug into the backward equation

1
2
fww + ft + w2 = 0

and get
2A+ Ȧw2 + Ḃ + w2 = 0 .

This gives Ȧ = −1. Since f(w, T ) = 0, we have A(T ) = 0 and therefore
A(t) = T−t. Next we have Ḃ = 2T−2t, so B = 2Tt−t2+C. The final condition
B(T ) = 0 gives C = −T 2. The simplified form is B(t) = 2Tt − t2 − T 2 =
−(T − t)2. The solution is f(w, t) = (T − t)w2 −−(T − t)2.

3.1 Doing without Ito’s lemma, Feynman Kac

Here is a direct derivation of a backward equation for (16). The value function
is given by either of these equivalent expressions

f(w, t) = Ew,t
[
e

R T
t
V (Ws)ds

]
, f(Wt, t) = E

[
e

R T
t
V (Ws)ds | Ft

]
. (22)

In a future week we will a derivation of the backward equation using Ito calculus.
But we do it here using just Taylor series and the tower property.

Consider the time interval between t and t+ ∆t. During that time, suppose
a Brownian motion path goes from Wt = w to Wt+∆t = w + ∆W . The tower
property relates f(w, t) to the value function at time t+ ∆t, as follows:

f(w, t) = Ew,t
[

E
[
e

R T
t
V (Ws)ds | Ft+∆t

]]
. (23)
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Of course, at time t+ ∆t, the first part of the path W[t,T ] is known. Therefore
the inner expectation can be rewritten as

E
[
e

R T
t
V (Ws)ds | Ft+∆t

]
= E

[
e

R t+∆t
t

V (Ws)ds+
R T
t+∆t V (Ws)ds | Ft+∆t

]
= e

R t+∆t
t

V (Ws)ds E
[
e

R T
t+∆t V (Ws)ds | Ft+∆t

]
= e

R t+∆t
t

V (Ws)ds f(Wt+∆t, t+ ∆t) .

Restoring the outer expectation in (23) then transforms this to

f(w, t) = Ew,t
[
e

R t+∆t
t

V (Ws)dsf(w + ∆W, t+ ∆t)
]
. (24)

Some Taylor expansions turn this into the backward equation.
The following notation simplifies Taylor remainder computations. If Q is a

quantity bounded by a power of ∆t, we might say Q = O(∆tp). That means
that there is a C do that as |Q| ≤ C∆tp as ∆t → 0. Equivalently, we can say
Q = A∆tp, where A is not constant, but is bounded as ∆t → 0. (Those who
have taken mathematical analysis can translate “bounded as ∆t→ 0” to “there
is a C and a ∆t0 > 0 so that if ∆t < ∆t0 then |A| ≤ C.”) We use this also for
random quantities. For example, ∆W = B

√
∆t implies that the distribution of

B is bounded as ∆t→ 0.
You will see how this convention system works as we go through the expres-

sion (24). If 0 ≤ s ≤ ∆t, then Ws − w = A
√

∆t. Therefore

V (Ws) = V (w) + V ′(w)A
√

∆t

= V (w) +A
√

∆t .

We use the A like we use C before; it is just “some bounded function”, so the
A on the first line is not the same as the A on the second line, and neither is
the same as the A above. We continue in this way:∫ ∆t

0

V (Ws)ds = ∆tV (w) +
√

∆t
∫ ∆t

0

Ads

= ∆tV (w) +A∆t3/2 .

Continuing with the expansion of the exponential,

e
R ∆t
0 V (Ws)ds = eV (w)∆t+A∆t3/2

= 1 + V (w)∆t+A∆t3/2 +B
(
V (w)∆t+A∆t3/2

)2

= 1 + V (w)∆t+A∆t3/2 . (25)

In going from the second to the third lines, we combined terms with powers of
∆t, all powers 3/2 or higher. The A on the third line depends on the A and B
on the second line. We then expand the f term on the right of (24). We need

11



to to compute all terms of size A∆t. Since ∆W = A
√

∆t, this means keeping
terms up to ∆W 2 and treating terms ∆W 3 or higher as Taylor remainders. The
expansion, as far as we need it, and with remainder bounds in our style, is

f(w + ∆w, t+ ∆t) =f(w, t) + ∂wf(w, t)∆W +
1
2
∂2
wf(w, t)∆W 2 + ∂tf(w, t)∆t

+
[
(∂w∂tf term ) + (∂3

wf term ) + (∂2
t f term )

][
A∆t1/2∆t + B∆t3/2 + C∆t2

]
.

We now write f for f(w, t), etc., to save space. The above Taylor expansion is

f(w + ∆W, t+ ∆t) = f + ∂wf∆W +
1
2
∂2
wf∆W 2 + ∂tf∆t+A∆t3/2 .

Now put this and (25) back into (24). In the first line, the things that are random
once w and t are given are ∆W with Ew,t[ ∆W ] = 0 and Ew,t

[
∆W 2

]
= ∆t, and

A and B with Ew,t[A] = A and Ew,t[B] = B (our convention: A is a bounded
function or a bounded number).

f = Ew,t

[(
1 + V (w)∆t+A∆t3/2

)(
f + ∂wf∆W +

1
2
∂2
wf∆W 2 + ∂tf∆t+B∆t3/2

)]
= f + V (w)f∆t+ ∂wEw,t[ ∆W ] +

1
2

Ew,t
[

∆W 2
]

+ ∂tf∆t+ Ew,t
[

(A+B) ∆t3/2
]
.

We simplify this by canceling the common f(w, t) from both sides, then dividing
both sides by ∆t. The terms are rearranged into a traditional order:

0 = ∂tf +
1
2
∂2

2f + V (w)f +A
√

∆t .

Finally we take the limit ∆t→ 0 and restore the w, t arguments:

0 = ∂tf(w, t) +
1
2
∂2

2f(w, t) + V (w)f(w, t) . (26)

This is the backward equation for (16). The final condition, clearly, is f(w, T ) =
1 for all w.

The names Feynman and Kac (pronounced “cats”) are associated with the
PDE (26). Richard Feynman was studying the Schrödinger equation, which is
similar to (26) and proposed a non-rigorous “path integral” solution formula for
it. Mark Kac noticed that Feynman’s reasoning could be applied to the PDE
(26), and that it would be rigorous. The formula (22) gives the solution of the
PDE (26), so (22) is called the Feynman Kac formula. Alas, there is lots of lazy
attribution. Therefore, you will see (26) or even (21) called the Feynman Kac
formula.

3.2 How to use the backward equation

Backward equations are important even when they do not have exact solutions.
Numerical solution of the backward equation can be faster and more accurate
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than evaluating the value function using Monte Carlo. There is no random
statistical error in a finite difference or finite element approximation of the
backward equation. There are analytic methods for PDEs, including series and
asymptotic approximations.

We sometimes go the other way, using Monte Carlo evaluation of the value
functions defined by (15), etc. This is particularly common in high dimensions,
where finite difference methods are impractical.
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