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1 Review and notation

Much of the material here should be familiar to many readers, though likely not
in exactly the way it is presented here. Students in Stochastic Calculus form a
very heterogeneous group. You have a variety of educational backgrounds, time
away from school, and goals. A bit of review will establish a common system of
terminology for the class and it will fill in gaps in your background.

Gaussian random variables are central to stochastic calculus, for many rea-
sons. The most important stochastic process for this class is Brownian motion,
which is Gaussian. Brownian motion itself is an important model for many
physical and financial processes. A much larger class of processes, diffusions
processes behave like Brownian motion and represented using Brownian mo-
tion. Discrete time Gaussian processes, discussed in this section, are another
important class of models. The many special properties of Gaussian random
variables allow Gaussian process models to be “solved”: many of their proper-
ties can be calculated explicitly. Gaussian processes play a role similar to the
role played by linear systems in the study of dynamical systems. Most processes
are not linear/Gaussian, but linear/Gaussian analysis is one of our most useful
analytical tools.

1.1 Probability densities and linear transformations

When we study stochastic processes, we usually have many random variables
that are related to each other in some way. For example, X1, X2, . . ., could be
the values of some random quantity observed at different times. We may call
the individual values Xk the components of the multivariate random variable
X = (X1, . . . , Xd). This class focuses mostly (but not entirely, see Section 2),
on random variables with continuous joint probability densities. A multivariate
random variable, X, is Gaussian if its PDF (Probability Density Function) has a
specific form, see (9). This is not only a condition on the individual components
Xk, but on the joint distribution. We sometimes say say that the components
are jointly Gaussian, or jointly normal to emphasize not only that they are
normal, but also they are the components of a multivariate normal.

It is possible that the components of X are Gaussian but X is not Gaussian.
If the components Xk are jointly Gaussian, then a linear combination of them
is also Gaussian. If m1, . . . ,md are some factors, a linear combination is Y =
m1X1 + · · ·+mdXd. The numbers mk may also be called multipliers or weights
depending on the context. It is a theorem that the components Xk are jointly
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Gaussian, then any linear combination, Y is also Gaussian. We will see this
soon. It is also true, but harder to show, that if every linear combination is
Gaussian, then the Xk are jointly Gaussian. Linear combinations are common
in multivariate probability and stochastic calculus. Some of them are suggested
by application, such as the sum of the components Y = X1 + · · ·+Xd. This is a
linear combination with equal weights. Others are carefully constructed to have
useful mathematical properties, such as principal components discussed below.

Just as we often consider more than one component at a time, we often con-
sider more than one linear combination at a time. We can consider a collection
of linear combinations

Yj =

d∑
k=1

mjkXk .

The combinations Yj form the components of a multivariate random variable,
Y = (Y1, . . . , Yn). Each of the components Yj has its own set of weights mjk.
One common example is the partial sums

Y1 = X1

Y2 = X1 +X2

...

Yd = X1 + · · ·+Xd .

The reader probably is familiar with the fact that matrices and linear transfor-
mations are the “right way” to talk about collections of linear transformations.

Suppose X1, . . ., Xd is a collection of random variables with some joint
density. We write

X =


X1

X2

...
Xd


for the vector in Rd with these random variables as components. The corre-
sponding probability density function, or PDF, is u(x), with x ∈ Rd.

Suppose M is a non-singular d×d matrix and Y = MX has PDF v(y). The
relation between the two probability densities can be written in two equivalent
ways

v(y) = |det(M)|−1
u(M−1y) (1)

v(Mx) = |det(M)|u(x) . (2)

This formula follows from the general form for changes of variable in multi-
dimensional integration. To explain it informally, suppose A is small set near
x0 whose volume is |dx|. Then

Pr(X ∈ A) = u(x0) |dx| .
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This formula is not exactly true for finite sized A, but becomes more and more
accurate approximation as A becomes smaller around x0. Suppose B = MA,
which means B is the image of A under M . This means that y ∈ B if there is
an x ∈ A with Mx = y. Because x→Mx is a linear transformation, even if A
is not small we have

vol(B) = |det(M)| vol(A) .

If Y = MX, then Pr(Y ∈ B) = Pr(X ∈ A), so, if y0 = Mx0, then

v(y0) |dy| = u(x0) |dx|
v(Mx0) |det(M)| |dx| = u(x0) |dx| .

This is the transformation formula (1).
Determinants can be hard to evaluate in general, but some are easy. If M

is a diagonal matrix,

M =


λ1 0 · · · 0

0 λ2 · · ·
...

...
. . .

0 · · · λd

 ,

then

det(M) =

d∏
j=1

λj .

If M is a lower triangular matrix

M =


m11 0 · · · 0

m21 m22 0
...

...
. . .

md1 md2 · · · mdd

 ,

then there is just one term in the determinant formula, which is the product of
the diagonals:

det(M) =

d∏
j=1

mjj .

For example, the partial sums above are described by the matrix

M =


1 0 · · · 0

1 1 0
...

...
. . .

1 1 · · · 1


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The determinant of this matrix is 1. The determinant of a matrix is equal to
the determinant of its transpose

det(M) = det(M t) .

The determinant of a product is the product of the determinants

det(MN) = det(M)det(N) .

This applies also if there are more than two factors. For example, if A is a
symmetric matrix that is diagonalized by the orthogonal matrix V ,

A = V ΛV t , V V t = I ,

then det(V ) = ±1, because det(V ) is a real number with

[det(V )]
2

= det(V )det(V t) = det(V V t) = det(I) = 1 .

Therefore

det(A) = det(V ΛV t) = det(V )det(Λ)det(V t) = det(Λ) =

d∏
j=1

λj .

If A is symmetric and positive definite, and has the Choleski factorization A =
LLt (more on Choleski below), with L being lower triangular, then

det(A) = [det(L)]
2

=

d∏
j=1

l2jj .

1.2 Matrices and linear algebra

Simple facts about matrix multiplication make the mathematician’s work much
simpler than it would be otherwise.1 Among these facts are the associativity
property of matrix multiplication and the distributive property of matrix mul-
tiplication and addition.

Suppose A, B, and C are three matrices that are compatible for multiplica-
tion. Associativity is the formula (AB)C = A (BC). We can write the product
simply as ABC because the order of multiplication does not matter. Associa-
tivity holds for products of more factors. For example, two of the many ways
to compute ABCD are (A (BC))D = (AB) (CD): you can compute BC, then
multiply from the left by A and lastly multiply from the right by D, or you can
first calculate AB and CD and then multiply those.

Distributivity is the fact that matrix product is a linear function of each
factor. Suppose AB is compatible for matrix multiplication, that B1 and B2

1It is hard to appreciate this fully without looking at books written before the linear algebra
revolution. Look, for example, at an old British book on the “theory of determinants” or the
book Mathematical Physics, by Morse and Feshbach. This is great stuff, which is easier to
say in modern terminology.
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have the same shape (number of rows and columns) as B, and that m1 and
m2 are multipliers (numbers). Then A(m1B1 +m2B2) = m1(AB1)+m2(AB2).
This works with more than two B matrices, and with matrices on the right and
left, such as

A

(
n∑
k=1

ukBk

)
C =

n∑
k=1

uk(ABkC) .

It works also for integrals. If B(x) is a matrix function of x ∈ Rd and u(x) is a
probability density function, then∫

(AB(x)C) u(x) dx = A

(∫
B(x)u(x) dx

)
C .

This may be said in a more abstract way. If B is a random matrix and A and
C are fixed, not random, then (We use E[·] to represent expected value.)

E[ABC] = AE[B] C . (3)

Matrix multiplication is associative and linear even when some of the matrices
are row vectors or column vectors. These can be treated as 1 × d and d × 1
matrices respectively.

Householder reflections give a nice illustration of matrix distributivity and
associativity. Suppose x ∈ Rd with ‖x‖22 = xtx =

∑
i x

2
i = 1. The matrix

V = I − 2xxt

represents reflection about the plane normal to the vector x. To see this, let
y ∈ Rd be an arbitrary vector and calculate

V y = y − 2
(
xty
)
x . (4)

Note, in doing this calculation we used distributivity, associativity, and the fact
that the 1 × 1 matrix xty is a number that commutes with matrices. If y is
perpendicular to x, then V y = y. Otherwise, the formula (4) reverses the sign
of the inner product of x and y. That is the reflection, V y is the “mirror image”
of y through the plane perpendicular to x. In particular, ‖V y‖2 = ‖y‖2, which
makes the transformation V orthogonal. We can see directly, which is the point
of this paragraph, that V is an orthogonal matrix, by showing that V V t = I.
The interesting part of the calculation, for us here, is when (xxt) (xxt) becomes
x (xtx)xt, which is associativity of matrix multiplication. The inner part on the
right is xtx = 1

V V t =
(
I − 2xxt

) (
I − 2xxt

)t
=
(
I − 2xxt

) (
I − 2xxt

)
= I − 2xxtI − I2xxt + 4

(
xxt
) (
xxt
)

= I − 4xxt + 4x
(
xtx
)
xt

= I − 4xxt + 4xxt

= I .
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Matrix multiplication is not commutative: AB 6= BA in general. The matrix
transpose and matrix inverse reverse the order of matrix multiplication: (AB)

t
=

(Bt) (At), and (AB)
−1

=
(
B−1

) (
A−1

)
. For matrix inverses, there is a simple

interpretation. The operation A−1 undoes the operation of A. The product AB
means “first do B, then do A. To undo this, you first undo A, then undo B. In
matrix form, this is B−1A−1. A left inverse of A is a square matrix B so that
BA = I. A matrix may have a left inverse without being square or having a
right inverse. A theorem of linear algebra states that if A is square B is a left
inverse, then B is also a right inverse, which means that AB = I. Even though
BA 6= AB most of the time, if BA = I, then AB = I. An m× n matrix has m
rows and n columns. If m > n, then the matrix is “tall and thin”. If m < nm
then it is “short and fat”. A tall and thin matrix can have a left inverse but
not a right inverse. A short and fat matrix can have a right inverse but not a
left inverse.

We illustrate matrix algebra in probability by finding transformation rules
for the mean and covariance of multivariate random variables under linear trans-
formations. Suppose X is a d component random variable, and Y = AX. It
is not necessary here for A to be invertible or square. The mean of X is the
d component vector given either in matrix/vector form as µX = E[X], or in
component form as µX,j = E[Xj ]. The expected value of Y is

µY = E[Y ] = E[AX] = AE[X] = AµX .

We may take A out of the expectation because of the linearity of matrix/vector
multiplication.

Slightly less trivial is the transformation formula for the covariance matrix.
The covariance matrix CX is the d× d symmetric matrix whose entries are

CX,jk = E[(Xj − µX,j) (Xk − µX,k)] .

The diagonal entries of CX are the variances of the components of X:

CX,jj = E
[
(Xj − µX,j)2

]
= σ2

Xj
.

Now consider the d×d matrix B(X) = (X − µX) (X − µX)
t
. The (j, k) entry of

B is (Xj − µX,j) (Xk − µX,k). Therefore the (j, k) entry of CX is the expected
value of B(X)jk. This proves the matrix formula

CX = E[B(X)] = E
[
(X − µX) (X − µX)

t
]
. (5)

The linearity formula (3), and associativity, give the transformation law for
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covariances under linear transformations. If Y = AX, then

CY = E
[
(Y − µY ) (Y − µY )

t
]

= E
[
(AX −AµX) (AX −AµX)

t
]

(Y = AX transformations)

= E
[
{A (X − µX)} {A (X − µX)}t

]
(factor out A)

= E
[{
A (X − µX)

}{
(X − µX)

t
At
}]

(transpose product rule)

= E
[
A
{

(X − µX) (X − µX)
t}
At
]

(associativity)

= AE
[
(X − µX) (X − µX)

t
]
At (linearity formula (3))

CY = ACXA
t . (6)

As an example, suppose the components of X are independent standard
normals. This means that Xj ∼ N (0, 1), and Xj is independent of Xk if j 6= k.
The covariance matrix of X has σ2

Xj
= 1 in the diagonal and cov(Xj , Xk) = 0

on the off diagonals. This is the identity matrix; CX = I. Let A be the lower
triangular matrix

A =


1 0 . . . 0
1 1 0 · · · 0
...

. . .
...

1 1 · · · 1


This is the matrix that takes partial sums. If Y = AX, then Y1 = X1, Y2 =
X1 + X2, and Yk = X1 + · · · + Xk. The covariance CY can be found from the
general formula (6) and direct calculation: CY = ACXA

t = AAt,

CY =


1 0 . . . 0
1 1 0 · · · 0
...

. . .
...

1 1 · · · 1




1 1 · · · 1
0 1 1 · · · 1
... 0

. . .
...

0 · · · 0 1



=


1 1 1 . . . 1
1 2 2 · · · 2
1 2 3 3 3
...

...
1 2 3 · · · d


The general formula is CY,jk = min(j, k).

We can verify this formula directly as follows. If j = k, then we have

CY,jj = var

(
j∑
i=1

Xi

)
= j ,
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Because this is the sum of j independent random variables with variance 1. If
j < k then Yk = Yj +Xj+1 + · · ·+Xk.

cov(Yj , Yk) = cov(Yj , Yj) + cov(Yj , Xj+1) + · · ·+ cov(Yj , Xk)

= j + 0 + · · ·+ 0 .

All the covariances after the first on the right are equal to zero because Yj is
independent of Xi for i > j.

Sometimes it is natural that the “components” of X themselves are vectors
with more than one component. For example, Xj might refer to measurements
made at time j. If more than one measurement is made at time j, then Xj

would have more than one component. We use the following terminology. If
Xj has mj components, with mj > 1, we say that X is a block vector with mj

being the block size of block Xj . If

X =


X1

X2

...
Xd


we say that X has d blocks. The number of components altogether is M =
m1 + · · ·+md.

Linear transformations on block vectors are represented by block matrices:

A =


A11 A12 · · · A1d

A21 A22 A2d

...
. . .

...
Ad1 Ad2 · · · Add

 (7)

This would transform a block vector X with block sizes mk to a block vector
Y with block sizes nj Matrix “entry” Ajk has size nj ×mk. All the matrices
on row j have nj scalar rows. All the matrices on column k have mk scalar
columns. The overall size of A is N ×M , where N =

∑
nj , and M =

∑
mk.

The number of scalar rows of A is the number of scalar rows in the first matrix
row, which is m1, plus the number in the second matrix row, which is m2, and
so on. If Y = AX, then Y is a block vector with block sizes nj . The block
matrix/block vector product may be written

Yj =

d∑
k=1

AjkXk .

This formula has the same form as the one for ordinary matrix/vector multipli-
cation, except that the scalar components Xk are replaced by multi-component
vectors, and the scalar matrix elements are now small matrices.

Two block matrices are compatible for multiplication if all the row and
column numbers match: the number of scalar columns in matrix column k of
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A must be the same as the number of scalar rows in the matrix row of B. The
result is

(AB)jl =
∑
k

AjkBkl .

You multiply the matrices by multiplying and adding individual blocks. The
difference is that the individual matrix products need not commute: AjkBkl 6=
BklAjk. In fact, BklAjk need not make sense.

1.3 Principal component analysis

In linear algebra you learn about eigenvalues and eigenvectors, and about sin-
gular values and singular vectors. In probability, this subject is called principal
component analysis, or PCA. The extra feature in probability is that distinct
principal components are uncorrelated to each other. Principal component anal-
ysis decomposes a multivariate random vector into a sum of uncorrelated random
vectors.

Suppose C is a symmetric d× d matrix. Then C has d real eigenvalues and
orthonormal eigenvectors:

Cvj = λjvj , vtjvk = 0 , if j 6= k , vtjvj = ‖vj‖22 = 1

The eigenvectors can be assembled into an eigenvector matrix

V =

 | | · · · |
v1 v2 · · · vd
| | · · · |

 .

The columns of V are the eigenvectors of C. You can check that the eigenvalue
relations may be stated in matrix form as

CV = C

 | | · · · |
v1 v2 · · · vd
| | · · · |


=

 | | · · · |
λ1v1 λ2v2 · · · λdvd
| | · · · |



=

 | | · · · |
v1 v2 · · · vd
| | · · · |



λ1 0 · · · 0

0 λ2 · · ·
...

...
. . .

0 · · · λd


= V Λ ,

where Λ is the diagonal eigenvalue matrix on the right. The orthogonality
relations are equivalent to the matrix relation V tV = I. This implies also that
V V t = I. The eigenvalue decomposition can be written in several equivalent
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ways. Starting with the above CV = V Λ, we can get either C = V ΛV t, or
Λ = V tCV .

Let x ∈ Rd be a vector, and define y = V tx. The component yj of y is
given by yj = vtjx. This means that yj is the component of x in the direction
vj , and x has the PCA representation x =

∑
j yjvj . The formula C = V ΛV t

has the following interpretation. If you want to calculate Cx, first compute
y = V tx, which is the same as representing x in terms of the eigenvectors vj .
Then multiply yj by λj , which corresponds to Λy = ΛV tx. Then re-assemble
Cx =

∑
λjyjvj , which is the same as V Λy = V ΛV tx.

Now suppose X is a d component random variable with mean zero and co-
variance C. The eigenvectors vj are not random, but the components Yj = vtjX
are. The terminology is uncertain, but either the vectors vj or the components
Yj are principal components. The expression

X =

d∑
j=1

Yjvj (8)

represents X as a sum of principal components. There are several easy to derive
the formula

cov(Yj , Yk) = vtjCvk .

This shows that Yj and Yk are uncorrelated if j 6= k. It also shows that λj is the
variance of Yj . A typical value of Yj will be on the order of

√
λj . We can arrange

the eigenvalues in decreasing order; λ1 ≥ λ2 ≥ · · · ≥ λd. In many practical ap-
plications the eigenvalues are graded, which means they decrease rapidly as j
increases. In this case the Yj are also likely to be decreasing rapidly. That sug-
gests that the representation (8) of X in terms of principal components is likely
to be efficient in the sense that the first few terms give a good approximation
to the whole sum.

The singular value decomposition, or SVD, is PCA for non-symmetric ma-
trices. Suppose A is an m× n matrix. The SVD of A consists of two orthonor-
mal bases and a collection of non-negative stretch factors. The vj ∈ Rn, for
j = 1, . . . , n, are the right singular vectors of A. The uk ∈ Rm, for m = 1, . . . ,m,
are the right singular vectors of A. They are an orthonormal basis for the col-
umn space of A, which is the subspace of Rm spanned by the columns of A. The
stretch factors, σj , are singular values. These satisfy the relations Avj = σjuj .
By convention the singular values are listed in decreasing order, σ1 ≥ σ2 ≥ · · · .
The singular vectors are organized into matrices, V and U , whose columns are
the vj and uj respectively.

There are different conventions about how to treat the fact that A is not
square. One is to have either U or V be rectangular. If A is a tall thin matrix
(m > n, more rows than columns), then we could say that there are n left and
right singular vectors, so V is n×n and U is m×n. This makes Σ, a matrix with
the σj on the diagonal, also n× n. The singular vector and value relationships
are equivalent to the matrix equation AV = UΣ, or to A = UΣV t. The other
convention would be to make U a square matrix by adding orthonormal columns
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that span the subspace of Rm that is perpendicular to the column space. In this
convention, U is an m×m orthogonal matrix, V is an n×n orthogonal matrix,
and Σ is m× n, with all zeros except for singular values on the diagonal.

There are two forms of PCA, eigenvalues and eigenvectors for symmetric ma-
trices, singular vectors and singular values for non-symmetric matrices. These
are related. If A = UΣV t and H = AtA, then H is a symmetric matrix, and

H =
(
UΣV t

)t (
UΣV t

)
=
(
V ΣtU t

) (
UΣV t

)
= V Σt

(
U tU

)
ΣV t

= V ΣtΣV t

H = V ΛV t ,Λ = ΣtΣ .

The eigenvalues of AtA are σ2
j . The corresponding eigenvectors are the right

singular vectors vj . Similarly, the left singular vectors uj are the eigenvectors of
AAt. The eigenvalues are the same, almost. If A is not square, then one of AtA
or AAt has more eigenvalues. The extra eigenvalues are all zero. The non-zero
eigenvalues are all of the form σ2

j for some j.
Here is one of the many uses of PCA in practice. It often happens that

the eigenvalues (for symmetric H) or the singular vectors (for general A) are
strongly graded. That means that they decrease quickly from one to the next.
This means that H or A can be accurately represented by a sum containing just
a few principal components

A ≈
r∑
j=1

σjujv
t
j .

For example, the 500×500 covariance matrix of the stocks in the S&P 500 index
is reasonably well represented by r = 10 “market factors”.

There are some things eigenvalues and eigenvectors can do that singular
values and singular vectors cannot do. One is computing a function of a matrix.
The eigenvectors of H2 and H are the same. The eigenvalues of H2 are λ2

j , the

eigenvalues of H−1 are λ−1
j . The PCA of H2 or H−1 are almost the same as

the PCE of H. The expression A2 may not make sense, but even if it does, the
singular vectors of A2 are not the singular vectors of A, and the singular values
of A2 are not functions of the eigenvalues of A. The PCA of A2 can be very
different from the PCA of A.

1.4 Gaussian probability density

This section gives the formula for the multivariate Gaussian probability density
function. There are two “parameters”, µ and H, where µ ∈ Rd is the mean,
and H is a symmetric positive definite d × d matrix called the precision. A
multivariate random variable, X, is multivariate normal if its probability density
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function (PDF) is a multivariate normal density.

u(x) =

√
det(H)

(2π)d/2
e−(x−µ)tH(x−µ)/2 . (9)

We will see that if X is normal (short for “multivariate normal”), then

µ = E[X] , (10)

and
H−1 = cov(X) . (11)

The covariance matrix is called Σ, or C, or CX , or CXX . If X is Gaussian, the
distribution of X is completely determined by its mean and covariance matrix.
If V (x) is any function, then E[V (X)] is a function of µ and C. There are many
explicit formulas of this kind. We write

X ∼ N (µ,C) , or X ∼ N (µ,H−1) ,

if X is normal with mean µ and covariance C = H−1.

This section explains five properties of the multivariate normal:

1. Linear functions of Gaussians are Gaussian. If X is Gaussian and Y =
AX + b, then Y is Gaussian. (Warning: There is a technical catch.)

2. Conditioned Gaussians are Gaussian. Suppose X is a block vector with
components X1 and X2. If X is a multivariate normal, then the distribu-
tion of X1, conditioned on knowing the value X2 = x2, is Gaussian.

3. Marginals of Gaussians are Gaussian. Suppose X is a block vector with
components X1 and X2. If X is a multivariate normal, then the distribu-
tion of X1 (ignoring X2) is Gaussian.

4. Uncorrelated Gaussians are independent. Suppose X is a block vector
with components X1 and X2. If cov(X1, X2) = 0 then X1 and X2 are
independent.

5. Suppose X = (X1, X2) in block form. Suppose that the marginal of
X1 is Gaussian (more simply, suppose X1 is Gaussian). Suppose that
the conditional distribution of X2, given that X1 = x1 is Gaussian with
conditional mean µ2(x1) = Ax1 + b, and precision H22 that does not
depend on x1. Then X is Gaussian. The case A = 0 is important. In
this case the conditional distribution of X2 does not depend on X1. That
means X2 is independent of X1. If X1 and X2 are independent Gaussians,
then (X1, X2) is jointly Gaussian.

Each of these is a theorem about the multivariate PDF formula (9), so we use
the PDF formula to prove them But once they are proven, we try as much as
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possible to think about Gaussians using these properties rather than the PDF
that underlies them.

We start with a few simple remarks about the Gaussian PDF. In terms of
the covariance, it is

u(x) =
1√

(2π)ddet(C)
e−(x−µ)tC−1(x−µ)/2 . (12)

If d = 1, then C is a 1 × 1 matrix, whose only entry is σ2 = var(X). Then
X ∼ N (µ, σ2) if X has density

u(x) =
1√

2πσ2
e−(x−µ)2/(2σ2) . (13)

Perhaps the most complicated aspect of the PDF (9) is the prefactor√
det(H)

(2π)d/2
.

If f(x) is any non-negative function, with a finite integral, and

Z =

∫
f(x) dx ,

then

u(x) =
1

Z
f(x) (14)

is a probability density. The constant 1
Z is the normalization constant or pref-

actor. It is common to have a formula for f(x) but not for Z. Even if there
is a formula for Z, it may be so complicated that we try to use it as little as
possible. In the Gaussian case,

f(x) = e−(x−µ)tH(x−µ)/2 .

The normalization constant is given by the integral∫
e−(x−µ)tH(x−µ)/2 dx =

(2π)d/2√
det(H)

.

Then shortened form

u(x) =
1

Z
e−(x−µ)tH(x−µ)/2 .

may be easier to work with than the fully written out version (9).
Mathematicians often use Z to mean “some normalization factor”, so (14)

is understood to say: “u(x) is equal to f(x) up to some normalization factor”.
For example, we might write

u1(x) =
1

Z

1

1 + x2

u2(x) =
1

Z
e−|x| .

13



We understand that the Z in the first formula is not the same as the Z in the
second one.

It is often useful to treat the Gaussian density, up to a normalization factor,
as the exponential of a quadratic form plus a linear form. A quadratic form,
written Q(x), is a function of the form Q(x) =

∑
jk hjkxjxk. This is to say, a

function is a quadratic form if it can be written in the form Q(x) = xtHx. A
positive definite quadratic form is one that satisfies Q(x) > 0 if x 6= 0, which
is the same as H being a positive definite matrix. It often happens that a
quadratic form is specified in some other way, such as

Q(x) = x2
1 + (x2 − x1)2 + · · ·+ (xd−1 − xd)2 + x2

d . (15)

This is obviously positive definite, but it does not exhibit H explicitly. We can
find the entries of H by multiplying out:

Q(x) = x2
1 +

[
x2

2 − 2x1x2 + x2
1

]
+ · · ·+

[
x2

2 − 2x1x2 + x2
1

]
+ x2

d

= 2x2
1 − 2x1x2 + x2

2 − 2x2x3 + · · ·+ 2x2
d−1 − 2xd−1xd + 2x2

d

The matrix form xtHx multiplies out to be

h11x
2
1 + 2h12x1x2 + · · ·+ 2h1dx1xd + h22x

2
2 + 2h23x2x3 + · · ·

The off diagonal terms get a factor of 2 because, for example, h12x1x2 =
h21x2x1. Comparing expressions (for example, −2x1x2 = 2h12x1x2) shows that
the H for our Q is

hjj =

 2 if j = k ,
−1 if j = k ± 1 ,

0 if |j − k| > 1 .

This is

H =



2 −1 0 · · · 0

−1 2 −1
. . .

...
0 −1 2 0
...

. . .
. . . −1

0 · · · −1 2

 (16)

This is a tridiagonal matrix, with all diagonal entries equal to 2 and main off
diagonal entries equal to −1. It may not be obvious from the matrix form (16)
that H is positive definite. But it is obvious from quadratic form representation
(15). A linear form is a function of the form xtb. A general quadratic polynomial
is the sum of a quadratic form, a linear form and a constant.

We show that a Gaussian probability density is any PDF that can be written
as the exponential of a quadratic polynomial:

u(x) =
1

Z
e−

1
2Q(x)+btx+c . (17)
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Of course, we can set c = 0 by changing Z, or we can set Z = 1 by changing c.
For example, the PDF of a Gaussian random walk with d steps is

u(x) =
1

Zd
e−

1
2x

2
1+(x2−x1)2+···+(xd−1−xd)2 .

We will find it convenient to derive this form for the PDE and then, if necessary,
to identify H. We show this is Gaussian by putting it in the form (9). We saw
that there is an H so that Q(x) = xtHx. We just need to identify µ, which we
do by “completing the square”.

(x− µ)tH(x− µ) + c = xtHx+ xtb

xtHx− 2xtHµ+ µtHµ+ c = xtHx+ xtb .

We find µ by matching the linear parts from both sides, −2xtHµ = xtb. This
is supposed to hold for every x, so Hµ = b, which is µ = − 1

2H
−1b. We don’t

bother finding the constant because it can be absorbed into Z in the end.

Property 1, nonsingular A. We leave out the b at first, so Y = AX and
X = A−1Y . We distinguish the parameters for two PDF functions X ∼ u(x)
and Y ∼ v(y) by using subscripts µX , HXX , µY , and HY Y . We take µX = 0
at first. The linear change of variable formula (1) (with A instead of M) gives
the PDF of Y as

v(y) =
1

ZY
e−(A−1y)

t
HXX(A−1y)/2

We compute the exponent first, then the normalization constant. We write A−t

for
(
A−1

)t
. The notation makes sense because

(
A−1

)t
= (At)

−1
.(

A−1y
)t
HXX

(
A−1y

)
= ytA−tHXXA

−1y

= ytHY Y y ,

with
HY Y = A−tHXXA

−1 . (18)

This shows that

v(y) =
1

ZY
e−y

tHY Y y/2 .

This shows that the probability density of y also has the form of a multivariate
normal. Once you know this, there is a simpler way to derive the relation (18)
between the precision matrices, and the new normalization constant ZY . If you
take away the assumptions b = 0 and µX = 0, a similar but slightly longer
calculation shows that

v(y) =
1

ZY
e−(y−µY )tHY Y (y−µY )/2 ,

with the same H relation (18) and the intuitively obvious

µY = AµX + b .
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We will come back later, twice, to discuss what can happen if A as singular.

Property 2. We can think of H has having block structure corresponding to
the block structure of X:

xtHx =
(
xt1 xt2

)(H11 H12

H21 H22

)(
x1

x2

)
= xt1H11x1 + 2xt1H12x

t
2 + xt2H22x2 . (19)

Because H is symmetric, the off diagonal blocks satisfy the relation

H12 = Ht
21 .

Therefore xt1H12x2 = xt2H21x1. These two terms have been combined in (19).
If x1 and x2 have n1 and n2 components respectively, then H12 is n1 × n2 and
H21 is n2 × n1.

In general, if u(x1, x2) is the joint PDF, then the conditional distribution of
X1 given X2 = x2 is

u(x1|x2) =
1

Z(x2)
u(x1, x2) .

If you don’t care about normalization constants, the conditional density formula
for x1 and joint density of (x1, x2) are the same. The normalization constant can
depend on x2, though it will turn out to be independent of x2 in the Gaussian
case. We plug in (19) to get

u(x1|x2) =
1

Z(x2)
e−

1
2x

t
1H11x1−xtH12x2 . (20)

The term xt2H22x2 was not left out. It was “absorbed into the constant” Z(x2).
As a function of x1 it is indeed a constant.

The conditional PDF formula (20) makes it “obvious” that the conditional x1

distribution is Gaussian. That’s because the exponent is a quadratic function of
x1. We can put it in the specific form (9) by completing the square. We want the
exponent in the form (x1 − µX1

(x2))
t
H11 (x1 − µX1

(x2)) +w(x2). The leftover
term w(x2) will be absorbed into the normalization constant. Multiplying it
out gives

(x1 − µX1(x2))
t
H11 (x1 − µX1(x2)) = xt1H11x1 − 2xt1H11µX1(x2) + · · · .

This matches (19), up to stuff that depends only on x2 if we match the term
that is linear in x1. That leads to

xt1H11x2 = −xt1H11µX1
(x2) .

This is supposed to be true for every x1, which gives

H11x2 = −H11µX1
(x2)

µX1(x2) = H−1
11 x2 . (21)
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This proves property 2, but there is a simpler way to derive the formula for the
conditional mean.

Property 4, part 1. Suppose the off-diagonal terms in the precision matrix
are zero: H12 = 0 and H21 = 0. Then

u(x1, x2) =
1

Z
e−

1
2 [(x1−µ1)tH11(x1−µ1)+(x2−µ2)tH22(x2−µ2)]

=
1

Z1
e−

1
2 (x1−µ1)tH11(x1−µ1) 1

Z2
e−

1
2 (x2−µ2)tH22(x2−µ2)

u(x1, x2) = u1(x1)u2(x2) . (22)

This shows that if the off diagonal entries in the precision matrix vanish, then
the corresponding block components are independent. We still need to show
that the off diagonal blocks of the precision matrix are zero if and only if the off
diagonal blocks of the covariance matrix are zero. That is a bit of linear algebra
we will do soon.

Property 3. Suppose at first that µ = (µ1, µ2) = 0. If X = (X1, X2), the
marginal distribution of X1 is

u1(x1) =

∫
u(x1, x2) dx2 .

We will see that X1 is Gaussian by showing that

u1(x1) =
1

Z1
e−

1
2x

t
1H̃11x1 .

We do this by using properties 1 and 4, and some block linear algebra. Define
a block linear transformation of the form(

y1

y2

)
=

(
I 0
−K I

)(
x1

x2

)
.

This is the block matrix way of writing the pair of equations

y1 = x1

y2 = x2 −Kx1 .

The idea is to choose the feedback matrix (or gain matrix) K so that Y1 is
uncorrelated with Y2. That implies that Y1 is independent of Y2. This, in turn,
implies that Y1 is Gaussian. But Y1 = X1, so there we are.

Soon, but not now, we will do this calculation with covariances. Now we
do it with precision matrices. The precision matrix for (Y1, Y2) is given by the
transformation formula (18). We need the formula for A−1, which is just as it
would be if HXX were a 2× 2 scalar matrix rather than a block matrix:

A−1 =

(
I 0
K I

)
, because

(
I 0
K I

)(
I 0
−K I

)
=

(
I 0
0 I

)
.
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Therefore

HY Y =

(
I Kt

0 I

)(
H11 H12

Ht
12 H22

)(
I 0
K I

)
=

(
H11 +KtHt

12 H12 +KtH22

Ht
12 H22

)(
I 0
K I

)
=

(
H11 +KtHt

12 +H12K +KtH22K H12 +KtH22

Ht
12 +H22K H22

)
We want the off diagonal blocks to be zero, which gives

0 = H12 +KtH22

Kt = −H12H
−1
22

K = H−1
22 H

t
12 . (23)

We now write HY Y , with this K, as

HY Y =

(
H̃11 0

0 H22

)
.

The H22 block is the same as before. Substituting (23) gives

H̃11 = H11 −H12H
−1
22 H

t
12 −−H12H

−1
22 H

t
12 +H12H

−1
22 H22H

−1
22 H

t
12

H̃11 = H11 −H12H
−1
22 H

t
12 . (24)

This calculation shows that Y1 = X1 is Gaussian with precision matrix given
by (24). It also shows how convenient block matrix notation can be.

Property 1, short and fat A. Suppose Y = AX where A is an n × m
matrix with n < m but A having full rank rank(A) = n. In this case there
are fewer Y variables than X variables. The mapping is onto if A has rank n,
which means that for any y there is at least one x with y = Ax. For n < m
there is a hyperplane of x values that satisfy y = Ax, the hyperplane having
dimension m− n. This includes the case n = 1, in which case there is only one
Y component. In that case, we might write the single row of A as at, and write
Y = atX. We would call Y a linear functional of x. The case n = 2 involves
two linear functionals, which we can write Y1 = at1X and Y2 = at2X. These are
(as we will see) jointly Gaussian.

We use the above properties to show that Y is multivariate normal. The
singular value decomposition of A is A = UΣV t, where U is non-singular n× n
and V is non-singular m × m. Then Σ is an n × m matrix with block form(

Σ̃ 0
)

, where Σ̃ is a square n×n matrix that is invertible because it is diagonal

with singular values σj > 0 on the diagonal (because A has full rank n). Since
X is Gaussian and V t is non-singular, property 1 implies that Z = V tX is
Gaussian. Think of Z as a block vector with Z1 having the first m components
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and Z2 having the remaining n−m components. Property 3 tells us that Z1 is
Gaussian. Finally, property 1 tells us that Y = U Σ̃Z1 is Gaussian, because U Σ̃
is non-singular. This reasoning may be written out as

Y = U
(

Σ̃ 0
)(Z1

Z2

)
= U

(
Σ̃ 0

) V t

X
 .

We say a little about the case n > m below.

Property 5. The joint density of X = (X1, X2) is the product of the marginal
density of X1 and the conditional density of X2, given X1. In a formula,

u(x1, x2) = u1(x1)u2,1(x2|x1) . (25)

By hypothesis X1 is Gaussian, so

u1(x1) =
1

Z1
e−

1
2 (x1−µ1)tH11(x1−µ1) .

Also by hypothesis, the conditional distribution of X2 for given x1 is

u12(x2|x1) =
1

Z2
e−

1
2 (x2−[Ax1+b])tH22(x2−[Ax1+b]) .

It is important that even though the distribution of X2 depends on x1, the
normalization constant Z2 is independent of x1. In fact, the formula is

Z2 =
(2π)

m/2√
det(H22)

,

where m is the number of scalar components of X2. We assumed that the
conditional precision (later, the conditional covariance) of X2 is independent of
x1. With these expressions, the joint density becomes

u(x1, x2) =
1

Z1Z2
e−

1
2R(x1,x2) ,

where the exponent is

R(x1, x2) = (x1 − µ1)
t
H11 (x1 − µ1) + (x2 − [Ax1 + b])

t
H22 (x2 − [Ax1 + b]) .

If you multiply this out, you will see that it is a quadratic (plus linear plus
constant) in (x1, x2). You will also get explicit formulas for the blocks of the
resulting precision matrix.

We have been assuming that the normalization constant in (9) is correct.
One way to verify the normalization constant is to use the eigenvalue and eigen-
vector decomposition H = V ΛV t. We already used the fact the eigenvector
matrix V has det(V ) = 1. We can represent X in terms of the eigenvectors

X =

d∑
i=1

Yivi .
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The expansion coefficients are Yi = vtiX. This is expressed in matrix vector
form as Y = V tX. The vi, or the Yi, or both are called principal components.
The PDf of Y has precision matrix HY Y = V tHXXV = Λ, so

v(y) =
1

Z
e−

1
2y

tΛy

=
1

Z
e−λ1y

2
1/2 · · · e−λdy

2
d/2 (26)

We use the “well known” (those who don’t know it should look it up) formula∫ ∞
−∞

e−z
2/2 dz =

√
2π

More generally, the substitution z =
√
λy, and dz =

√
λdy makes this into∫ ∞

−∞
e−λy

2/2 dy =

√
2π

λ

The normalization constant in (26) is

Z =

∫
Rd

e−
1
2 v

tΛv

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−λ1y
2
1/2 · · · e−λdy

2
d/2 dy1 · · · dydv

=

√
2π

λ1

√
2π

λ2
· · ·
√

2π

λd

=
(2π)

d/2(∏d
i=1 λi

)1/2

=
(2π)

d/2√
det(H)

.

Since det(V ) = 1, the general PDF transformation formula (1) implies that this
Z is also the normalization constant for u(x).

1.5 Using linear algebra and the covariance matrix

From the point of view of probability it may be more natural to calculate with
the covariance matrix than with the precision matrix. If X is a d component
random variable, the individual means and covariances are µj = E[Xj ], and

Cjk = cov(Xj , Xk) = E[(Xj − µj)(Xk − µk)] . (27)

These are organized into the vector mean and the covariance matrix as µ = E[X]
and

C = cov(X) = E
[
(X − µ) (X − µ)

t
]
. (28)
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You should check that the (j, k) entry of the matrix (28) is the scalar formula
(27). It is clear that the µ parameter in (9) is the mean of a Gaussian. For the
remainder of this section, we set µ = 0 to focus on the covariance.

We verify the relation between the covariance and precision matrices us-
ing a little linear algebra, the covariance transformation formula (6), and the
independence property (4). Using the H = V ΛV t eigenvalue and eigenvector
decomposition, we again let Y be the vector of principal component amplitudes,
Y = V tX, with X = V Y . Then

CXX = E[XXt]

= E[V Y Y tV t]

= V E[Y Y t]V t

= V CY Y V
t .

The components Yj are independent (because HY Y = Λ is diagonal), so the off
diagonal entries of CY Y are zero. The diagonal entries are

CY Y,jj = var(Yj) = E[Y 2
j ] .

The PDF of Yj is

vj(yj) =
1

Zj
e−

1
2λjy

2
j .

From this, we have Zj =
√

2π
λj

and

E[Y 2
j ] =

√
λj
2π

∫ ∞
−∞

y2
j e
− 1

2λjy
2
j dyj =

1

λj

The actual evaluation at the end may be done by substituting λjy
2
j = z2, which

is zj =
√
λjyj . The result is

CY Y = Λ−1 .

This gives
CXX = V Λ−1V t = H−1

XX . (29)

This shows that the relation between covariance and precision is C = H−1.
That is why the PDF formulas (9) and (12) are equivalent.

Property 4, part 2. Suppose X is a block vector of the form

X =

(
X1

X2

)
.
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The covariance matrix of X has a corresponding block form

CXX = E[XXt]

= E

[(
X1

X2

)(
Xt

1 Xt
2

)]
= E

[
X1X

t
1 X1X

t
2

X2X
t
1 X2X

t
2

]
=

(
C11 C12

Ct12 C22

)
.

The diagonal blocks are

C11 = cov(X1) , C22 = cov(X2) .

The off diagonal blocks are

C12 = cov(X1, X2) = E[X1X
t
2] , C21 = cov(X2, X1) = E[X2X

t
1] = Ct12 .

The covariance matrix is block diagonal if the off diagonal blocks vanish: C12 = 0
and C21 = 0. We don’t say C12 = C21 = 0 because C12 and C21 have different
shapes if X1 and X2 have different number of scalar components. The inverse of
a block diagonal matrix, if it exists, is block diagonal. Therefore, CXX is block
diagonal if and only if H is block diagonal. If X1 and X2 are uncorrelated,
which is the same as saying C12 = 0, then HXX is block diagonal, which implies
that X1 and X2 are independent.

1.6 Generating a multivariate normal, interpreting covari-
ance

Monte Carlo simulation with Gaussians is easy because there are simple algo-
rithms to generate a Gaussian with a specified covariance C. You start with
Z ∼ N (0, I), which is the same as d independent standard normals Z1, . . . , Zd.
A standard normal is a scalar Gaussian with mean zero and variance 1. Most
programming systems have standard random number generators. In R, the
command is

Z = rnorm(d)

The next step is to find a matrix M so that X = MZ has the desired covariance
C. The transformation law (6) in this case is CX = MCZM

t. But CZ = I by
construction, so we need M with

MM t = C . (30)

Such an M would be a kind of square root of C. It is not unique. Even the
square root of 4 is not unique, because 22 = (−2)2 = 4. It is possible to find
such an M as long as C is symmetric and positive definite. We will see two
distinct ways to do this which give two different M matrices.
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The Cholesky factorization is one of these ways. The Cholesky factorization
of C is a lower triangular matrix L with LLt = C Lower triangular means that
all non-zero entries of L are on or below the digonal:

L =



l11 0 · · · 0

l21 l22 0
...

...
. . .

. . .

0
ld1 · · · ldd

 .

Any good linear algebra book explains the basic facts of Cholesky factorization.
Such an L exists as long as C is SPD (symmetric and positive definite). There
is a unique lower triangular L with positive diagonal entries: ljj > 0. There
is a straightforward algorithm that calculates L from C using approximately
d3/6 multiplications (and the same number of additions). Most programming
languages have commands to compute L. In R, it is

L = chol(C)

R uses %*% to represent matrix-vector or matrix-matrix multiplication. So the
following code will produce and use N independent Gaussians with covariance
C

L = chol(C)

for ( i in (1:n)){

Z = nrand(d)

X = L \%*\% Z

...

(use X)

...

}

Different calls to nrand() produce independent Z vectors, so the X vectors are
also independent. The most expensive single operation is the Cholesky step.
Leaving it out of the loop means that we pay this overhead just once even
though we generate a large number of random vectors, X.

Consider as an example the two dimensional case with µ = 0. Here, we want
X1 and X2 that are jointly normal. We specify var(X1) = σ2

1 , var(X2) = σ2
2 ,

and the correlation coefficient

ρ12 = corr(X1, X2) =
cov(X1, X2)

σ1σ2
=

E(X1X2)

σ1σ2
.

The corresponding scalar covariance is C12 = cov(X1, X2) = ρ12σ1σ2. The
target covariance matrix is

C =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
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In this case, the Cholesky factor is (check this)

L =

(
σ1 0

ρ12σ2

√
1− ρ2

12σ2

)
. (31)

The formula X = LZ becomes

X1 = σ1Z1 (32)

X2 = ρ12σ2Z1 +
√

1− ρ2
12 σ2Z2 . (33)

It is easy to calculate E
[
X2

1

]
= σ2

1 , which is the desired value. Similarly, because
Z1 and Z2 are independent, we have

var(X2) = E
[
X2

2

]
= ρ2

12σ
2
2 +

(
1− ρ2

12

)
σ2

2 = σ2
2 ,

which is the desired answer, too. The scalar covariance is is also correct:

cov(X1, X2) = E[X1X2] = E [σ1Z1ρ12σ2Z1] = ρ12σ1σ2 E
[
Z2

1

]
= ρ12σ1σ2 .

The formulas (32) and (33) have natural interpretations. First, X1 is de-
termined by a standard normsl factor, which we call Z1. The scaling σ1 gives
X1 the desired variance. The expression (33) has the same factor Z1 scales by
the desired correlation, ρ12, and then by σ2 so that X2 will eventually have the
desired variance. With just ρ12σ1Z1, our X2 would have variance ρ2

12σ
2
2 , which

is too small. We add in an independent contribution with variance σ2
2(1− ρ2

12)
to get the desired variance for X2. The second factor, Z2, contributes only to
X2.

We could have turned the formulas (32) and (33) around as

X1 =
√

1− ρ2
12 σ1Z1 + ρ12σ1Z2 (34)

X2 = σ2Z2 .

This starts by building X2 with the right variance, and then re-using Z2 to build
X1 with the desired variance and correlation to X2. It gives X = MZ with

M =

(√
1− ρ2

12 σ1 ρ12σ1Z2

0 σ2

)
.

You should check that this M also satisfies MM t = C.
The two approaches to generating X give different pictures of causation.

In the first one, X1 seems to exert an influence on X2. In the second, it is
the reverse. This illustrates an important saying in statistics: Correlation does
not imply causation. If we observe that X1 and X2 are correlated we do not
necessarily know why. Did X1 happen first and then influence X2, or maybe
X2 happened first and influenced X1, or maybe they both were influenced by a
factor we did not observe.
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2 Linear Gaussian recurrences

Discrete time is measured in discrete time units n = 0, 1, 2, . . .. A discrete time
Gaussian process is a sequence, X = X1, X2, ..., so that X is a Gaussian. If each
Xn has d components, and if n runs from 1 to T , then X may be thought of as a
blocked Gaussian with T blocks of size d. This means that each individual Xn is
a d component Gaussian. But X being Gaussian says a lot more. For example,
each pair (Xn, Xn+1) is a 2d component block Gaussian with two blocks of size
d. We call X the path, and Xn the value of the path at time n.

A two term linear Gaussian recurrence is a relation of the form

Xn+1 = AXn + BZn . (35)

The Zn ∼ N (0, I) are independent m component normals, with m ≤ d. This
can be written in many ways. Some economists would write

Xn+1 = AXn + εn ,

where the residuals ε are independent N (0, Cεε). The two forms are equivalent,
if we take B with BBt = Cεε). It seems obvious, and we will soon verify, that
if the Xn satisfy a linear Gaussian recurrence, and if X1 is Gaussian, then the
path X is also Gaussian. We will see how to find the big dT × dT covariance
matrix CXX from the covariance matrix of X1 and B.

Linear Gaussian recurrences are a class of stochastic processes. We think of
Xn as the state of the system at time n. The dynamical equation (35) says that
the state at time n+ 1 depends linearly on the state at time n, but knowing Xn

does not determine Xn+1 completely. There is “noise”, which is random input
Zn or εn, which is independent of the path up to time n. The random input
may also be called the innovation (economics), or the shock (finance, bankers
must be easily shocked).

Linear Gaussian recurrences are used to model systems ranging from evolving
economic states, to the heaving of the surfaces of stars, to the buffeting of an
airplane by turbulent air patterns. More realistic models would have nonlinear
dynamics, with Xn → AXn replaced by a nonlinear function, and non-Gaussian
forcing, possibly with intermittency or fat tails. We discuss Gaussian processes
here for two reasons. One is that they are good models for some problems, like
star surface motion under some circumstances. The other is that they illustrate
many features of more general stochastic evolution systems.

2.1 The probability density

We want to characterize the probability density of the path. As in the general
discussion of Gaussians, this can be done in two steps. First we see that the joint
distribution is Gaussian, then we identify the parameters using linear algebra.

Suppose X1 is Gaussian with mean µ1 and covariance CX1X1
. We work by

induction on t. The path up to time n is X[1:t]. This is the block vector with td
components and blocks X1, . . . , Xt. The induction hypothesis is that X[1:t] is a
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block Gaussian vector with td components and blocks X1, . . . , Xt. We suppose
this is true and describe the distribution of the longer path X[1:t+1], which may
be thought of as a block vector with blocks X[1:t] and Xt+1:

X[1:t+1] = (X1, . . . , Xt, Xt+1) = ((X1, . . . , Xt), Xt+1) = (X[1:t], Xt+1) .

The conditional distribution of Xt+1 given x[1,t] is the same as the conditional
distribution of Xt+1 given xt, which is Gaussian with mean Axt and covariance
BBt. Property 5 then implies that the joint distribution is Gaussian. The base
case that is needed to start the induction, is that the one state path X1 = X1:1

is Gaussian. The conclusion is that a linear Gaussian recurrence starting with
a Gaussian initial state gives a Gaussian path.

2.2 Probability distribution dynamics

Since the path X[1:t] is Gaussian, and Xn is a component of the path if n ≤ t,
we know that Xn is Gaussian (property 3). Let its parameters be µn = E[Xn],
and Cn = cov(Xn). These parameters satisfy recurrence relations that are the
key to understanding linear Gaussian dynamics. Taking expectations on both
sides of the recurrence relation (35) gives

µn+1 = Aµn . (36)

This says that the recurrence relation for the means is the same as the recurrence
relation (35) for the random states if you “turn off the noise” (set Zn to zero).

For the covariance, it is convenient to combine (35) and (36) into

Xn+1 − µn+1 = A (Xn − µn) + BZn .

The covariance calculation starts with

Cn+1 = E
[
(Xn+1 − µn+1) (Xn+1 − µn+1)

t
]

= E
[
(A (Xn − µn) +BZn) (A (Xn − µn) +BZn)

t
]

We expand the last into a sum of four terms. Two of these are zero, one being

E
[(
A (Xn − µn) (BZn)

t
)]

= 0 ,

because Zn has mean zero and is independent of Xn. We keep the non-zero
terms:

Cn+1 = E
[
(A (Xn − µn)) (A (Xn − µn))

t
]

+ E
[
(BZn) (BZn)

t
]

= E
[
A
{

(Xn − µn) (Xn − µn)
t
}
At
]

+ E
[
B
(
ZnZ

t
n

)
Bt
]

= AE
[
(Xn − µn) (Xn − µn)

t
]
At + B E

[
ZnZ

t
nB

t
]
Bt

Cn+1 = ACnA
t + BBt . (37)
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The recurrence relations (36) and (37) determine the distribution of Xn+1 in
terms of the distribution of Xn.

A forward equation is an equation that determines the PDF of Xn+1 in
terms of the PDF of Xn. The equations (36) and (37) play the role of a forward
equation for a two term linear Gaussian recurrence.

2.3 Higher order recurrence relations, the Markov prop-
erty

It is common to consider recurrence relations with more than two terms, or
more than one lag. A k lag relation has the form

Xn+1 = A0Xn + A1Xn−1 + · · · + Ak−1Xn−k+1 + BZn . (38)

From the point of view of Xn+1, the k lagged states are Xn (one lag), up to
Xn−k+1 (k lags). It is natural to consider models with multiple lags if Xn

represent observable aspects of a large and largely unobservable system. For
example, the components of Xn could be public financial data at time n. There
is much unavailable private financial data. The lagged values Xn−j might give
more insight into the complete state at time n than just Xn.

We do not need a new theory of lag k systems. State space expansion refor-
mulates a multi-lag system into the form of a two term recurrence relation (35).
We start with the k lag system (38) and create an equivalent one lag system.

The state for the one lag system, which we call X̃n, is a block vector whose
blocks are the k lagged states

X̃n =


Xn

Xn−1

...
Xn−k+1

 .

If the states Xn have d components, then X̃n has kd components. The noise
vector Zn does not need expanding because noise vectors have no memory. All
the memory in the system is contained in X̃n. The recurrence relation in the
expanded state formulation involves block matrices Ã and B̃:

X̃n+1 = ÃX̃n + B̃Zn .

In more detail, this is


Xn+1

Xn

...
Xn−k+2

 =


A0 A1 · · · Ak−1

I 0 · · · 0
0 I · · · 0
...

. . .
...

0 · · · I 0




Xn

Xn−1

...
Xn−k+1

 +


B
0
...
0

Zn . (39)
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The top rows of Ã and B̃ encode the original lagged dynamics (38). The second

row of Ã equates Xn on the left with Xn on the right, and so on. The matrix
Ã is the companion matrix of the recurrence relation (38).

We will see in subsection 2.5 that the stability of a recurrence relation (35)
is determined by the eigenvalues of A. For the case d = 1, you might know that
the stability of the recurrence relation (38) is determined by the roots of the
characteristic polynomial p(z) = zk−A0z

k−1−· · ·−Ak−1. These statements are
consistent because the roots of the characteristic polynomial are the eigenvalues
of the companion matrix.

If Xn satisfies a k lag recurrence (38), then the covariance matrix, C̃n =

cov(X̃n), satisfies C̃n+1 = ÃC̃nÃ
t + B̃B̃t. The simplest way to find the d × d

covariance matrix Cn, is to find the kd× kd covariance matrix C̃n and look at
the top left d× d block.

The successive states in a one lag system (35) satisfy the Markov property:
The distribution of Xt+1 conditional on knowing Xt is the same as the distri-
bution of Xt+1 knowing the whole path X[1:t]. Roughly speaking, the present is
all the information about the past that is relevant for predicting the future. A
sequence of states that satisfy the Markov property is a Markov chain. The k
lag system (38) does not satisfy the Markov property if k > 1. Knowing Xt−1

and Xt allows more accurate predictions of Xt+1 than are possible with just Xt.
If a random process does not have the Markov property, you can blame that

on the state space being too small, so that Xn does not have as much information
about the state of the system as it should. For linear Gaussian recurrences, the
expanded state X̃n has all the information about the past that is relevant for
predicting the future. We know this because the X̃n satisfy a one lag recurrence.
There are many stochastic processes that are not linear Gaussian recurrences.
State space expansion is a common way to study a general process using the
theory of Markov processes.

2.4 Unit roots, the borderline case

The borderline case in Subsection 2.5 is eigenvalues on the unit circle in the
complex plane. Morally, such a system is mildly unstable. The simplest example
is d = 1, and A = 1 (a 1× 1 matrix), and B = 1, which gives

Xn+1 = Xn + Zn . (40)

From this it follows that µn = µ1 for all n. We calculate that

var(Xn+1) = var(Xn) + 1 .

If X0 = 0, then σ2
n = var(Xn) = n. Clearly σ2

n →∞ as n→∞. This is a mild
instability. There is no limiting distribution as n→∞, but the variance grows
linearly rather than exponentially.

More generally, if A has an eigenvalue with |λ| = 1, then either λ = ±1
or λ is somewhere on the unit circle, so λ is also an eigenvalue. In any of
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these cases, unless the problem has a degeneracy, the variance grows linearly
with n (reasoning omitted). Problems like this are common in applications,
either simple random walks or more complicated processes with random walk
components. In finance, co-integration is the phenomenon that |λj | ≤ 1 for all
j and there is at least one eigenvalue with |λj | < 1. Discovering co-integration
is not easy and can be rewarding.

2.5 Large time behavior and stability

We often want to understand things about a stochastic process that do not
depend on the initial state. We may start observing a system only after it has
been “running” so long that its initial state is forgotten. Large time behavior
is the behavior of Xn as n → ∞. The stochastic process (35) is stable if it
settles into a stochastic steady state for large n. The states Xn can not have
a limit, because of the constant influence of random noise. But the probability
distributions, un(x), with Xn ∼ un(x), can have limits. The limit u(x) =
limn→∞ un(x) is a statistical steady state. The finite time distributions un are
Gaussian: un = N (µn, Cn), with µn and Cn satisfying the recurrences (36) and
(37). The limiting distribution depends on the following limits:

µ = lim
n→∞

µn (41)

C = lim
n→∞

Cn (42)

If these limits exist, then u = N (µ,C).
Mathematicians say that something is morally true if it is true in almost any

real problem, and if the only situations in which it is not true seem contrived
or unnatural. In that sense, it is morally true that a one lag linear Gaussian
recurrence has a statistical steady state if and only if the noise free dynamics
((35) with Zn = 0) is strongly stable in the sense that Xn → 0 as n → ∞.
This theorem, (stochastic steady state exists) ⇐⇒ (strong linear stability) is
true without exceptions if the noise matrix B is square and has rank d. The
derivation and proof are simpler if A has d linearly independent eigenvectors,
which is to say that it has no non-trivial Jordan blocks. We discuss this case
first, then come back to the situations where B is rectangular or A has Jordan
blocks.

The eigenvalues and eigenvectors of A satisfy Arj = λjrj , for j = 1, . . . , d.
The λj and rj may be complex. The notation rj is for right eigenvector. There
are also left eigenvectors, which are row vectors that satisfy ljA = λj lj . The
eigenvectors form a basis of Cd, which implies that the eigenvector matrix

R =

 | | |
r1 r2 · · · rd
| | |


is non-singular. The eigenvalue and eigenvector relationships are expressed in
matrix form as

AR = RΛ . (43)
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We define L = R−1 and multiply (43) by L on both sides, which gives

LA = ΛL . (44)

This means that the rows of L are left eigenvectors of A:

L =


− l1 −
− l2 −

...
− ld −


The matrix relation LR = I is equivalent to the bi-orthogonality relations

ljrk =

{
1 if j = k ,
0 if j 6= k .

If the means have an expansion in the right eigenvector basis as µn =
∑d
j=1mn,jrj ,

then mn,j = ljµn. The dynamics (36) imply that mn+1,j = λjmn,j . Therefore

mn,j = λnjm0,j . (45)

The limit (41) depends on the eigenvalues of A. Denote the eigenvalues
by λj and the corresponding right eigenvectors by rj , so that Arj = λjrj for
j = 1, . . . , d. The eigenvalues and eigenvectors do not have to be real even
when A is real. The eigenvectors form a basis of Cd, so the means µn have
unique representations µn =

∑d
j=1mn,jrj . The dynamics (36) implies that

mn+1,j = λjmn,j . This implies that

mn,j = λnjm0,j . (46)

The matrix A is strongly stable if |λj | < 1 for j = 1, . . . , d. In this case
mn,j → 0 as n → ∞ for each j. In fact, the convergence is exponential. We
see that if A is strongly stable, then µn → 0 as n→∞ regardless of the initial
mean µ0. The opposite case is that |λj | > 1 for some j. Such an A is strongly
unstable. It usually happens that |µn| → ∞ as n → ∞ for a strongly unstable
A. The limiting distribution u does not exist for strongly unstable A. The
borderline case is |λj | ≤ 1, for all j and there is at least one j with |λj | ≤ 1.
This may be called either weakly stable or weakly unstable.

If A is strongly stable, then the limit (42) exists. We do not expect Cn → 0
because the uncertainty in Xn is continually replenished by noise. We start with
a direct but possibly unsatisfying proof. A second and more complicated proof
follows. The first proof just uses the fact that if A is strongly stable, then

‖An‖ ≤ c an , (47)

for some constant c and positive a < 1. The value of c depends on the matrix
norm and is not important for the proof.
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We prove that the limit (42) exists by writing C as a convergent infinite
sum. To simplify notation, write R for BBt. Suppose C0 is given, then (37)
gives C1 = AC0A

t +R. Using (37) again gives

C2 = AC1A
t + R

= A
(
AC0A

t + R
)
At + R

= A2C0

(
At
)2

+ ARAt + R

= A2C0

(
A2
)t

+ ARAt + R

We can continue in this way to see (by induction) that

Cn = AnC0 (An)
t

+ An−1R
(
An−1

)t
+ · · · + R .

This is written more succinctly as

Cn = AnC0 (An)
t

+

n−1∑
k=0

AkR
(
Ak
)t
. (48)

The limit of the Cn exists because the first term on the right goes to zero as
n→∞ and the second term converges to the infinite sum

C =

∞∑
k=0

AkR
(
Ak
)t
. (49)

For the first term, note that (47) and properties of matrix norms imply that2∥∥∥AnC0 (An)
t
∥∥∥ ≤ (can) ‖C0‖ (can) = ca2n ‖C0‖ .

We write c instead of c2 at the end because c is a generic constant whose value
does not matter. The right side goes to zero as n→∞ because a < 1. For the
second term, recall that an infinite sum is the limit of its partial sums if the
infinite sum converges absolutely. Absolute convergence is the convergence of
the sum of the absolute values, or the norms in case of vectors and matrices.
Here the sum of norms is:

∞∑
k=0

∥∥∥AkR (Ak)t∥∥∥ .
Properties of norms bound this by a geometric series:∥∥∥AkR (Ak)t∥∥∥ ≤ c a2k ‖R‖ .

You can find C without summing the infinite series (49). Since the limit
(42) exists, you can take the limit on both sides of (37), which gives

C − ACAt = BBt . (50)

2Part of this expression is similar to the design on Courant Institute tee shirts.
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Subsection 2.6 explains that this is a system of linear equations for the entries
of C. The system is solvable and the solution is positive definite if A is strongly
stable. As a warning, (50) is solvable in most cases even when A is strongly
unstable. But in those cases the C you get is not positive definite and therefore
is not the covariance matrix of anything. The dynamical equation (37) and the
steady state equation (50) are examples of Liapounov equations.

Here are the conclusions: if A is strongly stable then un, the distribution of
Xn has un → u as n→∞, with a Gaussian limit u = N (0, C), and C is given
by (49), or by solving (50). If A is not strongly stable, then it is unlikely that
the un have a limit as n → ∞. It is not altogether impossible in degenerate
situations described below. If A is strongly unstable, then it is most likely that
‖µn‖ → ∞ as n → ∞. If A is weakly unstable, then probably ‖Cn‖ → ∞ as
n→∞ because the sum (49) diverges.

2.6 Linear algebra and the limiting covariance

This subsection is a little esoteric. It is (to the author) interesting mathematics
that is not strictly necessary to understand the material for this week. Here we
find eigenvalues and eigen-matrices for the recurrence relation (37). These are
related to the eigenvalues and eigenvectors of A.

The covariance recurrence relation (37)has the same stability/instability di-
chotomy. We explain this by reformulating it as more standard linear algebra.
Consider first the part that does not involve B, which is

Cn+1 = ACnA
t . (51)

Here, the entries of Cn+1 are linear functions of the entries of Cn. We describe
this more explicitly by collecting all the distinct entries of Cn into a vector ~cn.
There are D = (d + 1)d/2 entries in ~cn because the elements of Cn below the
diagonal are equal to the entries above. For example, for d = 3 there are D = 6
distinct entries in Cn, which are Cn,11, Cn,12, Cn,13, Cn,22, Cn,23, and Cn,33,
which makes ~cn = (Cn,11, Cn,12, Cn,13, Cn,22, Cn,23, Cn,33)t ∈ RD(= R6). There

is a D×D matrix, L so that ~cn+1 = L~cn. In the case d = 2 and A =

(
α β
γ δ

)
,

the Cn recurrence relation, or dynamical Liapounov equation without BBt, (37)
is (

Cn+1,11 Cn+1,12

Cn+1,12 Cn+1,22

)
=

(
α β
γ δ

)(
Cn+1,11 Cn+1,12

Cn+1,12 Cn+1,22

)(
α γ
β δ

)
.

This is equivalent to D = 3 andCn+1,11

Cn+1,12

Cn+1,22

 =

 α2 2αβ β2

αγ βγ + αδ βδ
γ2 2γδ δ2

Cn,11

Cn,12

Cn,22

 .

32



And that identifies L as

L =

 α2 2αβ β2

αγ βγ + αδ βδ
γ2 2γδ δ2

 .

This formulation is not so useful for practical calculations. Its only purpose is
to show that (51) is related to a D ×D matrix L.

The limiting behavior of Cn depends on the eigenvalues of L. It turns out
that these are determined by the eigenvalues of A in a simple way. For each pair
(j, k) there is an eigenvalue of L, which we call µjk, that is equal to λjλk. To
understand this, note that an eigenvector, ~s, of L, with L~s = µ~s, corresponds
to a symmetric d× d eigen-matrix, S, with

ASAt = µS .

It happens that Sjk = rjr
t
k+rkr

t
j is the eigen-matrix corresponding to eigenvalue

µjk = λiλj . (To be clear, Sjk is a d× d matrix, not the (j, ik) entry of a matrix
S.) For one thing, it is symmetric (Stjk = Sjk). For another thing:

ASjkA
t = A

(
rjr

t
k + rkr

t
j

)
At

= A
(
rjr

t
k

)
At + A

(
rkr

t
j

)
At

= (Arj) (Ark)
t

+ (Ark) (Arj)
t

= (λjrj) (λkrk)
t

+ (λkrk) (λjrj)
t

= λjλj
(
rjr

t
k + rkr

t
j

)
= µjkSjk .

A counting argument shows that all the eigenvalues and eigen-matrices of L
take the form of Sjk for some j ≥ k. The number of such pairs is the same D,
which is the number of independent entries in a general symmetric matrix. We
do not count Sjk with j < k because Sjk = Skj with k > j.

Now suppose A is strongly stable. Then the Liapounov dynamical equation
(37) is equivalent to

~cn+1 = L~cn + ~r .

Since all the eigenvalues of L are less than one in magnitude, a little reasoning
with linear algebra shows that ~cn → ~c as n→∞, and that ~c−L~c = (I − L)~c = ~r.
The matrix I − L is invertible because L has no eigenvalues equal to 1. This
is a different proof that the steady state Liapounov equation (50) has a unique
solution. It is likely that L has no eigenvalue equal to 1 even if A is not strongly
stable. In this case (50) has a solution, which is a symmetric matrix C. But
there is no guarantee that this C is positive definite, so it does not represent a
covariance matrix.

3 Estimation, filtering, prediction

Gaussian models are often used for estimation and filtering. You have a quantity,
X, whose value you do not know. You have some data, Y , whose value depends

33



partly on X. The estimation problem is to say something about X, given Y .
Suppose Xn are the successive states in a discrete time linear one lag Gaussian
process. Suppose Yn is an observation of Xn. This means that Yn depends in
some way on Xn. The filtering problem is to say something about Xn from the
observation path Y[1:n]. The prediction problem is to say something about Xn+k

for k > 0, given the observation path up to time n.
There are two common points of view regarding estimation and filtering, the

frequentist and the Bayesian (after Bayes) views. A frequentist either does not
regardX not as being random, or does not feel it is appropriate to create a model
of the random value X might have. Scientists who estimate the speed of light, c,
or other physical constants from data often take a frequentist point of view. A
frequentist constructs an estimator, Ŷ , which is the best guess of the value of X
given the data. For example, suppose a science team) measures the travel time of
a laser beam to the moon and back. If the round trip distance is D and the times
are Tn, . . ., TN , then the team could use the average travel time T = 1

N

∑
Tk

and estimate ĉ = D/T . Or they could average the individual measured (with
measurement error) travel speeds ck = R/Tk and average those: ĉ = 1

N

∑
k ck.

Both of these estimators are functions of the data Y = (T1, . . . , TN ), but they
are not the same. Statistical theory gives insight which one might be better in
which circumstances. Theory also gives error bars, which are indications of the
size of |ĉ− c|. This error is random not because c is random, but because Y is
random.

A Bayesian team regards X as a random variable with a known (or, more
properly, assumed) PDF, u(x). They also assume a conditional PDF L(y|x),
that describes the conditional PDF of Y given X. This is often a physical model
of the noisy observation process. The notation L comes from likelihood, which
is a statisticians’ term for probability when it is not a function of the random
variable. The joint density of (X,Y ) is u(x)L(y|x). The conditional density
of X, given the observation Y = y, is called the posterior distribution u(x|y),
which is given by Bayes’ rule of conditional probability

u(x|y) =
1

Z(y)
u(x)L(y|x) . (52)

The data are useful if the uncertainty in X after knowing the data is less than the
uncertainty in X in the prior. The normalization constant Z(y) is determined,
as usual, by the requirement that u(x|y) should be a PDF as a function of x.
This gives

Z(y) =

∫
u(x)L(y|x) dx .

In practice, the normalization constant is hard to determine. Bayesians instead
use Monte Carlo sampling methods to create samples of the posterior distribu-
tion.

One advantage of the frequentist approach is that it is easier to do and easier
to understand. The computations involved are usually optimization (maximum
likelihood), solving nonlinear equations (generalized method of moments), etc.
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There is a single reported answer, x̂. Bayesian statistic is harder to do. You
need to describe the posterior distribution, often by finding many samples of it.
Not only is sampling harder to do than optimization, but it is harder to explain
to the customer that the information coming from the data is contained in a
list of samples.

These issues and tradeoffs are different in the Gaussian case than they are
in general. One reason is that a Gaussian distribution is completely described
by its mean and covariance matrix. There is no need to sample to represent
the posterior. Computing the posterior mean and covariance usually boils down
to numerical linear algebra, which is “easy” (given our computational infras-
tructure) except for very large problems. The posterior mean may well be the
frequentist maximum likelihood estimate, which makes Bayesian and frequentist
results nearly the same.

3.1 Partial information and conditional distributions

We did this earlier when we verified property 2 earlier. We do it again here
using covariances, and we put the result in more the feedback form that will
be useful in several specific cases. The general form here will be specialized in
several ways, and gives a common framework for the specific examples.

Suppose X = (Xt
1, X

t
2)t is a block column vector. If the overall mean is zero,

the block covariance matrix is

C =

(
C11 C12

C21 C22

)
=

(
E[X1X

t
1] E[X1X

t
2]

E[X2Xt
1] E[X2X

t
2]

)
.

We want to describe the information you get about X2 by knowing X1. A
frequentist might give an estimator of X2 that is a function of X1. This would be
written X̂2(X1). A Bayesian might try to describe the conditional probability
density u(x2|x1). As we have already seen, and will see again in a slightly
different way, these two things are more or less the same in the Gaussian setting.

It is natural, or will soon seem so, to make a prediction that is a linear
function of the data:

X̂2(X1) = KX1 , (53)

where K, which is called the feedback, or gain, is a matrix of the appropriate
dimensions. The residual is the prediction error

ε = X2 − X̂2 = X2 −KX1 ,

or
X2 = KX1 + ε . (54)

We will choose K so that the residual is uncorrelated with the data. Property
4 implies that ε is independent of X1. Then (54) implies that X2 is equal the
estimator plus a residual that is independent of X1. A frequentist might argue
that the independence of the residual from the data makes the estimator (53) the

35



best possible for this situation. A Bayesian might use this to give the conditional
distribution of X2 a Gaussian with mean KX1 and covariance cov(ε).

The actual algebra is simpler than the philosophy. The covariance of ε with
X1 is

cov(ε,X1) = E[εXt
1]

= E[(X2 −KX1)Xt
1]

= C21 −KC11 .

We set the covariance to zero and solve for K, which yields

K = C21C
−1
11 . (55)

The remaining uncertainty in X2, after the data X1 and the prediction (53) is
(use (55) and C12 = Ct21)

cov(ε) = E[εεt]

= E[(X2 −KX1)(X2 −KX1)t]

= E[(X2 −KX1)(Xt
2 −Xt

1K
t]

= E[X2X
t
2]− E[X2X

t
1]Kt −KE[X1X

t
2] +KE[X1X

t
1]Kt

= C22 − C21C
−1
11 C

t
21 − C21C

−1
11 C

t
21 + C21C

−1
11 C11C

−1
11 C

t
21

cov(ε) = Cεε = C22 − C21C
−1
11 C

t
21 . (56)

This formula has a natural interpretation. C22 is the uncertainty in X2 before
learning the data. When you subtract from X2 the prediction using X1, you
reduce the uncertainty. The term C21C

−1
11 C

t
21 quantifies how much the uncer-

tainty is reduced. Of course, if C21 = 0 then X1 is independent of X2, so
knowing X1 does not give any information on X2. In that case K = 0, which
means the optimal prediction ignores X1. Using X1 in a non-trivial way would
increase the uncertainty in X2, not decrease it.

3.2 Using a noisy observation

Suppose X ∼ N (0, C) and Y = BX +W , with W ∼ N (0, R), and W indepen-
dent of X, is a noisy observation of X. Some applications have X with many
components and Y with just a few, so B already looses information. In that
case, even a noise free observation, which corresponds to R = 0 would not allow
us to predict X exactly. Other applications have a lot of noisy data, so the
observation matrix, B, could be tall and thin. We want to find the optimal esti-
mator of the form X̂ = KY and the covariance matrix describing the remaining
uncertainty. It is possible to work this out “from scratch” (not using Subsection
3.1). But we instead reformulate this prediction problem in the general form of
Subsection 3.1) and use the solution there.
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We create a block vector with components X1 = Y , which is the data, and
X2 = X, which is to be predicted. The necessary matrices are

C11 = cov(Y )

= E[Y Y t]

= E[(BX +W )(BX +W )t]

= BCBt +R .

The omitted terms such as BE[XW t] vanish because the observation noise is
independent of X. The other matrix is

C21 = E[XY t] = E[X(XtBt +W t)] = CBt .

The general formula (55) becomes

K = CBt(BCBt +R)−1 .

The prediction error is ε = X −KY , and the covariance of the prediction error
is

Cεε = C − CBt(BCBt +R)−1BC .
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