
Week 7

Diffusion processes

Jonathan Goodman

October 28, 2013

1 Introduction to the material for the week

This week we discuss a random process Xt that is a diffusion process. A diffusion
is a continuous time Markov process with continuous sample paths. Brownian
motion is a diffusion process. The Poisson arrival process, Nt = number of ar-
rivals up to time t, is not a diffusion because its sample paths are not continuous
– Nt is discontinuous at any arrival time. The process Xt = W 2

t is a diffusion
because Xt is a continuous function of t and it is Markov. The process Xt below
is a continuous function of t, but it is not a Markov process. It is an iterated
integral involving Brownian motion, written in two equivalent ways:

fs =
∫ t1

0

Wr dr

Xt =
∫ t

0

fs dWs

Xt =
∫ t

0

(∫ s

0

Wr dr

)
dWs .

A more or less equivalent definition, and the more important one for ap-
plications, is that a diffusion is a process that satisfies a stochastic differential
equation. An ordinary differential equation specifies the rate of change of Xt as
a function of Xt and t. We might call the solution an ordinary process (nobody
does). A stochastic differential equation for a diffusion process specifies the in-
finitesimal mean, or drift, and the infinitesimal variance, or noise. A diffusion
process with drift a(x, t) satisfies

E[∆Xt | Ft] = a(Xt, t)∆t+O(∆t2) . (1)

Here, ∆t > 0, and ∆X = Xt+∆t − Xt is the forward looking change. The
differential version for dXt = Xt+dt −Xt is

E[dXt | Ft] = a(Xt, t)dt . (2)

1

This is a little more than an informal restatement of (1). Last week, we said that
the definition of differential is that you know what you get when you integrate
it. For (2), this means that

E[Xt] = X0 +
∫ t

0

E[a(Xs, s)] ds .

If Xt is a one dimensional process, the infinitesimal variance, µ(x, t), is
defined by

E
[

∆X2
t | Ft

]
= µ(Xt, t)∆t+O(∆t2) . (3)

The differential version of this is

E
[

(dXt)
2 | Ft

]
= µ(Xt, t)dt . (4)

The integral relating to this is the quadratic variation.∫ t

0

(dXt)
2 =

∫ t

0

µ(Xs, s) ds . (5)

As in assignment 4, the left side is defined as the limit

lim
m→∞

∑
tj<t

(∆Xj)
2
. (6)

A theorem in the spirit of Ito’s lemma says the limit exists and is equal to the
right side.

An “ordinary process”, one without noise, has a differential update formula
dXt = a(Xt, t)dt. A diffusion process differential update formula would need to
take the form

dXt = a(Xt, t)dt+ (random mean zero variance µ(Xt, t)dt) .

The last term needs to have mean zero and variance µ(Xt, t)dt even conditional
on Ft. This may be achieved, and this is not the only way, by taking b(x, t) =√
µ(x, t) and

dXt = a(Xt, t)dt+ b(Xt, t)dWt . (7)

The noise term b(Xt, t)dWt meets our requirements. It has mean zero and vari-
ance b(Xt, t)2dt = µ(Xt, t)dt, even conditioned on knowing Ft. The expression
(7) is an Ito stochastic differential equation, or SDE. We have argued informally
that any diffusion process can be described as being the solution of an SDE.

Most interesting “ordinary” processes are multi-dimensional. This is true
also for diffusion processes. The state Xt can have n components

Xt =


X1,t

X2,t

...
Xn,t

 .

2

The definition of drift may be written as (1) or (2), except now the quantities
on both sides are n component vectors. The infinitesimal variance is the n× n
matrix that describes the covariance matrix of dXt

E
[

(dXt) (dXt)
t | Ft

]
= µ(Xt, t)dt . (8)

An SDE of the form (7) can describe multi-component, or multivariate, diffu-
sions. The drift, a(x, t), is an n component vector. The coefficient b(x, t) is a
matrix with n rows so that b(x, t)bt(x, t) = µ(x, t). We discuss this below.

The goal for this week is to develop much of the stochastic calculus for general
diffusions. This means finding general diffusion versions of the Ito integral, some
backward equations, Ito’s lemma, and quadratic variation. We seem to have a
lot to do, but the derivations and proofs should start to seem routine.

2 Some diffusion processes

Here are some diffusion process models:

Geometric Brownian motion. A geometric Brownian motion with growth
rate µ and volatility σ, is a process that satisfies the SDE

dSt = µStdt+ σStdWt . (9)

The Black Scholes theory of stock option pricing uses geometric Brownian mo-
tion to model the price at time t of a stock. Ito’s lemma from last week allows
us to check that the solution is

St = S0e
σWt+(µ− 1

2σ
2)t . (10)

This week’s version of Ito’s lemma allows you to derive this formula in a differ-
ent and possibly more natural way.

Stochastic volatility model. The volatility parameter σ determines the
amount of noise in a geometric Brownian motion. It is observed that the level
of noise in stock price processes seems to change unpredictably with time. A
stochastic volatility model replaces the constant σ with the stochastic process
σt, which is governed by its own SDE. One model of this type is expressed by
the SDE system

dSt = µStdt+ σtStdW1,t (11)
dσt = λ (σ − σ) dt+ νdW2,t . (12)

The volatility process is a linear mean reverting process with equilibrium volatil-
ity σ, mean return rate λ, and volatility of volatility (or volvol) ν.

3

Linear Gaussian models. A linear Gaussian continuous time model has the
form

dXt = AXtdt+BdWt . (13)

We said that Xt has n components, which forces A to be an n × n matrix.
But W could have n or fewer components, so m ≤ n will be the number of
components of W :

Wt =


W1,t

W1,t

...
Wm,t

 .

We assume here that distinct components Wj,t and Wk,t are independent, which
is expressed by the formula

E
[
dW dW t | Ft

]
= Im×m dt . (14)

Each component of W is a source of noise. The informal Ito rule is equation
without the expectation on the left.

Here is a simple example that came up for me modeling surface oscillations
of stars. Suppose the surface displacement is Yt. A simple harmonic oscillator
model is

Ÿ = −ω2
0Y .

This has solutions Yt = A cos(ω0t) +B sin(ω0t). You can add a friction “force”
with friction coefficient γ, which gives

Ÿ = −ω2
0Y − γẎ . (15)

If γ and ω0 are positive, and γ is small relative to ω, then Yt will be an expo-
nentially decaying oscillation. But real stars have damped oscillators that are
“driven” by random forces, presumably from turbulence within the star. We
would like

Ÿ = −ω2
0Y − γẎ + σ(random force) .

We formulate this in the general form (13) using the standard idea from differen-
tial equations: introduce the velocity variable Vt = Ẏt. The single second order
equation (15) is equivalent to the following system of two first order equations:

Ẏt = Vt

V̇t = −ω2
0Yt − γVt .

The random forcing for the surface oscillation model should go in the second
equation only, because the first equation is an exact relation that defines V .
We write a system of two Ito style differential equations for the noisy oscillator
model

dYt = Vt dt

dVt =
(
−ω2

0Yt − γVt
)
dt+ b dWt .

4

In matrix form, this is

d

(
Yt
Vt

)
=
(

0 1
−ω2

0 −γ

)(
Yt
Vt

)
dt+

(
0
b

)
dWt .

This is a model of the form (13) with n = 2, m = 1, A =
(

0 1
−ω2

0 −γ

)
, and

B =
(

0
b

)
.

3 Continuous and discontinuous path models

A process can satisfy (1) and (4) without being a diffusion or even being con-
tinuous. You can tell a jump process (a process with discontinuities) from a
diffusion by looking at moments beyond the variance. A single component dif-
fusion should satisfy

E
[

(∆Xt)
4 | Ft

]
≤ C∆t2 . (16)

This is consistent with the idea that ∆X ∼
√

∆t, like Brownian motion. It is a
theorem that Markov processes that satisfy this fourth moment condition have
continuous sample paths (almost surely). We will not even sketch the proof.
Brownian motion has E

[
(∆Wt)

4 | Ft
]

= 3∆t2. Jump processes have

E
[

(∆Xt)
4 | Ft

]
≈ C∆t . (17)

The Poisson arrival process with arrival rate, or intensity, λ is the simplest
jump process. In this model, there is an arrival in time interval (t, t + dt)
with probability λdt. All arrivals are independent. The process is a function
Nt, which is equal to the number of arrivals in the interval [0, t]. This is an
increasing function of t that jumps discontinuously at each arrival time. The
increments, and their probabilities, are

∆Nt = Nt+∆t−Nt =

 0 , P(∆N = 0 | Ft) ≈ 1− λ∆t (no arrivals)
1 , P(∆N = 1 | Ft) ≈ λ∆t (one arrival)

≥ 2 , P(∆N ≥ 2 | Ft) = O(∆t2) (more than one, unlikely).

We write P(∆N = 1) ≈ λ∆t because the interval ∆t is not infinitely small.
An exact calculation reaches the same conclusions we are about to get. These
probabilities give

E[∆N | Ft] = 0 · P(∆N = 0 | Ft) + 1 · P(∆N = 1 | Ft) +O(∆t2)
≈ λ∆t .

This turns out to be exact, as the various approximation errors cancel. The
expected number of arrivals in an interval is exactly equal to rate multiplied

5

by the length of the interval, which gives λ∆t here. The higher moments are
approximately the same, though not exactly. The calculation above gives

E[(∆N)p | Ft] = λ∆t+O(∆t2) ,

for any p > 0.
The Poisson process shows why the higher moments are important. If you

look just at the first and second moments, which is (1) and (3) in this case,
the Poisson process looks like a diffusion with a = 1 and µ = 1. But the
Poisson process in not a diffusion. We see this from the sample paths, which are
discontinuous. We see this in the analysis, as the Poisson process fails to satisfy
the fourth moment condition (16). The fourth moment of a diffusion process is
much smaller, smaller by a factor of ∆t, than the fourth moment of ∆N .

3.1 Fat tailed distributions

This analysis of the Poisson process illustrates the phenomenon of fat tailed
distributions. The tails of a probability density u(x) are the parts of the graph
for large |x|. You can think of the “bell-shaped” Gaussian graph as a picture of
a mouse with no head and two tails. The size of the tails is the rate at which
u(x) goes to zero as x → ±∞. Exponential decay, u(x) ≤ Ce−a|x|, is a “thin”
tail. Power law decay with exponent q, u(x) ∼ C |x|−q for large |x|, is “fat”
tails. The tails are fatter when q is smaller. We cannot have q ≤ 1 because∫ ∞

−∞
u(x) dx <∞ .

For example, if u(x) ∼ C/x as x→∞, then
∫∞
a
u(x)dx =∞, which is impossi-

ble for a probability density.
You can tell a fat tailed distribution by its large or infinite moments. If X

is a random variable with a fat tail distribution, then E[|X|p] =∞ if p > q− 1.
The Student t distribution with n degrees of freedom (see Assignment 1) has
density

un(x) =
Cn(

1 + x2

n

)n+1
2

.

is a fat tailed distribution with q = n+ 1. If X is a Student t random variable
with n = 3 degrees of freedom, then E

[
X2
]

= 3 < ∞ but E
[
X4
]

= ∞. (It
is easy to see that E

[
X2
]
< ∞ and E

[
X4
]

= ∞. Computing E
[
X2
]

= 3
is a challenge.) We could try to estimate E

[
X4
]

by saying that E
[
X2
]

= 3

implies that |X| ∼
√

3, so E
[
X4
]
∼
√

3
4

= 9. Fat tails ruin this argument. The
expected value is determined not by typical X values on the order of

√
3, but

low probability X values that are much larger than
√

3. These large X values
account for the fact that E

[
X4
]
�
(
E
[
X2
])
> 2.

If you have a fat tailed distribution, you might not know which moments are
finite. But there is one thing you can say: if E[|X|p1] <∞, and if p2 < p1, then

6

E[|X|p2] <∞. This is because larger p makes xp larger for large x, which makes
it harder for the integral of xpu(x) to be finite. Jensen’s inequality confirms this
intuition in a quantitative way we will use later. This concerns a convex function
φ(y).

E[φ(Y)] ≥ φ (E[Y]) . (18)

For example, if φ(y) = y2, we get

E
[
Y 2
]
≥ (E[Y])2 =⇒ E[Y] ≤

√
E[Y 2] .

This inequality was used weeks ago, and proven using the Cauchy Schwarz
inequality. Jensen’s inequality gives a different proof. Now suppose Y ≥ 0 and
take a power p > 1 so that φ(y) = yp is a convex function of y. The following
more general inequality follows as the previous one did:

E[Y] ≤ (E[Y p])1/p
. (19)

This says that if the pth moment of Y is finite then the first moment is finite.
The specific case Y = ∆X2 and p = 2 could have been done using Cauchy
Schwarz:

E
[

∆X2
]
≤
√

E[∆X4] . (20)

The case Y = |∆X|3 and p = 4
3 is what we need in Section 4:

E
[
|∆X|3

]
≤
(
E
[

∆X4
])3/4

. (21)

The Poisson process follows this pattern. E[∆N] = λ∆t does not imply that
∆N ∼ λ∆t is a typical outcome. On the contrary, the expectation is determined
by the event ∆N = 1 � λ∆t, which has probability λ∆t. The rare ∆N = 1
events also determine the expectations of the higher moments.

It is crucial in many situations to model the tails of distributions correctly.
Tail events, by definition, have low probability. But they can have a big impact
on overall behavior. In the Poisson process, it is a tail event to have an arrival
in a small interval [t, t + dt]. Yet, without arrivals there would be no process.
People have gone broke using stock price models with exponentially thin tails.
A Gaussian random variable 4σ event has tiny probability P(|X − µ| > 4σ) =
6.4 × 10−5, which is about one day every 200 years. A fat tailed distribution
could have P(4 sigma) = 1

16 = 6.25× 10−2, be Chebychev’s inequality, which is
roughly 1000 times more likely. Heavy tailed distributions arise in many fields –
the sizes of earthquakes, the sizes of car insurance payouts, the sizes of internet
server requests, the sizes of stars, the list goes on.

At this moment in stochastic calculus, the takeaway is that you can show
that Xt is a diffusion process by showing that ∆Xt has light tails. That means
that the fourth moment is on the order of the square of the second moment:

E
[

(∆X)4
]
≤ C

(
E
[

(∆X)2
])2

≈ C (µ∆t)2.

7

3.2 Poisson processes in more detail

We describe three different ways to simulate a simple Poisson arrival process.
These are (1) direct simulation, (2) event driven simulation, (3) rain making.
Each reveals something different about arrival processes. Each generalized to a
different class of more complex simulation methods.

Direct simulation is a form of time stepping. You choose a time step ∆t
and get discrete times tj = j∆t. The values Nj ∼ Ntj as Nj+1 = Nj + ∆Nj .
The increment is a Bernoulli random variable with P(∆Nj = 1) = p = λ∆t,
and P(∆Nj = 0) = 1 − p. All ∆Nj values are independent. You “toss a coin”
in the computer using a uniform random number generator. If U is uniformly
distributed in [0, 1], then P(U < p) = p (duh). In R you can use this as follows

p = lam*dt # prob of an arrival in a dt interval
t = 0 # initialize the time variable
N = 0 # Set N_0 = 0 -- start with no arrivals
while (t < T) { # time steps up to time T

U = runif(1, 0., 1.) # 1 uniform random variable in [0,1]
dN = 0 # the most likely value
if (U < p) dN = 1 # generate an arrival
N = N + dN # add in the increment
t = t + dt # t_{j+1} = t_j + dt

}

This method has many faults. For one thing, it is slow. It asks over and
over “is there an arrival here?”, most often with the answer “no”. For another
thing, it is not exact. The probability of an arrival is not exactly λ∆t, there
is an O(λ∆t2) probability of more than one arrival in an interval of length ∆t.
We do not say where in [t, t+ ∆t] the new arrival falls.

Event driven simulation simulates only the events that happen, rather than
a large number of non-events. The events here are the arrivals. Suppose arrival
k happens at the arrival time Tk. The inter arrival times are Sk = Tk − Tk−1.
These are independent exponential random variables with rate constant λ. The
probability density of Sk is v(s) = λe−λs, if s > 0. You can generate an
exponential random variable from a uniform using the formula S = − log(U)/λ.
It is convenient to suppose T0 = 0, so the first arrival is at time T1 = T0 +S1 =
S1, and so on. The arrival counting function, is Nt = k for t ∈ [Tk−1, Tk]. You
can wonder whether Ntk = k or Ntk = k + 1. This discrete event simulation
strategy is obviously faster than direct simulation.

The rain making approach first asks how many arrivals there were in the
interval of interest [0, T], which is NT . The probabilities are P(NT = n) =
e−λT (λT)n

n! . This is the Poisson distribution with parameter λT . The R state-
ment N = rpois(1, lam*T) generates a Poisson random variable. Once we
know NT , the arrival times may be generated using i.i.d. uniformly distributed
random variables in [0, T]. In R, this could be a vector of length N containing N
independent uniforms Tv = runif(N, 0., T). The list Tv contains the arrival

8

times, but not in order. You can find the kth arrival time by sorting the list:
sort(Tv). Then Tv[k] will be the kth arrival time Tk.

There are good algorithms for generating the necessary Poisson N . I don’t
know how the R routine rpois works. You will learn how it might work if you
take my Monte Carlo class. It is not complicated, but too complicated for this
class.

The name rain comes from thinking of the first step as deciding how many
raindrops there will be and the second step as letting them land uniformly in
the interval [0, T].

There are many generalizations of these methods. Unfortunately, many
problems defy clever solutions and call for direct simulation. Event driven
simulation can simulate discrete state space continuous time processes such
as continuous time Markov chains. The rain algorithm can be used to gener-
ate multi-dimensional Poisson processes. Such a process is defined by having
a “drop” in a small set A with approximate probability λ area(A), with non-
overlapping areas being independent.

4 Backward equations

We derive the backward equation for the value function f(x, t) = Ex,t[V (XT)].
We give a treatment that generalizes the direct treatment in Section 3.1 of Week
6. The new points this week include: (1) a more general PDE that incorporates
the drift and noise coefficients, (2) a derivation that uses the fourth moment
conditions more explicitly than last week, (3) a backward equation for multi-
component diffusions, which is a PDE with more than one x variable.

As in Week 6, the value function has two equivalent derivations:

f(x, t) = Ex,t[V (XT)] , f(Xt, t) = E[V (XT) | Ft] . (22)

We use the tower property, as we did last week, to express f(·, t) in terms of
f(·, t+ ∆t). We keep the notation ∆X = Xt+∆t − x, so Xt+∆t = x+ ∆X, and

f(x, t) = Ex,t[f(x+ ∆X, t+ ∆t)] . (23)

We expand the right side to first order in ∆t and second order in ∆X. Ex-
pressions are shortened by leaving out (x, t) arguments, as in f(x, t) f . We
continue the derivation assuming a one dimensional Xt. The Taylor calculations
of last week give

0 =∂xf Ex,t[∆X] +
1
2
∂2
xf Ex,t

[
(∆X)2

]
+ ∂tf∆t

+ E
[
A |∆X|3

]
+ E[B |∆X|] ∆t+ C∆t2 .

The terms on the second line are Taylor remainder terms, exactly as they were
last week. The infinitesimal mean (1) and variance (3) determine the terms on

9

the top line. If Xt is a diffusion and satisfies the continuous path fourth moment
condition (16), then the first remainder term on the second line satisfies

E
[
A |∆X|3

]
≤ C E

[
|∆X|3

]
≤ C

(
E
[

∆X4
])3/4

≤ C
(
∆t2

)3/4
= C∆t3/2 .

We used the inequality E
[
|∆W |3

]
= C∆t3/2 in the same way last week. Now

we “do the math”, which means putting all this information into the Taylor
expansion then collecting terms.

0 = ∂xf a(x, t)∆t+A∆t2 +
1
2
∂2
xf µ(x, t)∆t+B∆t2 + ∂tf∆t+ C∆t3/2 .

The desired backward equation appears when we divide by ∆t and let ∆t go to
zero, substitute back the (x, t) arguments, and rearrange a little:

0 = ∂tf(x, t) + a(x, t)∂xf(x, t) +
1
2
µ(x, t)∂2

xf(x, t) . (24)

Of course, the final condition is f(x, T) = V (x).

Brownian motion. Standard Brownian motion with no drift and variance t
satisfies the SDE dXt = dWt. This implies that Xt = Wt, provided X0 = W0.
This SDE has a = 0 and b = 1, so µ = b2 = 1. The backward equation for
this case is 0 = ∂tf + 1

2∂
2
xf , which is the backward equation we had before for

Brownian motion.

Linear mean reversion, Ornstein Uhlenbeck.
A solution of the SDE

dXt = −γXtdt+ σdWt (25)

with γ > 0 is a mean-reverting linear Ornstein Uhlenbeck process. In a time
dt, Xt has a mean “drift” toward the origin with a speed depending on Xt. It
“reverts” to the mean, which is zero in this example. The noise σdWt stops Xt

from settling down to zero as t → ∞. This equation has a(x, t) = −γx, and
µ = b2 = σ2. The backward equation is

0 = ∂tf − γx∂xf +
1
2
σ2∂2

xf . (26)

There is an explicit solution for final condition V (x) = e−x
2/2. The me-

chanics of this solution, via the ansatz method, are presented first, then the
“physical” interpretation. An ansatz is a guess at the form of the solution. The

10

guess contains unknown parameters or functions, which then are determined
using the equation. We start with the ansatz

f(x, t) = A(t)e−B(t)x2/2 . (27)

Time derivatives are denoted with a dot, as ∂tA(t) = Ȧ(t). The derivative
calculations are (leaving out the exponents where possible):

A(t)e−B(t)x2/2 ∂t−→ Ȧe— +
−1
2
AḂx2e—

A(t)e−B(t)x2/2 ∂x−→ −ABxe−B(t)x2/2

∂x−→ −AB e— +AB2x2 e— .

We substitute these calculations into the PDE and cancel the common expo-
nential factor, giving

0 = Ȧ+
−1
2
AḂx2 − γx (−ABx) +

σ2

2
(
−AB +AB2x2

)
. (28)

The PDE (26) is satisfied if this equation is satisfied. As a function of x, this
equation is a quadratic with an x2 term and a constant term. The quadratic
equals zero if both coefficients are equal to zero. This reasoning reduces (28) to
two equations

(x2 terms) : 0 =
−1
2
AḂ + γAB +

σ2

2
AB2x2 (29)

(x0 terms) : 0 = Ȧ− σ2

2
AB (30)

There are explicit solutions for these differential equations. The O(x2) equa-
tion may be solved for B first. The first step of the ODE book recipe for the
solution is to calculate

Ḃ = 2γB + σ2B2

dB

dt
= 2γB + σ2B2

dB

2γB + σ2B2
= dt

dB

B (2γ + σ2B)
= dt . (31)

Step 2 is the partial fractions expansion

1
B (2γ + σ2B)

=
a

B
+

b

2γ + σ2B
.

The solution comes from multiplying out the right side:

1 = a
(
2γ + σ2B

)
+ bB .

11

It is

a =
1

2γ
, b =

−σ2

2γ
.

so
dB

B (2γ + σ2B)
=

1
2γ

dB

B
− σ2

2γ
dB

2γ + σ2B
.

This integrates to

1
2γ

logB − 1
2γ

log(2γ + σ2B) + Const =
1

2γ
log
(

B

2γ + σ2B

)
+ Const

Step 3 is to integrate both sides of (31), with a constant of integration C that
changes from line to line

1
2γ

log
(

B

2γ + σ2B

)
+ C = t

B

2γ + σ2B
= Ce2γt

B = 2γCe2γt + σ2BCe2γt(
1− σ2Ce2γt

)
B = 2γCe2γt(

Ce−2γt − σ2
)
B = 2γ

B(t) =
2γ

Ce−2γt − σ2
. (32)

This algebra is easy, but it isn’t quick.
The final condition f(x, T) = V (x) = e−x

2/2 determines final conditions for
A(T) and B(T). The conditions that make the ansatz (27) match V clearly are

A(T) = 1 , B(T) = 1 . (33)

The B final condition determines the C in (32), as follows:

1 =
2γ

Ce−2γT − σ2

Ce−2γT − σ2 = 2γ

C =
(
2γ + σ2

)
e2γT . (34)

This value of C puts the B formula into its final form

B(t) =
2γ

(2γ + σ2) e2γ(T−t) − σ2
. (35)

We simplify the discussion by taking t = 0 and large T , so that

B(0) ≈ 2γ
2γ + σ2

e−2γT . (36)

12

The lesson we get from this is that B(0) is exponentially small for large T .
The explicit formula for A will appear after more calculations. We learn

what the required calculations are from the A equation:

Ȧ =
σ2

2
AB

Ȧ

A
=
σ2

2
B

dA

A
=
σ2

2
B dt

ln(A) =
σ2

2

∫
B dt+ C

A = C exp
(
σ2

2

∫
B dt

)
. (37)

The required calculation is the integral of (32), which then is exponentiated. It
may seem too complicated at this point to be worth it. But in the real world,
as opposed to the classroom, you have days or weeks to solve problems like this.
The algebra is quick if it “only” takes a few hours. Furthermore, we saw already
with the B approximation (36) that a complicated formula can contain simple
information.

The simpler B formula (32) is a simpler starting point for integration. The
first step is to undo an algebraic simplification1 by multiplying by e2γt.

B(t) =
2γe2γt

CB − σ2e2γt
.

We write CB for the constant from the B equation, and CA for the A equation
integration constant. The natural substitution is u = e2γt, which comes with
du = 2γe2γtdt. The integral is∫

B(t)dt =
∫

2γe2γt

CB − σ2e2γt
dt

=
∫

du

CB − σ2u

= − 1
σ2

log
(
CB − σ2u

)
+ CA

This actually simplifies the A equation (37), to

A = CA exp
(
−1
2

log
(
CB − σ2u

))
=

CA√
CB − σ2u

=
CA√

CB − σ2e2γt
.

1There is a saying attributed to the brilliant theoretical computer scientist Donald Knuth:
“Premature optimization is the root of all evil.”

13

The actual expression for CA depends on the actual expression for CB , (34):

A(t) =
CA√

(2γ + σ2) e2γT − σ2e2γt
.

The final condition A(T), finally, determines CA:

1 =
CA√

2γe2γT√
2γe2γT = CA

A(t) =

√
2γe2γT

(2γ + σ2) e2γT − σ2e2γt

A(t) =

√
2γ

(2γ + σ2) + σ2e−2γ(T−t) . (38)

You can impress people with the final formula written out completely:

f(x, t) =

√
2γ

(2γ + σ2) + σ2e−2γ(T−t) e
−γx2

(2γ+σ2)e2γ(T−t)−σ2 .

Or, you could learn something useful by writing the approximate A(0) for large
T :

A(0) ≈
√

2γ
2γ + σ2

.

We can go further. There is an exponentially large range of x where the exponent
is exponentially small (close to zero), which means that f ≈ A there.

This means that there is an exponentially large range of x values for which

f(x, 0) = Ex,0
[
e−X

2
T /2
]
≈
√

2γ
2γ + σ2

. (39)

We conclude: Once T is large enough, and unless X0 is too large, the expected
value of V (XT) has a value that is almost independent of X0 and T . All this
algebra led to a simple qualitative conclusion that we really should try to un-
derstand . . . next week.

14

