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1 Integration and Ito’s lemma for dXt
sec:il

Outline of this section:

1. Ways to define new processes using old ones:

(a) An Ito integral with respect to an old process, Yt =
∫ t

0
asdXs

(b) A function of an old process, Yt = f(Xt, t)

2. Figure out stuff about the new processes

(a) Ito’s lemma

3. It is more useful when it is more general

(a) General Ito process, not just diffusions

(b) Multi-component processes

1.1 Technical overview

A diffusion is a process that satisfies an SDE, which makes it a Markov process.
The operations listed above produce processes that have Ito differentials but
are not Markov. We call Xt an Ito process if (in these formulas, ∆t > 0 and
∆X = Xt+∆t −Xt):

E[ ∆X | Ft] = at∆t+ o(∆t) (1) eq:im

E
[

(∆X)2 | Ft
]

= µt∆t+ o(∆t) (one component) (2) eq:iv

E
[

(∆X) (∆X)t | Ft
]

= µt∆t+ o(∆t) (multi-component) (3) eq:ivm

E
[
|∆X|4 | Ft

]
≤ C∆t2 (4) eq:m4

The little oh notation A = o(∆t) means that A is smaller than ∆t. More
precisely, A/∆t→ 0 as ∆t→ 0. It is usually correct to think O(∆t2) whenever
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you see o(∆t). That’s what it would be if it were a Taylor series expansion. But
it is convenient to make do with an error estimate that is weaker than O(∆t2).
That way you don’t waste time proving that the error is very small, when it
only matters that the error is o(∆t). If Xt is a Markov process (i.e., a diffusion),
then the infinitesimal mean and variance are functions of Xt. We may write
at = a(Xt, t), and µt = µ(Xt, t) in that case.

A diffusion process must be Markov and satisfy an SDE. An Ito process just
needs to satisfy (

eq:im
1), (

eq:iv
2) or (

eq:ivm
3), and (

eq:im
1). For example, suppose (X1,t, X2,t) is a

two component diffusion process and Yt = X1,t+X2,t. Then Yt is an Ito process
but not a diffusion, because the infinitesimal mean and variance of Yt are not
functions of Yt alone, but they depend on X1,t and X2,t separately.

There is one thing diffusions do but non-Markov Ito processes do not – satisfy
backward equations. The backward equation of last week has a(x, t) and µ(x, t),
not just at and µt.

The Ito calculus for Ito process is almost the same as it is for Brownian
motion, but there is one new technical thing. The general treatment here is a
little more complicated, though not much harder, because general Ito processes
are not martingales. A general Ito process may be separated into a martingale
part, which looks like Brownian motion for our purposes here, and a “smoother”
part that can be integrated in the ordinary way.

Ito’s lemma for general Ito process has a natural version of the informal
rule (dWt)2 “=” dt. This rule makes sense because E

[
(dWt)2 | Ft

]
= dt. The

general rule is
(dXt)

2 “=” E
[

(dXt)2 | Ft
]

= µ(Xt, t)dt .

This fake “=” is not a true equality because the standard deviation of (dXt)
2

is also of order dt. We can substitute the right side for the left side in an Ito
integral because the total effect of the “fluctuations” in (dXt)

2 vanishes in the
limit ∆t→ 0.

1.2 Martingale diffusions

By definition, a stochastic process is a martingale if, for any s > 0,

E[Xt+s | Ft] = Xt . (5) eq:m

This definition applies to general processes, which do not have to have con-
tinuous paths or be Markov processes. But for Ito processes, the martingale
property (

eq:m
5) is equivalent to a = 0, the zero drift property, in (

eq:im
1). This equiv-

alence means that zero drift implies (
eq:m
5), and (

eq:m
5) implies zero drift. The second

statement is “obvious”, as (
eq:m
5) implies that E[ ∆X | Ft] = 0 for any ∆t > 0. The

first statement is also “obvious”, so much so that we defer the discussion to a
later subsection.

If an Ito process is not a martingale, we can separate out the martingale
part using an ordinary integral

Yt = Xt −
∫ t

0

as ds .
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The increment of Y is ∆Y = ∆X − at∆t + (smaller), so Yt satisfies the in-
finitesimal drift equation (

eq:im
1) with drift coefficient equal to zero. Therefore, we

have
Xt = Yt + Zt , (6) eq:md

where Yt is a martingale and

Zt =
∫ t

0

as ds . (7) eq:cp

In this decomposition, the drift part of Xt is Zt, and the quadratic variation of
Xt is in Yt. We can see this by calculating

E
[

(∆Y )2 | Ft
]

= E
[

(∆X −∆Z)2 | Ft
]

= E
[

(∆X)2 | Ft
]

+ 2E[ ∆X∆Z | Ft] + E
[

(∆Z)2 | Ft
]

= µt∆t+ 2E[ ∆X∆Z | Ft] + a2
t∆t

2 +O(∆t2) .

Cauchy Schwarz handles the middle term on the right:

|E[ ∆X∆Z | Ft]| ≤
√

E
[

(∆X)2 | Ft
]√

E
[

(∆Z)2 | Ft
]

≤ C
√

∆t
√

∆t2

≤ C∆t3/2 .

The power 3/2 shows the convenience of writing o(∆t) instead of O(∆t2). With
some more work, we could get C∆t2 instead of C∆t3/2. But this is unnecessary
for the present purpose.

To summarize,

E[ ∆Y | Ft] = 0

E[ ∆Z | Ft] = at∆t+O(∆t2)

E
[

(∆Y )2 | Ft
]

= µt∆t+O(∆t2)

E
[

(∆Z)2 | Ft
]

= O(∆t2)

E
[
|∆Y |4 | Ft

]
≤ C∆t2

E
[
|∆Z|4 | Ft

]
≤ C∆t4

We divided X into two pieces Y and Z. The martingale piece is as irregular
as X but is a martingale. The regular piece is continuous enough to be treated
with ordinary calculus. The definition of the integral is∫ t

0

fsdXs =
∫ t

0

fsdYt +
∫ t

0

fsasds . (8) eq:ci

Only the first term on the right needs a definition.
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1.3 Ito integral for martingale Ito processes
sec:ii

This subsection defines

Ut =
∫ t

0

fsdYs ,

where Ys is an Ito process and a martingale. In the notation from the past few
weeks:

Ut = lim
m→∞

U
(m)
t = lim

m→∞

∑
tj<t

ftj
(
Ytj+1 − Ytj

)
.

Recall that ∆t = 2−m and tj = j∆t. Our Borel Cantelli type lemma implies
that the limit exists if

∞∑
m=1

E
[ ∣∣∣U (m+1)

t − U (m)
t

∣∣∣] <∞ .

We show that in fact the expectations on the right form a geometric series:

E
[ ∣∣∣U (m+1)

t − U (m)
t

∣∣∣] ≤ C√∆t = C
(√

2
)−m

.

We study U
(m+1)
t − U (m)

t as we did when we did integration with respect
to Brownian motion. The finer approximation U

(m+1)
t is defined using values

fj = ftj with tj = j∆t, and the half points fj+ 1
2

= ft
j+ 1

2
with tj+ 1

2
= (j+ 1

2 )∆t.
The Yj and Yj+ 1

2
are defined analogously. The finer approximation is

U
(m+1)
t =

∑
tj<t

[
fj+ 1

2

(
Yj+1 − Yj+ 1

2

)
+ fj

(
Yj+ 1

2
− Yj

)]

Subtracting U (m)
t from this gives the thing we need to estimate:

U
(m+1)
t − U (m)

t =
∑
tj<t

Rj ,

with
Rj =

(
fj+ 1

2
− fj

)(
Yj+1 − Yj+ 1

2

)
.

The expected square is the sum of diagonal and off diagonal terms. For each off
diagonal term with j > k there is an equal term with j < k. A factor of 2 in
the off diagonal sum takes that into account. We have

E
[(
U

(m+1)
t − U (m)

t

)2
]

=
∑
tj<t

E
[
R2
j

]
+ 2

∑
tj<t

∑
tj<tk<t

E[RkRj ] .

The off diagonal terms E[RkRj ] with tk > tj vanish because

E
[
RkRj | Ft

j+ 1
2

]
= E

[
Yk+1 − Yk+ 1

2
| Ft

k+ 1
2

] (
fk+ 1

2
− fk

)
Rj = 0 .
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The first factor on the right vanishes because Y is a martingale.
The diagonal sum is also as it was in the Brownian motion case.

E
[(
Yj+1 − Yj+ 1

2

)2 (
fj+ 1

2
− fj

)2
]

= E
[

E
[(
Yj+1 − Yj+ 1

2

)2

| Fj+ 1
2

](
fj+ 1

2
− fj

)2
]

≤ C∆tE
[(
fj+ 1

2
− fj

)2
]

≤ C∆t2 .

Therefore the diagonal sum is∑
tj<t

E
[
R2
j

]
≤ C∆t

∑
tj<t

∆t = Ct∆t .

The Cauchy Schwarz inequality, or Jensen’s inequality, then gives

E
[ ∣∣∣U (m+1)

t − U (m)
t

∣∣∣] ≤√E
[(
U

(m+1)
t − U (m)

t

)2
]

≤
√
Ct∆t .

This proves the existence of the Ito integral with respect to a martingale diffu-
sion.

Now that the Ito integral is defined, what are its properties? If Ut =∫ t
0
fsdXs, then dUt = ftdXt. If Xt is an Ito process that satisfies (

eq:im
1) and

(
eq:iv
2), then Ut is also an Ito process Ut, and the latter has infinitesimal mean and

variance

E[ dUt | Ft] = ft E[ dXt | Ft] = ftatdt ,

E
[

(dUt)
2 | Ft

]
= f2

t E
[

(dXt)
2 | Ft

]
= f2

t µtdt .

1.4 Ito’s lemma

Ito’s lemma is the tool we use for practical computations involving diffusion
processes. It is a stochastic calculus version of the chain rule of ordinary calculus.
If Xt is an Ito process, we form another process as a function of Xt and t:

Yt = f(Xt, t) . (9) eq:fX

If Xt is an Ito process, then Yt is one too. We calculate dYt by Taylor expansion,
keeping terms of order dt or larger. The result is

dYt = df(Xt, t) = ∂xf(Xt, t)dXt +
1
2
∂2
xf(Xt, t) (dXt)

2 + ∂tf(Xt, t)dt .
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This is transformed, under the informal “Ito rule” to

dYt = df(Xt, t) = ∂xf(Xt, t)dXt +
1
2
∂2
xf(Xt, t)µtdt+ ∂tf(Xt, t)dt . (10) eq:il

This makes Yt an Ito process with

E[ dYt | Ft] = ∂xf(Xt, t) E[ dXt | Ft] +
1
2
∂2
xf(Xt, t)µtdt

=
(
∂xf(Xt, t)at +

1
2
∂2
xf(Xt, t)µt

)
dt ,

and

E
[

(dYt)
2 | Ft

]
= (∂xf(Xt, t))

2 E
[

(dXt)
2 | Ft

]
= (∂xf(Xt, t))

2
µtdt .

The theorem that is Ito’s lemma is that the integrals of the left and right
sides of (

eq:il
10) are the same. The integral of the left side is the total change in f

in time t. Therefore, we prove Ito’s lemma by proving the integral identity

f(Xt, t)− f(X0, 0) =
∫ t

0

∂xf(Xs, s)dXs +
∫ t

0

(
∂tf(Xs, s) +

1
2
∂2
xf(Xs, s)

)
ds

(11) eq:ili

The main part of the proof is a calculation that shows that the fluctuations in
(dXt)

2 are indeed negligible in the limit ∆t→ 0.
Use our standard notation: fj = f(Xtj , tj), and Xj = Xtj , and ∆Xj =

Xj+1 −Xj . We use a telescoping representation followed by Taylor expansion

f(Xt, t)− f(x0, 0) ≈
∑
tj<t

[fj+1 − fj ]

=
∑
tj<t

[f(Xj + ∆Xj , tj + ∆t)− f(Xj , tj)]

=
∑
tj<t

[
∂xf(Xj , tj)∆Xj + 1

2∂
2
xf(Xj , tj)∆X2

j + ∂tf(Xj , tj)∆t
]

+
∑
tj<t

[
O
(
|∆Xj |3

)
+O (|∆Xj |∆t) +O

(
∆t2

)]
= S1 + S2 + S3 + S4 + S5 + S6 .

The numbering of the terms is the same as last week. We go through them one
by one, leaving the hardest one, S2, for last.

The first one is

S1 =
∑
tj<t

∂xf(Xj , tj)∆Xj →
∫ t

0

∂xf(Xs, s) dXs as m→∞, almost surely .

6



That is the Ito integral that was defined in Section
sec:ii
1.3. The third term is

S3 =
∑
tj<t

∂tf(Xj , tj)∆t→
∫ t

0

∂tf(Xs, s) ds as m→∞ .

People do not feel the need to say “almost surely” when it’s an ordinary Riemann
sum converging to an ordinary integral. The first error term is S4. Our Borel
Cantelli argument shows that the error terms go to zero almost surely as m→
∞. For example, using familiar arguments,

E[S4] ≤ C
∑
tj<t

E
[
|∆X|3

]
≤ C

∑
tj<t

∆t3/2 = Ct∆t1/2 = Ct2−m/2 .

The sum over m is finite.
Finally, the Ito term:

S2 = 1
2

∑
tj<t

∂2
xf(Xj , tj)µ(Xj)∆t+ 1

2

∑
tj<t

∂2
xf(Xj , tj)

[
∆X2

j − µ(Xj)∆t
]

= S2,1 + S2,2 .

The first sum, S2,1, converges to an integral that is the last remaining part of
(
eq:il1
??). The second sum goes to zero almost surely as m→∞, but the argument

is more complicated than it was for Brownian motion. Denote a generic term
in S2,2 as

Rj = ∂2
xf(Xj , tj)

[
∆X2

j − µ(Xj)∆t
]
.

With this, S2,2 =
∑
Rj , and

E
[
S2

2,2

]
=
∑
tj<t

∑
tk<t

E[RjRk] .

The diagonal part of this sum is ∑
tj<t

E
[
R2
j

]
.

But R2
j ≤ C

(
∆X4

j + ∆t2
)
, so the diagonal sum is OK. The off diagonal sum

was exactly zero in the Brownian motion case because there was no O(∆t2) on
the right of (

eq:iv1
??). The off diagonal sum is

2
∑
tk<t

 ∑
tk<tj<t

E[RjRk]

 .

The inner sum is on the order of ∆t, because

E[RjRk] = E[ E[Rj | Fj ]Rk] ≤ O(∆t2) |Rk| ,
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so ∑
tk<tj<t

E[RjRk] ≤

∑
tj>tk

O(∆t2)

 |Rk| ≤ Ct∆t |Rk| .
You can see from the definition that E[ |Rk|] = O(∆t). Therefore, the outer
sum is bounded by

2
∑
tk<t

CtO(∆t2) = CtO(∆t) ≤ Ct2−m .

This is what Borel and Cantelli need to show S2,2 → 0 almost surely.

1.5 Geometric Brownian motion

Geometric Brownian motion is the solution of the SDE

dSt = µStdt+ σStdWt . (12) eq:gbm

Ito’s lemma gives a quick route to the solution formula we had before. If (
eq:gbm
12)

were an ODE, the solution would be an exponential. This suggests a log trans-
formation

Xt = log(St) . (13) eq:lt

We use the general version of Ito’s lemma to calculate dXt. This is a substitution
of the form (

eq:fX
9) with Xt for St, and Xt for Yt, and log(s) for f(x, t). The required

derivatives are
log(s) ∂s−→ 1

s

∂s−→ −1
s2

, log(s) ∂t−→ 0 .

The quadratic variation is (dSt)
2 = σ2S2

t dt. This information in the Ito differ-
ential formula (

eq:il
10) gives,

dXt =
1
St
dSt −

1
2S2

t

(dSt)
2

=
1
St

(µStdt+ σStdWt)−
1

2S2
t

σ2S2
t dt

=
(
µ− 1

2
σ2

)
dt+ σdWt .

This integrates to

Xt = X0 +
(
µ− 1

2
σ2

)
t+ σWt .

We undo the log transformation using S0 = eX0 and St = eXt :

St = S0e
σWt+(µ− 1

2σ
2)t . (14) eq:gbms

This is the solution formula we had before.
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Trading strategies and replication
The Ito calculus can be used to model and design stock trading strategies.

One example is the “constant fraction” strategy, in which the investor keeps a
constant fraction of her assets in the “risky asset” (the stock) and the rest in
the “risk free asset”, a bank account. In this model, the risky asset is a stock
whose price is a geometric Brownian motion. If you own n shares of stock, in
time dt you receive or pay ndSt. This assumes that n is constant during this
small time interval. The amount of money invested in the stock is At = ntSt.
If n is constant during the dt time interval, then

dAt = ntdSt

= nt(µStdt+ σStdWt)
= µAtdt+ σAtdWt . (15) eq:dA

The number of shares, n, does not have to be an integer.
This model assumes trading (buying or selling stock) is frictionless. This

means that at any time you can buy or sell any amount of stock at the price
St per share. The model has no other trading costs (broker fees, exchange fees,
bid/ask spread, etc.). At time t, you first decide how much of your money you
want to invest in stock, which is At. Then you watch the market for time dt
and receive dAt given by (

eq:dA
15). You “receive” a negative amount if dAt < 0.

Then, at time t + dt you have the chance to rebalance, which means choose a
different number of shares nt+dt 6= nt. This does not change your total wealth,
only your asset allocation. The total wealth at time t is Zt. The amount in the
stock is At and the amount in the bank is Zt − At. We assume that money in
the bank earns a risk free rate, which is a constant r. In time dt, the change in
the bank account is (Z − A)rdt. This is called risk free because it is known at
time t.

A trading strategy is a way to choose At in terms of Zt. A simple way it
to invest a fixed fraction of your total wealth in the risky asset. That means
At = mZt with a fixed constant m (“m” is for Merton, who showed that such
strategies are optimal in some sense.). If you follow this strategy, then

dZt = (bank account change) + (stock account change)
= (Zt −At)rdt+ µAtdt+ σAtdWt

dZt = (r + (µ− r)m)Ztdt+mσZtdWt . (16) eq:dZ

We see that Zt is a geometric Brownian motion with expected return µm =
r + (µ− r)m and volatility σm = mσ.

We conclude the following. The dynamic fixed-proportion trading strategy
produces a stock price process with expected return µm = r + (µ − r)m and
volatility σm. If the original µ, σ stock exists in the market, we can replicate
the more general µm, σm stock using a dynamic trading strategy.

Other dynamic trading strategies can replicate more complicated financial
instruments. The European style call option is one example. This is a financial
contract that pays V (St) at time T , where v(s) = max(0, s−K). You can think
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of this as the right to buy the stock at time T for price K. If the stock is worth
more than K at that time, you buy it at K then sell it at it’s true price ST and
keep the difference. If the stock is worth less than K, you do nothing and get
nothing. The option expires out of the money.

The dynamic replication strategy says to buy ∆(St, t) shares of stock at time
t and put the rest of your money in the bank.

1.6 Multi-component processes

Multi-component processes behave like scalar processes, but with slightly more
complicated algebra. If x ∈ Rn, a function f(x) has a Taylor expansion

f(x+∆x)−f(x) =
n∑
j=1

∂xj
f(x)∆xj+ 1

2

n∑
j=1

n∑
k=1

∂xj
∂xk

f(x)∆xj∆xk+O(|∆x|3) .

The second derivative part is

1
2

n∑
j=1

∂2
xj
f(x)∆x2

j + 1
2

n∑
j=1

n∑
k=1,k 6=j

∂xj
∂xk

f(x)∆xj∆xk (17) eq:d2

Mixed partial derivative terms are double counted in the second sum. It is a
mathematical fact that the order of partial differentiation does not matter:

∂xk

(
∂xjf(x)

)
= ∂xj (∂xk

f(x)) .

Therefore, the off diagonal j 6= k terms satisfy
1
2∂xj∂xk

f(x)∆xj∆xk + 1
2∂xk

∂xjf(x)∆xk∆xj = ∂xj∂xk
f(x)∆xj∆xk .

Therefore, the second derivative sum may be written in the possibly more fa-
miliar way without the 1

2 in the mixed derivative sum

1
2

n∑
j=1

∂2
xj
f(x)∆x2

j +
n∑
j=1

n∑
k=j+1

∂xj
∂xk

f(x)∆xj∆xk . (18) eq:d2p

I often prefer the redundant form (
eq:d2
17) because it is easier to express in the

Einstein summation convention. Einstein found himself writing multiple sums
over multiple indices (often more than two) and decided to leave out the sum-
mation symbol whenever possible. There are various forms of the convention,
but here I propose the rule: if an index appears twice or more, you are supposed
to sum over that index. For example

n∑
j=1

∂xj
f(x)∆xj = ∂xj

f(x)∆xj .

A bigger example is

1
2

n∑
j=1

∂2
xj
f(x)∆x2

j + 1
2

n∑
j=1

n∑
k=1,k 6=j

∂xj
∂xk

f(x)∆xj∆xk = 1
2∂xj

∂xk
f(x)∆xj∆xk .
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The sum on the right contains both diagonal (j = k) and off diagonal (j 6=
k) terms. You may use other compact notations, such as gradf = ∇f and
∂xj

f(x)∆xj = ∇f(x) ·∆x.
The Laplace operator is important for functions of Brownian motion. It is

defined, with or without the summation convention, by

4f(x) = ∂xj∂xjf =
n∑
j=1

∂2
xj
f(x) .

You will see that the Laplacian symbol 4 is slightly different from the capital
Greek ∆. Handwritten versions will be identical. You will have to guess whether
it’s 4f (the Laplacian of f), or ∆f (the change in f).

As an example, here is the Laplacian of the Euclidean distance function

|x| =
(
x2

1 + · · ·+ x2
n

)1/2
∂xj−→ 1

2
(
x2

1 + · · ·+ x2
n

)−1/2
2xj

=
(
x2

1 + · · ·+ x2
n

)−1/2
xj

∂xj−→ −1
2
(
x2

1 + · · ·+ x2
n

)−3/2
(2xj)xj +

(
x2

1 + · · ·+ x2
n

)−1/2

=
1
|x|

(
1−

x2
j

|x|2

)

Therefore

4|x| =
n∑
j=1

∂2
xj
|x|

=
n

|x|
−

n∑
j=1

x2
j

|x|3

4|x| = n− 1
|x|

(19) eq:ld
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