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1 Generators

This section describes a common abstract way to describe many of the differen-
tial equations related to Markov processes. The forward or backward equation
of a finite state Markov chain involves a matrix. The backward equation of
a diffusion process involves partial derivatives in time and space. The space
derivatives define a linear operator. This acts in a linear way on functions in the
way a matrix acts in a linear way on vectors. There is a common abstract defi-
nition of the generator of a Markov process. This definition gives the backward
equations we know in each of the cases we have studied so far.

The abstract point of view is convenient even when talking about a single
example. The general point of view makes it clearer “what is going on” in
examples. It helps us understand and remember formulas by making them
seem simpler and more natural.

The backward equation of a Markov process involves the generator. The
forward equation involves the adjoint of the generator. Duality is the rela-
tion between an operator and its adjoint. The dual of a matrix is its adjoint
(transpose for real matrices). The adjoint of a differential operator is another
differential operator.

1.1 Generator, discrete time

There are continuous and discrete time Markov processes. Suppose Xt is a
discrete time Markov process and f is a function of the state x. The generator
of the process is a linear operator defined by

Lf(x) = E[ f(X1) | X0 = x] . (1)

Some examples will clarify this simple general definition.
Consider a finite state Markov chain with states x1, . . . , xn. A function of x

has n values, which we call f1, . . . , fn. We abuse notation by writing fk for f(xk).
A column vector, also called f , has the numbers fk as components. Computer
programs make little distinction between vectors and function, writing f[k] for
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components of a vector and f(k) for a function of k. Some languages use f(k)
for both.

Suppose g = Lf by the definition (1). Then, as we saw in week 1,

gj =
∑
k

fk P(X1 = k | X0 = j)

=
∑
k

P(j → k) fk . (2)

The transition probabilities are Pjk = P(j → k). These are the entries of the
transition matrix P . We recognize (2) as matrix multiplication g = Pf . This
shows that in the case of finite state discrete time Markov chains, the generator is
the same as the transition matrix. The generator is not a new object. Definition
(1) is just an indirect way to describe transition probabilities.

Another example is a discrete time scalar linear Gaussian process Xt+1 =
aXt + σZt, where the Zt are i.i.d. standard normals. A function of the state in
this case is f(x), a function of one continuous variable, x. If g = Lf , then (1)
gives (recall the formula for a normal with mean ax and variance σ2):

g(x) = E[ f(Xt) | X0 = x]
= E[ f(ax+ σZ)]

=
∫ ∞
−∞

f(y)
e−(ax−y)2/(2σ2)

√
2πσ2

dy

=
∫ ∞
−∞

P (x, y)f(y) dy . (3)

The transition density P (x, y) in the last line is given by

P (x, y) =
1√

2πσ2
e−(ax−y)2/(2σ2) . (4)

We write this also as P (x → y). It is a probability density as a function of y,
but not as a function of x.

The generator formalism (1) handles lots of more complicated examples.
For example, suppose Xt = (X1,t, X2,t) is a two component continuous random
variable, and at each time we take a Gaussian step either one of the components
chosen at random with equal probabilities. Then a function of the state is a
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function of two variables f(x1, x2), and (1) gives g = Lf as

g(x1, x2) = E[ f(X1,1, X2,1) | X1,0 = x1 and X2,0 = x2]

=
1
2

(
E[ f(X1,1, X2,1) | X1,0 = x1 and X2,0 = x2 and moved X1]

+ E[ f(X1,1, X2,1) | X1,0 = x1 and X2,0 = x2 and moved X2]
)

=
1
2

(∫ ∞
−∞

e−(x1−y)2/(2σ2)

√
2πσ2

f(y, x2) dy

+
∫ ∞
−∞

e−(x2−y)2/(2σ2)

√
2πσ2

f(x1, y) dy
)
.

This is an integral formula for the generator of the Markov chain defined by

(X1,t+1, X2,t+1) =
{

(X1,t + σZt, X2,t) , Prob = 1
2

(X1,t, X2,t + σZt) , Prob = 1
2 .

1.2 Generator, continuous time

If Xt is a continuous time Markov process, then the generator is defined by

Lf(x) = lim
t→0

E[ f(Xt)− f(x) | X0 = x]
t

. (5)

The definition presupposes that E[ f(Xt) | X0 = x] → f(x) as t → 0. Since we
divide by t, the definition presupposes that E[ f(Xt) | X0 = x] = f(x) + O(t).
There are continuous time Markov processes so that the limit (5) hardly exists.
For diffusion processes, the limit may not exist if the function f is not in the
domain of the generator. A theoretical PhD level class on stochastic processes
would discuss these issues.

The general expression has many different specific realizations, as was the
case for discrete time processes. Suppose Xt is a continuous time finite state
space process with transition rate matrix Rjk = rate(j → k), defined by
P(Xt+dt = k | Xt = j) = Rjkdt, if j 6= k. To apply the generator definition
(5), we record the short time transition probabilities:

P(Xdt = j | X0 = k) =

{
Rjkdt if j 6= k

1−
(∑

l 6=j Pjl

)
if j = k .

}
(6)

It is convenient to define the j → j “rate” as

Rjj = −
∑
l 6=j

Rjl . (7)

This is not really a rate because it a negative number. With this definition of
Rjj , the whole rate matrix satisfies

n∑
k=1

Rjk = 0 ,
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for all j.
The rate matrix definition (7) simplifies the sort time approximation to the

transition probability formula. The transition probability matrix at time t is

Pjk(t) = P(j → j in time t) = P(Xt = k | X0 = j) . (8)

With the Rjj definition (7), the short time approximate transition probability
formulas (6) may be written in matrix form

P (dt) = I +Rdt , Pjk(dt) = δjk +Rjkdt . (9)

A more precise mathematical statement of this is P (t) = I +Rt+O(t2).
The generator of a continuous time finite state space Markov process is the

rate matrix. A function of x is a vector f ∈ Rn. The definition (5) gives a
formula for g = Lf :

g(j) = lim
t→0

E[ f(Xt)− f(j) | X0 = j]
t

= lim
t→0

1
t

(
n∑
k=1

P(Xt = k | X0 = j) [f(k)− f(j)]

)

= lim
t→0

1
t

(
n∑
k=1

[
δjk +Rjkt+O(t2)

]
[f(k)− f(j)]

)
.

It takes some cancellation for the limit to exist. We find that cancellation here
by noting that

∑
δjkf(k) = f(j). We apply this, then divide by t, and are left

with

g(j) =
n∑
k=1

Rjkf(k) +O(t) .

In matrix form, this is
Lf = Rf , (10)

which shows that the transition rate matrix is the generator.
Next consider a one dimensional diffusion process that satisfies

dXt = a(Xt)dt+ b(Xt)dWt . (11)

We have seen before that this is equivalent to three moment conditions

E[ ∆Xt | Ft] = a(Xt)∆t+ o(∆t) ,
E
[

(∆Xt)
2 | Ft

]
= σ(Xt)2∆t+ o(∆t) ,

E
[

(∆Xt)
4 | Ft

]
= o(∆t) .

 (12)

We apply these with t = 0, and ∆t for t, and ∆X = Xt − x. The Taylor
expansion of f is

f(x+ ∆x) = f(t) + ∂xf(x)∆X +
1
2
∂2f(x)∆X2 +O(|∆x|3) .
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We apply the moment conditions (12) and Cauchy Schwarz to get

E[ f(x+ ∆X) | X0 = x] − f(x) = ∂xf(x)E[ ∆x | X0 = x] +
1
2
∂2
xf(x)E

[
(∆x)2 | X0 = x

]
+ O(|∆x|3)

= ∂xf(x)a(x)t+
1
2
σ2(x)∂2

xf(x)σ(x)2t+ o(t) .

We substitute these into the generator definition (5), divide by t and let t→ 0,
which leaves a formula for the generator of a diffusion process:

Lf(x) = a(x)∂xf(x) +
1
2
σ2(x)∂2

xf(x) . (13)

Another example will illustrate the ease and simplicity of the generator ap-
proach. A space dependent jump process has a space dependent jump rate λ(x).
If Xt = x then the probability of a jump in time dt is λ(x)dt. The jump distri-
bution is given by a transition density function R(x, y). This is the probability
density to land at y if you jump from x. It is “easy” to see that the generator
is given by

Lf(x) = λ(x)
∫
R(x, y)f(y)dy .

You recognize from (13) that the backward equation can be written in the
abstract form

0 = ∂tf + Lf . (14)

We give a proof of this that holds for any continuous time Markov process
with a generator. That proof then applies to diffusions, to finite state space
processes, to jump processes, etc. The abstract proof has a third advantage
beyond generality and clarity. It is simple. Consider a function f(x, t), where
x is in the state space of the Markov process. Suppose f is as differentiable as
it needs to be for this derivation. Calculate

Ex,t[ f(Xt+∆t, t+ ∆t)] = Ex,t[ f(Xt+∆t, t)]
+ ∆tEx,t[ ∂tf(x, t)] + o(∆t)
+ ∆tEx,t[ (∂tf(Xt, t)− ∂tf(x, t))] .

The expectation in the last term on the right is o(∆t) because it is the expecta-
tion of the kind of difference that appears in the definition (5) of L. We already
showed that the first term on the right is

Ex,t[ f(Xt+∆t, t)] = f(x, t) + Lf(x, t)∆t+ o(∆t) .

We see this by applying (5) to f as a function of x with t as a parameter.
Substituting back, we find that

Ex,t[ f(Xt+∆t, t+ ∆t)] = f(x, t) +
(
Lf(x, t) + ∂tf(x, t)

)
∆t+ o(∆t) . (15)
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Finally, suppose f(x, t) = Ex,t[V (XT )] is a value function. The tower property
gives the equality

Ex,t[ f(Xt+∆t, t+ ∆t)] = f(x, t) .

The backward equation (14) follows from this by looking at the O(∆t) terms
that remain.

Ito’s lemma has an interesting statement in terms of the generator. Sup-
pose Xt is a diffusion process with a decomposition Xt = Yt + Zt into the
martingale part and the differentiable part. Then E

[
(dXt)

2
]

= E
[

(dYt)
2
]

and

E
[

(dZt)
2
]

= 0. Ito’s lemma is

df(Xt, t) = ∂tf(Xt, t)dt+ Lf(Xt, t)dt+ ∂xf(Xt, t)dYt . (16)

The first two terms on the right represent the deterministic part of the change in
f . The last term is the unpredictable part. The definition (5) of the generator
says the same thing, that Lf is the deterministic part of df(Xt). The actual
change in f(Xt) is the expected change plus a part that has expected value zero,
which is the fluctuation.

1.3 Duality and the forward equation in discrete time

The forward equation is the evolution equation that determines the probabil-
ity distribution of Xt from the distribution of X0. Forward equations are not
as universal as backward equations because they concern probability measures
rather than functions. The form of the forward equation depends more on the
nature of the state space and probability measure for the forward equation. It
is common to describe the generator and the backward equation instead of the
forward equation for that reason.

Given the ease of writing the generator and the backward equation, it is
natural to try to derive the evolution equation for the probability distribution of
Xt from the backward equation rather than from “scratch” (a term in cooking for
using unprocessed ingredients such as flour and yeast rather than, say, prepared
pizza crust). If u(t) represents the probability distribution of Xt, the forward
equation in discrete time takes the form

u(t+ 1) = L∗u(t) . (17)

The operator L∗, pronounced “ell star”, is the adjoint of the generator, L.
The general notion of adjoint involves a pairing between functions and prob-

ability distributions. If X is a random variable with probability distribution u
and f is a function, then

〈u, f〉 = E[ f(X)] . (18)

Exactly what form this pairing takes depends on the situation. The general
definition of adjoint is as follows. If L is an operator, then L∗ is the adjoint of
L if

〈u, Lf〉 = 〈L∗u, f〉 , (19)
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for all functions f and distributions u for which the expressions make sense. We
will see in all the examples that (19) determines L∗, which means that there is
an L∗ that satisfies the conditions, and that L∗ is unique.

Now suppose the function f(x) is the value function at some time: f(x, t) =
Ex,t[V (XT )]. Let f(t) = f(·, t) be the vector that is the function f(x, t) at
time t. Let u(t) be the probability distribution of Xt. The tower property for
E[V (Xt)] without conditioning can be conditioned at time t or time t+ 1. The
result is E[V (XT )] = E[ f(Xt, t)] = E[ f(Xt+1, t+ 1)]. In terms of the pairings,
we have E[ f(Xt, t)] = 〈u(t), f(t)〉 and E[ f(Xt+1, t+ 1)] = 〈u(t + 1), f(t + 1)〉.
The equality of pairings is

〈u(t), f(t)〉 = 〈u(t+ 1), f(t+ 1)〉 .

The backward equation gives f(t) = Lf(t+ 1). This allows the manipulations,
which use the definition (19), and the fact that the pairing is linear in u and f ,

〈u(t), Lf(t+ 1)〉 = 〈u(t+ 1), f(t+ 1)〉
〈L∗u(t), f(t+ 1)〉 = 〈u(t+ 1), f(t+ 1)〉

〈(L∗u(t)− u(t+ 1)) , f(t+ 1)〉 = 0 .

The simplest way for this identity to be true is (17).
Here is how this abstract stuff works out in the case of a finite state space

Markov chain. The probability distribution is given by the numbers uj(t) =
P(Xt = j). The pairing is

〈u(t), f(t)〉 = E[ f(Xt)] =
n∑
j=1

f(j)P(Xt = j) =
n∑
j=1

uj(t)fj(t) .

This is just the vector inner product. Two different conventions are used com-
monly in this context. Some consider u(t) to be an n component row vector,
which is a 1 × n matrix. Others consider u(t) to be an n component column
vector, which is an n × 1 matrix. If u(t) is a column vector, then u(t)t is the
corresponding row vector. Depending on which convention is used, the pairing
can be written in matrix/vector notation as

〈u(t), f(t)〉 =
{
ut(t)f(t) if u is a column vector
u(t)f(t) if u is a row vector .

Both expressions are the product of an n component row vector (u or ut de-
pending on the convention) with an n component column vector, f .

The “u is a row vector” convention is very convenient for studying finite
state space Markov chains. But it doesn’t really work for fancier problems such
as continuous time diffusions. This class will take the “u is a column vector”
convention for that reason. In this convention, (19) becomes

utLf =
(
Ltu

)t
f ,
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so L∗ = Lt. To check the algebra, note that the transpose of the transpose
is the original matrix, (Lt)t = L. Therefore (Ltu)t f = ut (Lt)t f = utLf , as
claimed. The adjoint in this pairing is just the matrix transpose. The forward
equation is u(t + 1) = Ltu(t). We saw that the generator, L, is the transition
probability matrix P . Therefore, the forward equation is

u(t+ 1) = P tu(t) . (20)

We repeat the less abstract derivation of the forward equation (20) from
week 1.

uk(t+ 1) = P(Xt+1 = k)

=
n∑
j=1

P(Xt+1 = k | Xt = j) P(Xt = j)

=
n∑
j=1

Pj→kuj(t) .

Note that Pj→k = Pjk is the (k, j) entry of P t. The abstract derivation is useful
because it applies in situations where a more concrete derivation is “challeng-
ing”.

We revisit another easy case. Suppose the Markov chain with state space
Rn has a well defined transition density P (x, y), which is the probability density
for Xt+1 = y given that Xt = x. Let u(x, t) be the PDF of Xt. We write u(·, t)
to refer to u as a function of x for a fixed t. The pairing is

〈u(·, t), f〉 = E[ f(Xt)] =
∫
f(x)u(x, t) dx . (21)

The backward equation has the form (see above or go through the simple rea-
soning again)

Lf(x) =
∫
P (x, y)f(y) dy .

We substitute this into the pairing integral formula to find an expression for
L∗u:

〈u(·, t), Lf〉 =
∫
u(x, t) (Lf) (x) dx

=
∫
u(x, t)

(∫
P (x, y)f(y)dy

)
dx

=
∫ ∫

u(x, t)P (x, y)f(y) dxdy

=
∫ (∫

P (x, y)u(x, t) dx
)
f(y) dy .

This gives an integral formula for L∗u, which is

L∗u(·, t)(y) =
∫
P (x, y)u(x, t) dx . (22)
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We take the adjoint of an integral operator, with respect to this pairing, by
integrating over the first argument of P rather than the second. The is the
integral analogue of the discrete case, where we sum over the first index of the
matrix P rather than the second.

The forward equation comes with initial conditions that play the role of final
conditions in the backward equation. The initial conditions give the probability
distribution at a certain time, say, t0 = 0. The forward equation then determines
the probability distribution at all later times t > t0. The probability distribution
at earlier times t < t0 is not determined by the forward equation because the
operator that would do it,

u(t) = (L∗)−1
u(t+ 1) ,

might not exist.

1.4 The forward equation in continuous time

The pairings depend on the state space, not the nature of time (continuous vs.
discrete). Therefore, the continuous time forward equation for a finite state
space Markov process is

∂tu(t) = Rtu(t) ,

where R is the transition rate matrix, and u(t) ∈ Rn is the vector of probabilities
uj(t) = P(Xt = j).

The generic forward equation in continuous time is a consequence of the
constancy of expected values, as it was in the discrete time case. Here, we have

E[V (XT )] =
∫

E[V (XT ) | Xt = x]u(x, t) dx = 〈u(·, t), f(·, t)〉 .

The left side is independent of t, so the right side is too. We differentiate with
respect to t:

0 = ∂t〈u(t), f(t)〉
= 〈∂tu(t), f〉+ 〈u(t), ∂tf(t)〉
= 〈∂tu(t), f〉 − 〈u(t), Lf(t)〉
= 〈∂tu(t), f〉 − 〈L∗u(t), f(t)〉

0 = 〈[∂tu(t)− L∗u(t)] , f(t)〉 .

The natural way for this to be true always is for the quantity in square brackets
to vanish. That gives

∂tu(t) = L∗u(t) . (23)

This is the general forward equation. You also need initial conditions to deter-
mine u(t). If u(t0) is known, then (23) determines u(t) for t > t0. The forward
equation generally does not run “backwards”. It is difficult or impossible to find
u(t) for t < t0 from u(t0, in general.
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The main point of this section is to find the forward equation for diffusion
processes. If the backward equation is

∂tf +
1
2
µ(x)∂2

xf + a(x)∂xf = 0 , (24)

what is the forward equation. You can look at this PDE, or you look back at
our derivation of the generator of a diffusion process (where we used σ2 instead
of µ) and see that the generator is given by

Lf(x) = a(x)∂xf +
1
2
µ(x)∂2

xf .

You get an expression for the generator itself by leaving f out of this formula

L = a(x)∂x +
1
2
µ(x)∂2

x .

A generator like this is called a linear differential operator.
We integrate by parts to calculate the adjoint of a linear differential operator

with respect to the integral pairing (21). The boundary terms in this process
are zero. We don’t give a proof (surprise), but the reason is that the probability
density should go to zero so rapidly as |x| → ∞ that even if f(x) → ∞, it will
do so in a way that the boundary terms are zero in the limit. For example,∫ ∞

−∞
u(x)∂xf(x) dx = lim

R→∞

∫ R

−R
u(x)∂xf(x) dx

= lim
R→∞

[
u(x)f(x)

∣∣∣R
−R
−
∫ R

−R
(∂xu(x)) f(x)dx

]
.

If u(x) goes to zero exponentially as |x| → ∞, then even if f(x) grows linearly
at infinity, still

u(R)f(R)→ 0 as R→ ±∞ .

Therefore,

〈u, Lf〉 =
∫ ∞
−∞

u(x)
(
a(x)∂xf(x) +

1
2
µ(x)∂2

xf(x)
)
dx

=
∫ ∞
−∞

(−∂x(a(x)u(x)) f(x) dx+
1
2

∫ ∞
−∞

(
∂2
x(µ(x)u(x)

)
f(x) dx

=
∫ ∞
−∞

[
−∂x(a(x)u(x)) +

1
2
∂2
x(µ(x)u(x))

]
f(x) dx .

This is a pairing of the quantity in square braces
[
· · ·
]

with f . That identifies
the quantity in square braces as L∗u:

L∗u(x) = −∂x(a(x)u(x)) +
1
2
∂2
x(µ(x)u(x)) . (25)
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This formula for L∗ gives a specific form to the forward equation (23) for a
diffusion equation:

∂tu(x, t) = −∂x
(
a(x)u(x, t)

)
+

1
2
∂2
x

(
µ(x)u(x, t)

)
. (26)

I don’t think there is an easier derivation of this equation.
The backward and forward equations have similarities and differences. Both

involve second derivatives in “space” and first derivatives in time. However,
the relative signs of the second derivatives is reversed. If µ = 1, the backward
equation has ∂tf = − 1

2∂
2
xf , while the forward equation has ∂tu = 1

2∂
2
xu. The

operator L has the same sign for the ∂x and ∂2
x terms. The operator L∗ has

opposite signs. The backward equation does not differentiate coefficients, but
only the unknown function. The forward equation has

∂x(a(x)u(x, t)) = (∂xa(x))u(x, t) + a(x)∂xu(x, t) .

We work through forward equation mechanics in the Ornstein Uhlenbeck
example. The process is

dXt = −γXtdt+ σdWt . (27)

The generator is L = −γ∂x+σ2

2 ∂
2
x. The adjoint is defined by L∗u = γ∂x(xu(x))+

σ2

2 ∂
2
xu(x). The forward equation (26) specializes to

∂tu(x, t) = γ∂x(xu(x, t)) +
σ2

2
∂2
xu(x, t) . (28)

Since (27) is a linear Gaussian process, if X0 = 0, then Xt will be a mean
zero Gaussian for any t > 0. As a Gaussian, the density u(x, t) is completely
determined by the mean (which is zero in this example) and variance, v(t) =
E
[
X2
t

]
. We compute the dynamics of the variance by Ito calculus:

dv(t) = dE
[
X2
t

]
= E

[
d(X2

t )
]

= E[ 2XtdXt] + E
[

(dXt)
2
]

= −2γE
[
X2
t dt
]

+ σ2dt

= −2γv(t)dt+ σ2dt .

In the notation of differential equations, this is written

d

dt
v = −2γv + σ2 . (29)

The steady state is v̇ = 0, which leads to −2v∞ + σ2 = 0, and then to v∞ =
σ2

2γ . Dynamically, the decay coefficient being 2γ, the variance will approach its
limiting variance with a rate constant 2γ. If v(0) = 0, that gives

v(t) = v∞
(
1− e−2γt

)
=
σ2

2γ
(
1− e−2γt

)
. (30)
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You should be able to plug the solution formula (30) into the differential equation
(29) to see that it is a solution.

We can construct the corresponding solution to the forward equation using
the ansatz method. A mean zero Gaussian with variance v(t) has PDF

u(x, t) =
1√
2π

v(t)−1/2e
−1
2 x2v(t)−1

.

Since the PDE (28) is linear, we can leave out the common 2π factor for sim-
plicity. The derivatives are

v(t)−1/2e
−1
2 x2v(t)−1 ∂t−→ −1

2
v̇v−3/2e−− +

1
2
v−5/2x2v̇e−− ,

and

v(t)−1/2e
−1
2 x2v(t)−1 ∂x−→ v−3/2(−x)e−x

2/2v

∂x−→ −v−3/2e−− + v−5/2x2e−− ,

and
xv−1/2e

−1
2 x2v(t)−1 ∂x−→ v−1/2e−− − v−3/2x2e−− .

Substitute these back into the forward equation (28), leave out the common
exponential factors, and you get

−1
2
v̇v−3/2 +

1
2
v−5/2x2v̇ = γ

(
v−1/2 − v−3/2x2

)
+
σ2

2

(
−v−3/2 + v−5/2x2

)
.

According to the ansatz recipe, we now collect the constant terms and the
coefficients of x2 from both sides. It turns out that these equations are the
same, and both of them are (29). This shows that the variance calculation above
actually constructs a Gaussian solution to the forward equation. As t→∞, the
solution converges to a steady state

u(x, t)→ u∞(x) =
1√

2πv∞
e−x

2/2v∞ as t→∞ .

For later reference, we describe the solution in case the initial condition has
v0 � v∞. The v dynamics (29) tells that v(t) decreases from v(0) to the limiting
value v∞. The maximum value of u(x, t) is taken at x = 0, and is equal to
(2πv(t))−1/2. This starts at a small value and increases over time to (2πv∞)−1/2.
We can think of the density u(x, t) as representing a cloud of many particles
independently following the stochastic dynamics (27). At the starting time t =
0, this cloud is widely dispersed, because v(0) is large. The probability density
is small at any given point because the number of particles per unit distance is
small. As time goes on, the variance decreases and the particles become more
tightly concentrated near zero. The large time concentration is determined by
the limiting variance v∞. The probability density is larger because there are
more particles per unit distance than before.
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It is useful to formulate the forward equation in terms of a probability flux.
We encountered this idea before when talking about hitting times. The proba-
bility flux in this case is

F (x, t) = a(x)u(x, t)− 1
2
∂x (µ(x)u(x, t)) . (31)

The forward equation takes the following form, which is called conservation
form:

∂tu(x, t) + ∂xF (x, t) = 0 . (32)

The conservation equation (32) states that

d

dt

∫ b

a

u(x, t)dx = −F (b, t) + F (a, t) .

This says that F (b, t) is the rate at which “probability” is leaving the interval
[a, b]. It is a “flux” of particles, moving to the right if F (b, t) > 0, and to the
left if F (b, t) < 0. This flux is made up of two parts, the advective, or drift,
part a(x)u(x, t), and the noise or fluctuation part 1

2∂x (µ(x)u(x, t)).
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