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1 Introduction

This section discusses discrete probability and discrete time Markov random
chains with a discrete state space. Markov chains are important in themselves,
and they are an elementary setting for explaining some of the basic mathematical
concepts of stochastic calculus. These are:

• A σ−algebra to represent a state of partial information

• Measurability of a function with respect to a σ−algebra

• A filtration that represents gaining information over time

• Conditional expectation with respect to a σ−algebra

• The generator of a Markov process

• The dynamics of conditional expectation, the backward equation

More abstract versions of these are the key to working with continuous state
space and continuous time stochastic processes.

A stochastic process in discrete time involves a sequence of random variables
(X1, X2, . . .). We describe Xn as the state of the system at time n. The path
up to time T is the sequence X[1:T ] = (X1, X2, . . . , XT ). The state Xn must
be in the state space, S. The state space is S = Rd for a Gaussian process.
A state space is discrete either if it is a finite set, S = {x1, x2, . . . xm}, or an
infinite countable set of the form S = {x1, x2, . . .}. A set is discrete if it is
finite or countable. The set of all real numbers is not discrete because the real
numbers are not countable (a famous theorem of Georg Cantor). If S is not
discrete, we call it continuous. If Xt is defined for any (positive) real number t,
we call it a continuous time process. If Xn is defined only for (positive) integers
n = 1, 2, . . ., we call it a discrete time process. We say Xn is the state at time
period n. Time period n may correspond to some specific time tn. If so, the
times generally would satisfy t1 < t2 < · · · . This week is about discrete time
discrete state space stochastic processes.

There is an informal idea of what an observer of the system knows at time
n. Different observers may have different amounts of information. The full def-
inition of a discrete time, discrete state space stochastic process includes the
statement that the path X[1:n] is known at time n. If this is true, we can de-
scribe the “global” probability distribution of paths by giving “local” transition
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probabilities, which are the conditional distributions of Xn+1, conditional on
knowing X[1:n]. A process is Markovian if this conditional distribution depends
only on Xn, and not on earlier states Xn−1, . . .. The process is stationary if the
transition probabilities,

Pxy = Pr(x→ y) = Pr(Xn+1 = y | Xn = x) ,

are independent of n. This section has a quick introduction to discrete time
discrete state space stationary Markov chains.

The transition probabilities form the generator of the Markov chain. If the
state space is finite we can think of the transition matrix, P , with entries1

Pjk = Pxj ,xk
= Pr(j → k) = Pr(xj → xk). Suppose V (x) is a function defined

for x ∈ S, so that V (XT ) will be known at time T . The value function is the
conditional expectation of V (XT ) given the information available at time n ≤ T .

fn(x) = E[V (XT ) | Xn = x] . (1)

For a Markov process, knowing the value of Xn is just as good as knowing the
whole path X[1:n], as far as predicting V (XT ) goes. The backward equation for
this value function is

fn = Pfn+1 . (2)

Here, fn is the vector of values of fn(x). It is written with varying levels of
abuse of notation as

fn =


fn(x1)
fn(x2)

...
fn(xm)

 =


fn(1)
fn(2)

...
fn(m)

 =


fn,1

fn,2

...
fn,m

 .

If fn ∈ Rd, then fn,k is component k of fn, which is E[V (XT ) | Xn = k].
The backward equation (2) gives a computational way to answer many ques-

tions about the Markov chain Xn. Equations like this have many different
names, including the Fokker Planck equation (physics), and the Black Scholes
equation (finance).

Some important examples of Markov chain are random walk and mean re-
verting random walk. There are discrete versions of Brownian motion and the
Ornstein Uhlenbeck process respectively.

2 Basic probability

This section gives some basic general definitions in probability theory in a setting
where they are not technical. Look to later sections for more examples. A
probability space, Ω, models the set of all possible outcomes of a “probability

1This is an abuse of notation, deliberately simplifying notation is a way that is simpler
and clearer, but technically is wrong.
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experiment”. Mathematically, Ω is just a set. In abstract discussions, we usually
use ω to denote an element of Ω. In concrete settings, the elements of Ω have
more concrete descriptions. Ω may be the path space consisting of all paths
x[1:T ] = (x1, . . . , xT ), with xn ∈ S for each n. If S is discrete and T is finite
then the path space is discrete. If T is infinite, Ω is not discrete. The discussion
here is only for discrete Ω.

An event is the answer to a yes/no question about the outcome ω. Equiva-
lently, an event is a subset of the probability space: A ⊆ Ω. You can interpret
A as the set of outcomes where the answer is “yes”. Ac = {ω ∈ Ω|ω /∈ A} is the
complementary set where the answer is “no”. We often describe an event using
a version of set notation where the informal definition of the event goes inside
curly braces, such as {X3 6= X5} to describe

{
x[1:T ]|x3 6= x5

}
.

A σ−algebra, F , is a mathematical model of a state of partial knowledge
about the outcome. It is a collection of events (subsets) of Ω. Informally, if
A ⊆ Ω is an event, we say that A ∈ F if we know whether ω ∈ A or not.
Suppose Ω is the space of paths of length T ≥ n. The σ−algebra Fn is the
one that “knows” the first n states of a path. To illustrate this, if n ≥ 2, then
the event A = {X1 = X2} ∈ Fn. If we know both X1 and X2, then we know
whether X1 = X2. On the other hand, we do not know whether Xn = Xn+1,
so {Xn 6= Xn+1} /∈ Fn. For historical reasons, the statement A ∈ F may be
expressed by saying: “A is measurable with respect to F .”

More precisely a collection, F , of subsets of Ω is a σ−algebra if the collection
has the following properties. The empty set is written ∅. It is the event with no
elements.

(i) Ω ∈ F and ∅ ∈ Ω.
(Regardless of how much you know, you know whether ω ∈ Ω, it is, and
you know whether ω ∈ ∅, it isn’t.)

(ii) If A ∈ F then Ac ∈ F .
(If you know whether ω ∈ A then you know whether ω /∈ A. It is the same
information.)

(iii) IF A ∈ F and B ∈ F , then A ∪B ∈ F and A ∩B ∈ F .
(If you can answer the questions ω ∈ A? and ω ∈ B?, then you can answer
the question ω ∈ (A or B)? If ω ∈ A or ω ∈ B, then ω ∈ (A ∪B).)

(iv) If A1, A2, . . . is a sequence of events, then ∪Ak ∈ F .
(If any of the Ak is “yes”, then the whole thing is “yes”. The only way to
get “no” for ω ∈ ∪Ak ∈ F?, is for every one of the Ak to be “no”.)

This is not a minimal list. There are some redundancies. For example, if you
have axiom (ii), and Ω ∈ F , then it follows that ∅ = Ωc ∈ F . The last axiom
is called countable additivity. You need countable additivity to do ∆t → 0
stochastic calculus.

A function of a random variable, sometimes called a random variable, is a
real valued (later, vector valued) function of ω ∈ Ω. For example, if Ω is path
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space, so the outcome is a path, and a ∈ S is a specific state, then the function
could be

f(x[1:T ]) =
{

min {n | xn = a} if there is such an n
T otherwise.

This is called a hitting time and is often written τa. It would be more complete
to write τa(x[1:T ]), but it is common not to write the function argument. A
random variable f(ω) has a discrete set of values when Ω is discrete. If there is
a finite or infinite list of all elements of Ω, then there is a finite or infinite list
of possible values of f .

A function of a random variable, f(ω), is measurable with respect to F if
the value of f can be determined from the information in F . If Ω is discrete,
this means that for any number F , the question f(ω) ?= F can be answered
using the information in F . More precisely, it means that for any F , the event
AF = {ω ∈ Ω|f(ω) = F} is an element of F . To be clear, AF = ∅ for most
values of F because there is a list finite or countable list of F values for which
AF 6= ∅.

Let Fn be a family of σ−algebras, defined for n = 0, 1, 2, . . .. They form a
filtration if Fn ⊆ Fn+1 for each n. This is a very general model of acquiring
new information at time n. The only restriction is that in a filtration you do
not forget anything. If you know the answer to a question at time n, then you
still know at time n + 1. The set of questions you can answer at time n is a
subset of the set of questions you can answer at time n+ 1. It is common that
F0 is the trivial σ−algebra, F0 = {∅,Ω}, in which you can answer only trivial
questions. The most important filtration for us has Ω being the path space
and Fn knowing the path up to time n. This is called the natural filtration,
or the filtration generated by the process Xn, in which Fn knows the values
X1, . . . , Xn.

Suppose Fn is a filtration and fn(ω) is a family of functions. We say that
the functions are progressively measurable, or non-anticipating, or adapted to
the filtration, or predictable, if fn is measurable with respect to Fn for each
n. There are subtle differences between these concepts for some continuous
time processes, differences we will ignore in this class. Adapted functions are
important in several ways. In the Ito calculus that is the core of this course, the
integrand in the Ito integral must be adapted. In stochastic control problems,
you must choose a control at time n using only the information available at time
n. A realistic stochastic control must be non-anticipating.

Partitions are a simple way to describe σ−algebras in discrete probability. A
partition, P, is a collection of events that is mutually exclusive and collectively
exhaustive. That means that if P = {A1, . . .}, then:

(i) Ai ∩Aj = ∅ whenever i 6= j.
(mutually exclusive.)

(ii) ∪Ai = Ω.
(collectively exhaustive)
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The events Ai are the elements of the partition P. A family of events, Ai, is a
partition if each ω ∈ Ω is a member of exactly one of the events Ai. A partition
may have finitely or countably many elements. For example, if Ω is path space,
and n is a time, we can partition Ω according to the state at time n, which is
Ak =

{
x[1:T ] with xn = k

}
. This partition is called Pn.

In discrete probability, there is a one to one correspondence between par-
titions and σ−algebras. One to one means that there is exactly one partition
associated to a given σ−algebra, and there is exactly one σ− algebra associ-
ated to a given partition. If F is a σ−algebra, the corresponding partition,
informally, is the finest grained information contained in F . To say this more
completely, we say that F distinguishes ω from ω′ if there is an A ∈ F so that
ω ∈ A and ω′ /∈ A. For example, let F2 be the σ−algebra that knows the states
at times n = 1 and n = 2. Suppose ω = (y1, y2, y3, . . .), and ω′ = (y1, y2, z3, . . .).
Then F2 does not distinguish ω from ω′. The information in F2 cannot answer
the question y3

?= z3.
For any ω ∈ Ω, the set of ω′ that cannot be distinguished from ω is an event,

called the equivalence class of ω. It is written [ω]. The definition is that ω′ ∈ [ω]
if

(ω ∈ A)⇐⇒ (ω′ ∈ A) ,

for every event A that is measurable with respect to F . We write ω ∼ ω′ if
ω′ ∈ [ω]. This is a symmetric relation, as (ω′ ∈ [ω]) ⇐⇒ (ω ∈ [ω′]). You can
also see that

[ω] = ∩A , with ω ∈ A , and A ∈ F .

The set of all equivalence classes forms a partition of Ω. This is because if
[ω] and [ω′ are two equivalence classes, then either [ω] = [ω′] (the equivalence
classes are the same), or [ω] and [ω′] are disjoint. Of course, every ω ∈ Ω is in
some equivalence class. If B ∈ P, then B = [ω] for at least one ω ∈ Ω. The
same B can be written in many ways as [ω′] if there are many ω′ ∼ ω. In this
way, the σ−algebra F defines a partition of Ω.

Conversely, if P is a partition of Ω, and if Ω is discrete, then the set of all
countable unions of elements of P is a σ−algebra. We leave out the straight-
forward but possibly time consuming verification. What you should remember
is what a partition is and how it carries the information in a σ−algebra. The
information in F does not tell you which outcome, ω, happened, but it does tell
you which partition element ω was in. A function f is measurable with respect
to F if and only if it is constant on each partition element of the corresponding
P. (Do verify this.) For example, the partition that is associated with F2 is not
P2, but it is the partition determined by the first two states x1 and x2.

A probability distribution on Ω is an assignment of a probability to each
outcome in Ω. If ω ∈ Ω, then P (ω) is the probability of ω. Naturally, P (ω) ≥ 0
for all ω and

∑
ω∈Ω P (ω) = 1. If A ⊂ Ω is an event, then P (A) =

∑
ω∈A P (ω).

If f(ω) is a function of a random variable, then

E[f ] =
∑
ω∈Ω

f(ω)P (ω) .
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3 Conditioning

Conditioning is about how probabilities change as you get more information.
The simplest conditional expectation tells you how the probability of event A
changes if you know the event B happened. The formula is often called Bayes’
rule.

P(A|B) =
P(A and B)

P(B)
=

P(A ∩B)
P(B)

. (3)

As a simple check, note that if A ∩ B = ∅, then the event B rules A out
completely. Bayes’ rule (3) gets this right, as P(∅) = 0 in the numerator. The
conditional probability of a particular outcome is given by Bayes’ rule too. Just
take A to be the event that ω happened, which is written {ω}:

P(ω|B) =
{

P(ω) /P(B) if ω ∈ B
0 if ω /∈ B

The conditional expected value is

E[f |B] =
∑
ω∈B

f(ω)P(ω|B) =
∑

ω∈B f(ω)P(ω)
P(B)

. (4)

You can check that this formula gives the right answer when f(ω) = 1 for all ω.
We indeed get E[1|B] = 1.

Bayes’ rule does not say how to define conditional probability if P(B) = 0.
This is a serious drawback in continuous probability. For example, if (X1, X2) is
a bivariate normal, then P(X1 = 4) = 0, but we saw last week how to calculate
P(X2 > 0|X1 = 4) (say). This subtlety does not come up in discrete probability.

You can think of expectation as something you say about a random function
when you know nothing but the probabilities of various outcomes. There is a
version of conditional expectation that describes how your understanding of f
will change when you get the information in F . Suppose P = (B1, B2, . . .) is
the partition that is determined by F . When you learn the information in F ,
you will learn which of the Bj happened. The conditional expectation of f ,
conditional on F , is a function of ω determined by this information.

E[f |F ] (ω) = E[f |Bj ] if ω ∈ Bj . (5)

To say this differently, if g = E[f |F ], then g is a function of ω. If ω ∈ Bj , then
g(ω) = E[f |Bj ].

You can see that the conditional expectation, g = E[f |F ], is constant on
partition elements Bj ∈ P. This implies that g is measurable with respect to
F , which is another way of saying that E[f |F ] is determined by the information
in F . The ordinary expectation is conditional expectation with respect to the
trivial σ−algebra F0 = {∅,Ω}. The corresponding partition has only one ele-
ment, Ω. The conditional expectation has the same value for every element of
Ω, and that value is E[f ].
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The tower property is a fact about conditional expectations. It leads to back-
ward equations which is a powerful way to calculate conditional expectations.
Suppose F0 ⊂ F1 ⊂ · · · is a filtration, and fn = E[f |Fn]. The tower property is

fn = E[fn+1|Fn] . (6)

This is a consequence of a simpler and more general statement. Suppose G is
a σ−algebra with more information than F , which means F ⊆ G. Suppose f
is some function, g = E[f |G], and h = E[f |F ]. Then h = E[g|F ]. To say this
another way, you can condition from f down to h directly, which is E[f |F ], or
you can do it in two stages, which is f −→ g = E[f |G] −→ E[g|F ]. The result
is the same.

One proof of the tower property uses the partitions associated with F and
G. The partition for G is a refinement of the partition for F . This means that
you make the partition elements for G by cutting up, or partitioning, partition
elements of F . Every Ci that is a partition element of G is completely contained
in one of the partition elements of F . Said another way, if ω and ω′ are two
elements of Ci, they are indistinguishable using the information in G, which
surely makes them indistinguishable using F , which is less information. This is
why Ci cannot contain outcomes from different Bj .

Now it is just a calculation. Let h′(ω) = E[g|F ]. For ω ∈ Bj , it is intuitively
clear (and we will verify) that

h′(ω) =
∑

Ci⊂Bj

E[g|Ci] P(Ci|Bj) (7)

=
∑

Ci⊂Bj

E[f |Ci] P(Ci|Bj)

=
∑

Ci⊂Bj

(∑
ω∈Ci

f(ω)P(ω|Ci)

)
P(Ci|Bj)

=
∑

Ci⊂Bj

(∑
ω∈Ci

f(ω)P(ω)
P(Ci)

)
P(Ci)
P(Bj)

=
∑

Ci⊂Bj

(∑
ω∈Ci

f(ω)P(ω)

)
1

P(Bj)

=
∑

ω∈Bj

f(ω)
P(ω)
P(Bj)

= h(ω) .

The first line (7) is a convenient way to think about the partition produced
by the σ−algebra G. The partition elements Ci play the role of elementary
outcomes ω ∈ Ω. The partition P plays the role of the probability space Ω.
Instead of P(ω), you have P(Ci). If the function g is measurable with respect
to G, then g has the same value for each ω ∈ Ci, so you might as well call this
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g(Ci). And of course, since g is constant is Ci, if ω ∈ Ci, then g(ω) = E[g|Ci].
We justify (7), for ω ∈ Bj , using

h′(ω) = E[g|Bj ]

=
∑

ω∈Bj

g(ω)P(ω|Bj)

=
∑

Ci∈Bj

(∑
ω∈Ci

g(ω)P(ω)

)
1

P(Bj)

=
∑

Ci∈Bj

g(Ci)

(∑
ω∈Ci

P(ω)

)
1

P(Bj)

=
∑

Ci∈Bj

g(Ci)
P(Ci)
P(Bj)

.

The last line is the same as (7).

4 Markov chains

This section, like the previous two, lacks examples. You might want to read the
next section together with this one for examples.

Informally, a Markov chain is a stochastic process where the present is all
the information about the past that is relevant for predicting the future. The
σ−algebra definitions in the previous sections express these ideas easily. Here is
a definition of the natural filtration Fn. Let x[1:T ] and x′[1:T ] be two paths in the
path space, Ω. Suppose n ≤ T . We say the paths are indistinguishable at time
n if xk = x′k for k = 1, 2, . . . , n. This definition of indistinguishability gives rise
to a partition of Ω, with two paths being in the same partition element if they
are indistinguishable. The σ−algebra corresponding to this partition is Fn. A
function f(x[1:T ]) is measurable with respect to Fn if it is determined by the
first n states x[1:n] = (x1, . . . , xn). The σ−algebra that “knows” only the value
of xn is Gn. A path function is measurable with respect to Gn if and only if it
is determined by the value xn alone.

Let Ω be the path space and P(·) a probability distribution on Ω. Then P(·)
has the Markov property if, for all x ∈ S and n = 1, . . . , T − 1,

P(Xn+1 = x | Fn) = P(Xn+1 = x | Gn) . (8)

Unwinding all the definitions, this is the same as saying that for any path up to
time n,

P(Xn+1 = x | X1 = x1, . . . , Xn = xn) = P(Xn+1 = x | Xn = xn) .

You might complain that we have defined conditional expectation but not con-
ditional probability in (8). The answer is a trick for defining probability from

8



expectation. The indicator function of an event A ⊆ Ω is 1A(ω), which is equal
to 1 if ω ∈ A and 0 otherwise. Then P(A) = E[1A]. In particular, if A = {ω},
then, using the notation slightly incorrectly, P(ω) = E[1ω]. This applies to
conditional expectation too: P(ω|F) = E[1ω|F ]. But you should be alert to
the fact that the latter statement is more complicated, in that both sides are
functions on Ω (measurable with respect to F) rather than just numbers. The
simple notation hides the complexity.

The probabilities in a Markov chain are determined by transition probabil-
ities, which are the numbers defined by the right side of (8). The probability
P(Xn+1 = x | Gn) is a measurable function of Gn, which means that they are a
function of xn, which we call y to simplify notation. The transition probabilities
are

pn,yx = P(Xn+1 = x | Xn = y) . (9)

You can remember that it is pn,yx instead of pn,xy by saying that pn,yx =
P(y → x) is the probability of of a y to x transition in one step.

You can use the definition (9) even if the process does not have the Markov
property. What is special about Markov chains is that the numbers (9) deter-
mine all other probabilities. For example, we will show that

P(Xn+2 = x and Xn+1 = y | Xn = z) = pn+1,yxpn,zy . (10)

What is behind this, besides the Markov property, is a general fact about con-
ditioning. If A, B, and C are any three events, then

P(A and B | C) = P(A | B and C) · P(B | C) .

Without the Markov property, this leads to

P(Xn+2 = x and Xn+1 = y | Xn = z) = P(Xn+2 = x | Xn+1 = y and Xn = z)
· P(Xn+1 = y | Xn = z) .

According to the Markov property, the first probability on the right is
P(Xn+2 = x | Xn+1 = y), which gives (10).

There is something in the spirit of (10) that is crucial for the backward
equation below. This is that the Markov property applies to the whole fu-
ture path, not just one step into the future. For examaple, (10) implies that
P(Xn+2 = x | Fn) = P(Xn+1 = x | Gn). The same line of reasoning justifies the
stronger statement that for any xn+1, . . . , xT ,

P(Xn+1 = xn+1, . . . , XT = xT | Fn) = P(Xn+1 = xn+1, . . . , XT = xT | Gn)

=
T−1∏
k=n

pk,xk,xx+1

Going one more step, consider a function f that depends only on the future:
f = f(xn+1, xn2 , . . . , xT ). Then

E[f | Fn] = E[f | Gn] . (11)
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If you like thinking about σ−algebras, you could say this by defining the future
algebra, Hn, that is determined only by information in the future. Then (11)
holds for any f that is measurable with respect to Hn.

A Markov chain is homogeneous if the transition probabilities do not depend
on n. Most of the Markov chains that arise in modeling are homogeneous.
Much of the theory is for homogeneous Markov chains. From now on, unless we
explicitly say otherwise, we will assume that a Markov chain is homogeneous.
Transition probabilities P(y → x) = pyx will not depend on n.

The forward equation is the equation that describes how probabilities evolve
over time in a Markov chain. Last week we saw that we could evolve the mean
and variance of a linear Gaussian discrete time process (Xn+1 = AXn + BZn)
using µn+1 = Aµn and Cn+1 = ACnA

t + BBt. This determines Xn+1 ∼
N (µn+1, Cn+1) from the information Xn ∼ N (µn, Cn). It is possible to formu-
late a more general forward equation that gives the distribution of Xn+1 even
if Xn is not Gaussian. But we do not need that here.

Let pyx be the transition probabilities of a discrete state space Markov chain.
Let un(y) = P(Xn = y). The forward equation is a formula for the numbers
un+1 in terms of the numbers un. The derivation is simple

un+1(x) = P(Xn+1 = x)

=
∑
y∈S

P(Xn+1 = x | Xn = y) P(Xn = y)

un+1(x) =
∑
y∈S

un(y)pyx (12)

The step from the first to second line uses what is sometimes called the law
of total probability. The terms are rearranged in the last line for the following
reason ...

We reformulate the Markov chain forward equation in matrix/vector terms.
Suppose the state space is finite and S = {x1 . . . , xm}. We will say “state
j” instead of “state xj”, etc. We write un,j = P(Xn = j) instead of un(xj) =
P(Xn = xj). We collect the probabilities into a row vector un = (un,1, . . . , un,m).
The transition matrix, P , is the m×m matrix of transition probabilities. The
(i, j) entry of P is pij = P(i→ j) = P(Xn+1 = j|Xn = i). The forward equation
is

un+1,j =
n∑

i=1

un,ipij .

In matrix terms, this is just
un+1 = unP . (13)

The row vector un+1 is the product of the row vector un and the transition
matrix P . It is a tradition to make un a row vector and put it on the left.
You will come to appreciate the wisdom of this unusual choice over the coming
weeks.
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Once we have a linear algebra formulation, many tools of linear algebra be-
come available. For example, powers of the transition matrix trace the evolution
of u over several steps:

un+2 = un+1P = (unP )P = unP
2 .

Clearly un+k = unP
k for any k. This means we can study the evolution of

Markov chain probabilities using the eigenvalues and eigenvectors of the transi-
tion matrix P .

The other major equation is the backward equation, which propagates con-
ditional expectations backward in time. Take Fn to be the natural filtration
generated by the path up to time n. Take f(x[1:T ]) = V (xT ). This is a final
time payout. The function is completely determined by the state of the system
at time T . We want to characterize fn = E[f |Fn] and see how to calculate it
using V and P . The characterization comes from the Markov property (11),
which implies that fn is a function of xn. The backward equation determines
this function.

The backward equation for Markov chains follows from the tower property
(6). Use the transition probabilities (9). Since E[fn+1 | Fn] is measurable with
respect to Gn, the expression E[fn+1 | Fn] (xn) makes sense:

fn(xn) = E[fn+1 | Fn] (xn)

=
∑

xn+1∈S
P(Xn+1 = xn+1|Xn = xn) fn+1(xn+1)

=
∑

xn+1∈S
pxnxn+1fn+1(xn+1) .

It is simpler to write the last formula for generic xn = x and xn+1 = y.

fn(x) =
∑
y∈S

pxyfn+1(y) . (14)

This is one form of the backward equation.
The backward equation gets its name from the fact that it determines fn

from fn+1. If you think of n as a time variable, then time runs backwards for the
equation. To find the solution, you start with the final condition fT (x) = V (x),
then compute fT−1 using (14), and continue.

The backward equation may be expressed in matrix/vector terms. As we
did when doing this for the forward equation, we suppose the state space is S =
{1, 2, . . . ,m}. Then we define the column vector fn ∈ Rm whose components
are fn,j = fn(j). The elements of the transition matrix are pij = P(i→ j). The
right side of (14) is the matrix/vector product Pfn+1, so the equation is

fn = Pfn+1 . (15)

The forward and backward equations use the same matrix P , but the forward
equation multiplies from the left by a row vector of probabilities, while the
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backward equation multiplies from the right by a column vector of conditional
probabilities.

The transition matrix if a homogeneous Markov chain is an m×m matrix.
You can ask which matrices arise in this way. A matrix that can be the transition
matrix for a Markov chain is called a stochastic matrix. There are two obvious
properties that characterize stochastic matrices. The first is that pij ≥ 0 for all
i and j. The transition probabilities are probabilities, and probabilities cannot
be negative. The second is that

m∑
j=1

pij = 1 for all i = 1, . . . ,m. (16)

This is because S is a complete list of the possible states at time n + 1. If
Xn = i, then Xn+1 is one of the states 1, 2, . . . ,m. Therefore, the probabilities
for the landing states (the state at time n+ 1) add up to one.

If you know P is a stochastic matrix, you know two things about its eigen-
values. One of those things is that λ = 1 is an eigenvalue. The proof of this
is to give the corresponding eigenvector, which is the column vector of all ones:
1 = (1, 1, . . . , 1)t. If g = P1, then the components of g are, using (16),

gi =
m∑

j=1

pij1j =
m∑

j=1

pij = 1 ,

for all i. This shows that g = P1 = 1. This result is natural in the Markov
chain setting. The statement fn+1 = E[V (XT ) | Fn+1] = 1 for all xj ∈ S means
that given the information in Fn+1, the expected value equals 1 no matter what.
But Fn has less information. All you know at time n is that in the next step you
will go to a state where the expected value is 1. But this makes the expected
value at time n equal to 1 already.

The other thing you know is that if λ is an eigenvalue of P then |λ| ≤ 1.
This is a consequence of the maximum principle for P , which we now explain.
Suppose f ∈ Rm is any vector and g = Pf . The maximum principle for P is

max
i
gi ≤ max

j
fj . (17)

Some simple reasoning about P proves this. First observe that if h ∈ Rm and
hj ≥ 0 for all j, then

(Ph)i =
m∑

j=1

pijhj ≥ 0 for all i.

This is because all the terms on the right, pij and hj are non-negative. Now
let M = max fj . Then define h by hj = M − fj , so that M1 = f + h. Since
P (M1) = M1, we know gi + (Ph)i = M . Since (Ph)i ≥ 0, this implies that
gi ≤M , which is the statement (17). Using similar arguments,

|gi| ≤
∑

j

pij |fj | ≤

∑
j

pij

max
j
|fj | ,

12



you can show that even if f is complex,

max
i
|gi| ≤ max

j
|fj | . (18)

This implies that if λ is an eigenvalue of P , then |λ| ≤ 1. That is because the
equation Pf = λf with |λ| > 1, violates (18) by a factor of |λ|.

A stochastic matrix is called ergodic if:

(i) The eigenvalue λ = 1 is simple.

(ii) If λ 6= 1 is an eigenvalue of P , then |λ| < 1.

A Markov chain is ergodic if its transition matrix is ergodic. (Warning: the true
definition of ergodicity applies to Markov chains. There is a theorem stating
that if S is finite, then the Markov chain is ergodic if and only if the eigenvalues
of P satisfy the conditions above. Our definitions are not completely wrong,
but they might be misleading.) Most of our examples are ergodic.

Last week we studied the issue of whether the Markov process (a linear
Gaussian process last week, a discrete Markov chain this week) has a statistical
steady state that it approaches as n→∞. You can ask the same question about
discrete Markov chains. A probability distribution, π, is stationary, or steady
state, or statistical steady state, if un = π =⇒ un+1 = π. That is the same as
saying that Xn ∼ π =⇒ Xn+1 ∼ π. The forward equation (13) implies that a
stationary probability distribution must satisfy the equation π = πP . This says
that π is a left eigenvector of P with eigenvalue λ = 1. We know there is at least
one left eigenvector with eigenvalue λ = 1 because λ = 1 is a right eigenvalue
with eigenvector 1.

If S is finite, it is a theorem that the chain is ergodic if and only if it satisfies
both of the following conditions

(i) There is a unique row vector π with π = πP and
∑

i πi = 1.

(ii) Let u1 be any distribution on m states and X1 ∼ u1. If Xn ∼ un, then
un → π as n→∞.

Without discussing these issues thoroughly, you can see the relation between
these theorems about probabilities and the statements about eigenvalues of P
above. If P has a unique eigenvalue equal to one and the rest less than one, then
un+1 = unP has un → (the eigenvector), as n → ∞. But π is the eigenvector
corresponding to eigenvalue λ = 1. It might be that un → cπ, but we know
c = 1 because

∑
i un,i = 1, and similarly for π.

5 Discrete random walk

This section discusses Markov chains where the states are integers in some range
and the only transitions are i → i or i → i ± 1. The non-zero transition
probabilities are ai = P(i→ i− 1) = pi,i−1, and bi = P(i→ i) = pi,i, and
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ci = P(i→ i+ 1) = pi,i+1. These are called random walk, particularly if S = Z
and the transition probabilities are independent of i. A reflecting random walk
is one where moves to i < 0 are blocked (reflected). In this case the state space
is the non-negative integers S = Z+, and c0 = 0, and b0 = b + c. For i > 0,
ai = a, bi = b, and ci = c. You can interpret the transition probabilities at i = 0
as saying that a proposed transition 0→ −1 is rejected, leading the state to stay
at i = 0. You cannot tell the difference between a pure random walk and a
reflecting walk until the walker hits the reflecting boundary at i = 0. You could
get a random walk on a finite state space by putting a reflecting boundary also
at i = m− 1 (chosen so that S = {0, 1, . . .m− 1} and |S| = m). The transition
probabilities at the right boundary would be cm−1 = c, bm−1 = b + a, and
am−1 = 0. These probabilities reject proposed m− 1→ m transitions.

The phrase birth death process is sometimes used for random walks on the
state space Z+ with transition probabilities that depend in a more general way
on i. The term birth/death comes from the idea that Xn is the number of
animals at time n. Then ai is the probability that one dies, ci is the probability
that one is born, and bi = 1 − ai − ci is the probability that the probability
does not change. You might think that i = 0 would be an absorbing state in
that P(0→ 1) = 0 because no animals can be born if there are no animals.
Birth/death processes do not necessarily assume this. They permit storks.

Urn processes are a family of probability models that give rise to Markov
chains on the state space {0, . . . ,m− 1}. An urn is a large clay jar. In urn
processes, we talk about one or more urns each with balls of one or more colors.
Here is an example that has one urn, two colors (red and blue) and a probability,
q. At each stage there are m balls in the urn (can’t stay with m− 1 any longer.
Some are red and the rest blue. You choose one ball from the urn, each with the
same probability to be chosen – a well mixed urn. You replace that ball with a
new one whose color is red with probability q and blue with probability 1 − q.
Let Xn be the number of red balls at time n. In this process Xn → Xn − 1 if
you you choose a red ball and replace it with a blue ball. If you choose a blue
ball and replace it with a red ball, then Xn → Xn + 1. If you replace red with
red, or blue with blue, then Xn+1 = Xn.

A matrix is tridiagonal if all its entries are zero when |i − j| > 1. It’s non-
zeros are on the main diagonal, the one super-diagonal, and one sub-diagonal.
This section is about Markov chains whose transition matrix is tri-diagaonal.
Consider, for a simple example, the random walk with a reflecting boundary at
i = 0 and i = 5. Suppose the transition probabilities are a = 1

2 , and b = c = 1
4 .

The transition matrix is the 6× 6 matrix

P =



3
4

1
4 0 0 0 0

1
2

1
4

1
4 0 0 0

0 1
2

1
4

1
4 0 0

0 0 1
2

1
4

1
4 0

0 0 0 1
2

1
4

1
4

0 0 0 0 1
2

1
2

 . (19)

There is always confusion about how to number the first row and column.
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Markov chain people like to start the numbering with i = 0, as we did above.
The tradition in linear algebra is to start numbering with i = 1. These notes
try to keep the reader on her or his toes by doing both, starting with i = 1 when
describing the entries in P , and starting with i = 0 when describing the Markov
chain transition probabilities. The transition matrix P above has p12 = 1

4 ,
which indicates that if Xn = 1, there is a .25% chance that Xn+1 = 2. Since Xn

is not allowed to go lower than 1 or higher than 2, the rest of the probability
must be to stay at i = 1, which is why p11 = 3

4 . In the first column we have
p21 = 1

2 , which is the probability of a 2→ 1 transition. From state i = 2 there
are three possible transitions, 2 → 1 with probability 1

2 as we just said, 2 → 2
with probability 1

4 , and 2→ 3, with probability 1
4 . The row sums of this matrix

are all equal to one, and so are most of the column sums. But the first column
sum is p11 + p21 = 5

4 > 1 and the last is p56 + p66 = 3
4 < 1.

My computer says that

P 2 =


0.6875 0.2500 0.0625 0 0 0
0.5000 0.3125 0.1250 0.0625 0 0
0.2500 0.2500 0.3125 0.1250 0.0625 0

0 0.2500 0.2500 0.3125 0.1250 0.0625
0 0 0.2500 0.2500 0.3125 0.1875
0 0 0 0.2500 0.3750 0.3750

 .

For example, p(2)
4,2 = 1

4 , which says that the probability of going from 4 to 2 in
two hops is 1

4 . The only way to do that is Xn = 4 → Xn+1 = 3 → Xn+2 = 2.
The probability of this is p43p32 = 1

2
1
2 = 1

4 . The probability of 3 → 3 in two
steps is p(2)

33 = 5
16 . The three paths that do this, with their probabilities, are

P(3→ 2→ 3) = 1
2

1
4 = 2

16 , and P(3→ 3→ 3) = 1
4

1
4 = 1

16 , and P(3→ 4→ 3) =
1
4

1
2 = 2

16 . These add up to 5
16 . The matrix P 2 is the transition matrix for the

Markov chain that says “take two hops with the P chain. Therefore its row
sums should equal 1, as p(2)

11 + p
(2)
12 + p

(2)
13 = 11

16 + 4
16 + 1

16 = 1.
My computer says that, for n = 100 (think n =∞),

Pn =


0.5079 0.2540 0.1270 0.0635 0.0317 0.0159
0.5079 0.2540 0.1270 0.0635 0.0317 0.0159
0.5079 0.2540 0.1270 0.0635 0.0317 0.0159
0.5079 0.2540 0.1270 0.0635 0.0317 0.0159
0.5079 0.2540 0.1270 0.0635 0.0317 0.0159
0.5079 0.2540 0.1270 0.0635 0.0317 0.0159

 . (20)

These numbers have the form p
(∞)
i,j = 2−j/s, where s =

∑6
j=1 2−j . The formula

for s comes from the requirement that the row sums of p(∞) are 1. The fact that
p

(∞)
i,j+1/p

(∞)
ij = 1

2 comes from the following theory. Think of starting with X0 = i.
Then u1,ij = P(X1 = j|X0 = i) = pij . Similarly, un,j = P(Xn = j|X0 = i) =
p

(n)
ij . If this P is ergodic (it is), then un,j → πj as n → ∞. This implies that

p
(n)
ij → πj as n→∞ for any i. The Pn in (20) seems to fit that, at least in the

fact that all the rows are the same because the limit of p(n)
ij is independent of i.
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The equation π = πP determines π. For our P in (19), these equations are

π1 = π1
3
4 + π2

1
2

π2 = π1
1
4 + π2

1
4 + π3

1
2

...

π5 = π4
1
4 + π5

1
4 + π6

1
2

π6 = π5
1
4 + π6

1
2 .

You can check that a solution is πj = c2−j . The value of c comes from the
requirement that

∑
j πj = 1 (π is a probability distribution).
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