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1 Introduction

This section is on Brownian motion and a small extension of it, the Ornstein
Uhlenbeck process. Brownian motion is in some senses the simplest continuous
time continuous path stochastic process. It is a reasonable yet tractable model
for many stochastic processes. It is used as a mathematical way to model random
noise in most continuous time continuous sample path processes.

The name comes from English biologist Robert Brown. In the 1820’s he was
looking at pollen grains in his new more powerful microscope. Amazingly, the
particles seemed to be swimming. They were all in rapid and seemingly random
motion. Brown then observed fine particles of clay, which move in a similar way.
Brown, and science in general, were at a loss to understand what makes small
particles move about randomly in water.

The first physical explanation was given by Albert Einstein in 1905. Al-
though clay particles are seem small to us, they are much larger than water
molecules. Einstein suggested that the particles move because they are being
pushed about by random collisions with water molecules. In this picture, the
fine scale random motion of a clay particle is the large scale result of many small
independent random impacts from water molecules. The clay particle motions
are large scale relative to water molecules. Einstein made a quantitative theory
of this and used it to give one of the first physical estimates of the size of water
molecules. Chemists had believed in discrete molecules for a long time, but they
only knew that they were very small, without knowing how small.

The mathematical model of Brownian motion, in one dimension, is a random
number Xt defined for each t > 0. The subscript notation Xt suggests that Xt

is the t component of a random object, X. It may be more natural to write it as
X(t) to emphasize that X is a function of t. It turns out that Xt is a continuous
function of t, but not a smooth function. In this class, Brownian motion plays
three important roles:

1. It describes the large scale behavior of a large class of stochastic processes,
like the pollen grain.

2. It has a model for understanding diffusion processes (the main topic of
stochastic calculus) in general.

3. It is a mathematical way to describe the noise that drives general diffusion
processes.
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2 The Brownian motion central limit theorem

Undergraduate probability deals with discrete or finite dimensional random vari-
ables, probabilities and probability densities. PhD level probability deals with
abstract probability spaces and measures. Brownian motion is one of the first
random objects where the power and generality of measure theory is useful and
helpful. This class is too short to discuss measure theory completely. This
technical section is an attempt to raise awareness rather than to answer all
questions.

The central limit theorem describes the distribution of the sum of a large
collection of independent random variables. Suppose Yk is an i.i.d. family of
mean zero variance 1 random variables, and define the sums as

Sn =
n∑
k=1

Yk .

The conclusion of the central limit theorem (CLT) is that as n → ∞, the
distribution of Sn depends less and less on the distribution of the Yk and is
more and more nearly Gaussian. Scaling is a mathematical device that makes
it possible to state this in a simple way. The scaled sum is

Xn =
1√
n

n∑
k=1

Yk . (1)

The central limit theorem states that the scaled sums converge in distribution
to a Gaussian:

Xn
d
⇀ Z , Z ∼ N (0, 1) , as n→∞. (2)

The convergence symbol in (2),
d
⇀, means convergence in distribution. It

does not mean that the numbers Xn converge to the number Z as n → ∞.
It means that the probability distribution of Xn converges to the probability
distribution of Z. The numbers themselves do not converge. For example, X2n

is probably not close to Xn because half of the Yk that define X2n are not
involved in Xn. But the distribution of Xn is approximately normal, with the
approximation improving as n increases. The little d over the convergence arrow

in
d
⇀ is for convergence in distribution.
The half arrow ⇀ rather than the full arrow → indicates weak convergence.

Weak convergence means that even the probability densities may not converge.
Let fn(x) be the PDF of Xn and let f(x) = 1√

2π
e−x

2/2 be the PDF of Z. Then

strong convergence of the densities would be fn(x) → f(x) as n → ∞ for each
x (pointwise strong convergence), or∫

|fn(x)− f(x)| dx→ 0 , as n→∞.

(L1 convergence). But the CLT applies in situations where Xn these statements
do not make sense. For example, if Y = ±1 (with equal probability), then
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E[Y ] = 0 and var(Y ) = 1, but the “density function” of Xn has delta functions
at each of the numbers x =

√
k/n with −n ≤ k ≤ n. If x2 is an irrational

number, then fn(x) = 0 for all n.
Weak convergence, which is written fn ⇀ f as n→∞, is possible in situa-

tions like this. We say that Xn
d
⇀ Z as n→∞ if, whenever V (x) is a bounded

and continuous function of x,

E[V (Xn)]→ E[V (Z)] , as n→∞. (3)

We require V to be bounded so that E[V (X)] exists and is finite for any random
variable X. To see why V should be continuous, suppose Xn = ± 1

n (equal
probability or not) and X = 0. If V is continuous, then E

[
V (± 1

n )
]
→ V (0) =

E[V (X)] as n → ∞. But if V is allowed to be discontinuous, we could take
V (0) = 1 and V (x) = 0 for x 6= 0. This V has E

[
V (± 1

n )
]

= 0 and E[V (X)] = 1.
The CLT in finite dimensions states that if Yk is an i.i.d. family with E[Yk] = 0
and cov[Yk] = C, and if Z ∼ N (0, C), and if V (x) is a bounded and continuous
function of x ∈ Rn, then (3) holds.

Brownian motion is a large scale description of a path that is a sum of a
large number of small independent “shocks”. The CLT is an approximation
description of the distribution of Sn for large but fixed n. Brownian motion is
an approximation to the way Sn depends on n. For the CLT we did a scaling,
the scaled variable Xn = 1√

n
Sn has a distribution with a (Gaussian) limit as

n → ∞. Now we rescale the sums Sn to get a random process. The scaling
parameter is a small δ that will go to zero. The scaled sum process is

X
(δ)
t =

√
δ
∑
kδ<t

Yk . (4)

Brownian motion is the process Xt so that

X
(δ)
t

d
⇀ Xt , as δ → 0. (5)

This theorem is called the Donsker invariance principle, named after Monroe
Donsker, who was at the Courant Institute most of his career.

The invariance principle contains the CLT. If you take t = 1 and δ = 1
n ,

then X
(δ)
t = X( 1

n ) is exactly what we called Xn before, scaling and all. For any
fixed t, the number of terms in the sum (4) is approximately t/δ and

var(X
(δ)
t )→ t , as δ → 0.

Since X
(δ)
t is the sum of a large number of i.i.d. random variables, its distribution

is approximately Gaussian. This shows that the limit process Xt has values at
any particular t that are Gaussian:

Xt ∼ N (0, t) .

The independent increments property goes further. The increment of Brow-
nian motion between t and t+s is the difference Xt+s−Xt. The value at t+s is
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the value at t plus the increment: Xt+s = Xt + (Xt+s −Xt). One independent
increments fact is that the increment Xt+s−Xt is independent of the value Xt.
But we can go further. The path up to time T , which is X[0,T ], is a random
object determined by the small “shocks” Yk for 1 ≤ k < T/δ. The increment
path beyond T , which is XT+s − XT , is a random object determined by the
shocks for k in the range k ≥ T/δ. Thus, the shocks that determine X[0,T ] are
independent of the shocks that determine the increment path. The increment
path XT+s −XT is thus independent of the path up to time T .

The increments are Gaussian. Indeed,

X
(δ)
T+s −X

(δ)
T =

√
δ

∑
T≤kδ<T+s

Yk

is the sum of many independent contributions, so its distribution converges to
Gaussian as δ → 0. The argument we gave earlier shows that the variance (in
the limit δ → 0) is T − s, so

XT+s −XT ∼ N (0, s) .

The independent increments property implies that this increment is independent
of XT , so the joint distribution is a two dimensional uncorrelated normal. In
general, suppose 0 = T0 < T1 < T2 < · · · < Tn and the increments are defined
by

XTj
= XTj−1

+ ξj .

Then the increments ξj are independent Gaussians with variance Tj−Tj−1. The
joint PDF of the ξj is

u(ξ1, ξ2, · · · , ξn) =
1

Z
exp

−1

2

n∑
j=1

ξ2
j

Tj − Tj−1

 .

This may be written in terms of the values of XTj
:

u(XT1 , XT2 , . . . , XTn) =
1

Z
exp

−1

2

n∑
j=1

(XTj
−XTj−1

)2

Tj − Tj−1

 . (6)

You may be uncertain that we can just substitute the X variables for the ξ
variables to get the PDF for the joint distribution of the values Xt1 , . . . , XTn

from the joint distribution of ξ1, . . . , ξn. If you are, review the Section 1 notes
on linear change of variables in multi-variate densities. The n component vector
Xt1 , . . . , XTn is a linear function of the n component vector ξ1, . . . , ξn.

The formulas (6) do not give a PDF for the random path X[0,T ] itself. In
fact, it is in principle impossible to give a PDF for the path for the following
reason. If Y ∈ Rn is a random variable with PDF u(y), this means that if V (y)
is a bounded continuous function, then

E[V (Y )] =

∫
Rn

V (y)u(y) dy .
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In n dimensions, the integration element is dy = dy1dy2 · · · dyn. There is no
corresponding integration element in path space. We don’t know how to interpret
the formula

(wrong) E
[
V (X[0,T ])

]
=

∫
Ω

V (x[0,T ])u(x[0,T ]) dx[0,T ] . (wrong)

The probability space, Ω, consists of all continuous paths Xt defined for 0 ≤ t ≤
T with X0 = 0 (the definition (4) and (5) gives X0 = 0). The first two factors
on the right are OK, V (x[0,T ]) and u(x[0,T ]) could be functions of the random
path x[0,T ], but there is no real definition of the integration element dx[0,T ].

Abstract probability is something that can be defined even when there are
no probability densities. There is a class of measurable events A ⊆ Ω that form a
σ−algebra, F . For each such event, there is a probability P (A). The collection
of all these probabilities forms a probability measure if it satisfies the normal
properties of probabilities and is countably additive. The “normal properties”
are pretty standard:

• 0 ≤ P (A) ≤ 1 for any A ∈ F

• P (Ω) = 1, and P (∅) = 0.

• If A ∈ F and B ∈ F and A is disjoint from B, then P (A ∪ B) = P (A) +
P (B).

Countable additivity is the requirement that the probability measure works
with limits. One of the many equivalent ways to state the property involves
an increasing family of events A1 ⊆ A2 ⊆ · · · . The “limit” of this expanding
family of events is the union A = ∪jAj . Countable additivity says that the
probabilities should have the correct limit

P (A) = lim
j→∞

P (Aj) .

In discrete probability, at the finest level it was possible to suppose that every
event is measurable. This is not possible in continuous probability. No matter
how much “information” you have, there still must be events whose probability is
not known. You can find a proof of this statement by googling “non-measurable
set”. However, any event that has an explicit description is measurable (precise
statement and proof omitted). There is an abstract definition of integration
with respect to a probability measure that we may say a little about in a later
section.

3 Brownian motion and the heat equation

One of the central themes of stochastic calculus is the relationship between
stochastic processes like Brownian motion and partial differential equations (or
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PDE’s). The probability density is one of the many quantities related to Xt that
satisfies a PDE. Let u(x, t) be the PDF of Xt. If X0 = 0, then Xt ∼ N (0, t), so

u(x, t) =
1√
2πt

e−
x2

2t .

This function satisfies the PDE

∂tu =
1

2
∂2
xu . (7)

We check this by direct verification:

1√
2π

t
−1
2 e−

x2

2t
∂t→ 1√

2π

−1

2
t
−3
2 e−

x2

2t +
1√
2π

t
−1
2
x2

2t2
e−

x2

2t

=
1

2

1√
2π

t
−3
2 e−

x2

2t

(
x2

t
− 1

)
.

Also

1√
2π

t
−1
2 e−

x2

2t
∂x→ 1√

2π
t
−1
2
−x
t
e−

x2

2t

∂x→ 1√
2π

t
−1
2
−1

t
e−

x2

2t +
1√
2π

t
−1
2
x2

t2
e−

x2

2t

=
1√
2π

t
−3
2 e−

x2

2t

(
x2

t
− 1

)
.

This verifies (7). There are more conceptual derivations that do not rely on
knowing the answer in advance, as we will see. This is very important if we
want to apply differential equation methods to problems where the PDF is not
known in advance.

It is possible to consider a slightly more general Brownian motion where X0

is random. Just adjust (4) to

X
(δ)
t = X0 +

√
δ
∑
kδ<t

Yk ,

and take the limit δ → 0. For this, reasoning we have used before gives

Xt ∼ X0 +N (0, t) ,

where the two random variables on the right are independent. We make a small
shift in notation to denote the Gaussian density

G(x, t) =
1√
2πt

e−
x2

2t . (8)

The G stands either for “Gaussian” or for “Green’s function” (a concept we
will discuss more later, but common in engineering and physics). This G is the
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PDF of the Gaussian contribution to Xt. The PDF of the sum of independent
random variables is the convolution of the probability densities. Therefore

u(x, t) =

∫ ∞
−∞

G(x− y, t)u0(y) dy . (9)

This representation of u(x, t) implies that u satisfies the heat equation (7) re-
gardless of the initial distribution u(x, 0). If you apply t and x derivatives to u
on the left, the derivatives on the right fall onto the function G, which satisfies
the heat equation.

A more general version of (9) is helpful. Suppose 0 ≤ s < t is some inter-
mediate time. Then Xt = Xs + (Xt − Xs). The term in parentheses is the
increment of Brownian motion between time s and time t. This increment is
N (0, t− s) and independent of X[0,s]. Therefore

u(x, t) =

∫ ∞
−∞

G(x− y, t− s)u(y, s) dy . (10)

In this context, the function G is called the fundamental solution, or the Green’s
function. Any solution can be build from the fundamental solution by an integral
like this. If t is just a little larger than s, this gives an expression for the small
change in u that happens over a small time interval.

The formula (10) applies only when t > s. There are many deep reasons
for this, but you can see it superficially by noting that G(x, t− s) in (8) is not
defined for t < s. You can determine u in the future from u in the present, but
you cannot determine u in the present from u in the future. You can “run” the
heat equation (7) forward in time (determine u at time t > s from u at time s),
but you cannot run the heat equation backwards in time.

The formula (10) defines a family of linear operators, G(t) that move the
solution u forward in time by an amount t. We write this as

u(s)
G(t−s)−→ u(t) .

In this expression, u(s) represents the function of x which is u(x, s). It says
that the operator G(t− s) transforms u(s) into u(t). We write u = G(t)v if the
operator G(t) transforms v to u. The formal definition is

u = G(t)v if u(x) =

∫ ∞
−∞

G(x− y, t)v(y) dy .

The operator family G(t) form the solution operator for the heat equation (7).
The solution of the heat equation is given by the solution operator expression
u(t) = G(t)u(0), which is the same as (9).

The family of operators G(t) satisfies the semigroup property. We can
write u(s) = G(s)u(0) and then u(t) = G(t − s)u(s). This gives u(t) =
G(t− s)G(s)u(0). Also u(t) = G(t)u(0). Together, these imply that

G(t) = G(t− s)G(s) . (11)
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With the x variable written in, this is

G(x, t) =

∫ ∞
−∞

G(x− y, t− s)G(y, s) dy .

The mathematical term group refers to a collection of objects that can by “mul-
tiplied” and inverted. If A and B are elements of a group, the product AB also
is an element of the group, and so is A−1. The definition of A−1 is that A−1A is
the identity. The operators G(t) can be multiplied using the formula above, but
they cannot be inverted. A collection of objects that can be multiplied but not
inverted is a semi-group. The formula (11) expresses the fact that the solution
operators for the heat equation form a semigroup.

Smoothing is an important property of the heat equation (7). Suppose the
initial PDF u(x, 0) is uniform in the interval [0, 1]. This PDF is discontinuous
at x = 0 and x = 1. But the solution u(x, t) given by (9) has no discontinuities.
If t is small, then u(x, t) is close to 1 if x if ε < x < 1 − ε, and u(x, t) is close
to zero if x < −ε or x > 1 + ε. We will see soon that this is true for t = .01
and ε = .2, say. You can see that u(x, t) is differentiable. For example, we can
calculate that

∂xu(x, t) =

∫ ∞
−∞

[∂xG(x− y, t)]u(y, 0) dy

=

∫ ∞
−∞

[
−x− y

t
G(x− y, t)

]
u(y, 0) dy .

The quantity in square brackets is bounded, so ∂xu(x, t) is bounded. The same
goes for ∂2

xu(x, t) and higher derivatives. For small t, u(x, t) makes a finite
speed, but fast, transition from near 0 to near 1 as x goes from −ε to ε. But
the exact discontinuity of u(x, 0) has disappeared.

The smoothing property is responsible for the fact that we cannot “run
the heat equation backwards”. Running the heat equation backwards would
mean specifying u(x, t) for some t > 0 and asking what u(x, 0) it would take to
achieve that. But if we ask for u(x, t) to be discontinuous, it is impossible to get a
u(x, 0). Not only is discontinuous u(x, t) not allowed, but even discontinuities in
derivatives. The solution operator of the heat equation gives a smooth function,
a function that has derivatives of all orders.

4 Hitting times

The hitting time at a for Xt is the first time X “hits” a. More technically,

τa = min { t | Xt = a} . (12)

These are important in many applications of stochastic processes. How long will
it take for a random stock price to reach a given level? How long will it take
a randomly moving particle to touch the boundary of a container? They are
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important in mathematical analysis of stochastic processes. If |Xt+s −Xt| ≤ ε
for all 0 ≤ s ≤ δ, then Xt is a continuous function of t. This is a question about
a hitting time like (12).

The hitting time τa is a random variable. We will use the heat equation to
find the probability density τa ∼ fa(t). There is an explicit formula for fa(t).
The derivation gives some idea how PDF (partial differential equation) methods
are used in the study of Brownian motion and other diffusion processes.

One way to find fa is to first find the probability density ua(x, t) of for a
stopped Brownian motion process. For the rest of this section we will assume
that X0 = 0 and a < 0. We will see that it is natural to call a the absorbing
boundary. Imagine a particle that executes Brownian motion until the first time
it touches the absorbing boundary. After that you can imagine that the particle
is removed or absorbed at the boundary. It help to imagine a large cloud
of particles doing independent Brownian motion. Any particle that touches
the absorbing boundary is immediately eaten. Then ua(x, t) is the density of
surviving particles, which means particles that have not touched the boundary
yet. The formal definition is

ua(x, t)dx = Pr(x ≤ Xt ≤ x+ dx and τa > t) . (13)

We find ua by solving a PDE, which relies on three facts about ua.

1. ua satisfies the heat equation in the domain where u > 0, which is x > a.

2. ua(x, t) satisfies the initial condition ua(x, 0) = δ(x).

3. ua satisfies the boundary condition at x = a, which is ua(a, t) = 0.

Two of these conditions are easy to understand. ua satisfies the heat equation
for x > a because (10) is approximately true at any point x > a if t− s is small
enough. For any point x > a you can take t− s so small that in that interval of
time there is almost no chance that a Brownian motion particle at time s will
touch the boundary before time t. We will give more mathematical justification
later. The initial condition ua(x, 0) = δ(x) just means that X0 = 0.

The boundary condition is more subtle. It says not only that particles are
eaten (absorbed) at the boundary, but that there are very few surviving par-
ticles close to the boundary – the density of surviving particles goes to zero
as you approach the absorbing boundary. This is based on the following fact
about Brownian motion, which we will come to understand better as the class
progresses. If Xt is close to a, then it is very likely that τa < t. In other words,
if a Brownian particle is close to the boundary, then it is likely to have touched
the boundary in the recent past. We put this into formulas using the conditional
probability

P (t, x) = Pr(Xs > a for 0 ≤ s ≤ t | Xt = x) .

Clearly ua(x, t) = P (x, t)u(x, t). It is a property of Brownian motion (motivated
but not strictly proved) that P (x, t) → 0 as x → a. Therefore, ua(x, t) → 0 as
x→ a.
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It is possible to find an explicit formula for ua. The derivation has two
ingredients, a uniqueness theorem and the method of images trick. Uniqueness
means that you have given so many conditions that there is only one function
that satisfies all of them. The uniqueness theorem for the heat equation states
that if, say, v(x, t) is bounded (as a function of x) for every t, and if v is
differentiable enough for the PDE to make strict sense, and if it satisfies the
three conditions above, then v(x, t) = ua(x, t). We will not give a proof, but the
Courant graduate class on PDE does. The uniqueness theorem has the following
consequence: If you can write a formula that satisfies the three conditions, then
that formula is the solution. It is the solution even if you can’t explain how you
found the formula. If you can check that the formula works, it’s the solution.

The method of images produces a such a formula. The formula is for a
function, also called ua(x, t), that is defined for all x and t > 0. This formula
satisfies the heat equation for all x and t > 0. It satisfies the initial condition
only for x > a, which is enough. It satisfies the boundary condition ua(a, t) = 0
because it is anti-symmetric about the boundary x = a:

ua(2a− x, t) = −ua(x, t) . (14)

If x > a is any point in the domain where the original ua is defined, then
x′ = 2a − x is the image point of x reflected about the point a. That means
that |x′ − a| = |x− a|, and x′ < a. A function that is skew symmetric in the
sense of (14) must be equal to zero at the point of symmetry: ua(a, t) = 0.

The method of images works because of the symmetry of the Brownian
motion diffusion process. The initial condition for ua will be the desired “point
charge” (delta function) at x = 0, and an equal strength but opposite charge at
the image point 2a:

ua(x, 0) = δ(x)− δ(x− 2a) .

This satisfies the initial condition 2 above because that condition applies only
when x > a. The image “charge” at x = 2a is outside the domain. The solution
with this initial data is the sum of the positive fundamental solution centered
on x = 0 and the negative fundamental solution centered at x = 2a:

ua(x, t) =
1√
2πt

e−
x2

2t − 1√
2πt

e−
(2a−x)2

2t . (15)

This satisfies the heat equation (7) because both terms to. It satisfies the
boundary condition, because .. well .. just put in x = a.

The solution formula (15) carries much information about Brownian motion
hitting times. In particular it leads to a formula fa(t), the PDF of the hitting
time τa. We already saw that

Pr( τa > t) =

∫ ∞
a

ua(x, t) dx .

This follows from the definition (13) by summing over all x > a. The hitting
time PDF is related to this by

fa(t) = − d

dt
Pr( τa > t) .
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(Check signs: the probability on the right is a decreasing function of t, so
the minus sign on the right makes the left side positive.) We carry out the
differentiation using the heat equation (7)

fa(t) = −− d

dt

∫ ∞
a

ua(x, t) dx

= −
∫ ∞
a

∂tua(x, t) dx

= −1

2

∫ ∞
a

∂2
xua(x, t) dx

fa(t) =
1

2
∂xua(a, t) . (16)

(Check signs: ua is going from 0 to positive values as x increases from a, so the
right side is positive.) If we differentiate the explicit formula (15), the result is

fa(t) =
1√
2π

−a
t3/2

e
−a2

2t . (17)

(Check sign: a < 0 and the rest is positive, so fa > 0.)
The explicit formula says some interesting things about fa(t). One is that

fa(t) is always positive, so particles can reach the boundary from far away
arbitrarily quickly. But this is unlikely, as fa(t) is exponentially small for small
t. The time when Xt is most likely to hit is the maximum of fa(t) over t, which
is found by differentiation:

∂tfa(t) =

[
3

2t
− a2

2t2

]
fa(t) =

1

2t

[
3− a2

t

]
fa(t)

The result is t = 1
3a

2. This illustrates the natural scaling of Brownian motion, t
scales as a2, or length (a) scales like the square root of time. How far from the
boundary do you have to start a Brownian motion so that t is the most likely
hitting time? The answer is on the order of

√
t.

An important feature of the formula (17) concerns it’s “tail” behavior, how
it goes to zero as t→∞. In that limit, the exponential factor goes to 1, so

fa(t) ≈ 1√
2π

−a
t3/2

.

This power law tail indicates that fa(t) goes to zero slowly as t→∞. It implies
that there is a rather large chance of having a rather large τ . Large τ is so likely
that the expected value

E[ τa] =
−a√
2π

∫ ∞
0

t−
1
2 e

−a2

2t dt =∞ .

The large t behavior of the integrand is t−
1
2 , which is not integrable. The hitting

time is positive random variable that is finite (almost surely) and has infinite
expected value.
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4.1 Martingales, stopping times, fat tails, the gambler’s
ruin paradox, the dominated convergence theorem

Brownian motion and stopping times illustrate many things that will concern
us in the rest of the class. This subsection quickly describes some of them.

A process Yt is a martingale if, for any s > t, E[|Yt|] <∞ and

E[Ys | Ft] = Yt . (18)

A Brownian motion should be a martingale, because Xs is Xt plus some inde-
pendent mean zero noise. Many processes are martingales without having the
independent increments property. In fact, you could call (18) the uncorrelated
increments property. The increment, Ys− Yt, is uncorrelated with any function
of Y[0,t]. Being uncorrelated does not imply being independent. As a trivial
example in discrete time, suppose Zn ∼ N (0, 1) is an i.i.d. family of standard
normals, Fn is generated by Z[1:n], and

Yn+1 = Yn + ZnZn+1 .

Then E[Yn+1 | Fn] = Yn, but Zn is known at time n and the difference Yn+1 −
Yn = Zn+1Zn is not independent of Zn.

A positive random variable τ is a stopping time if the event {τ ≤ t} is known
at time t. More precisely, if At = {τ ≤ t}, then At ∈ Ft. The idea is that you
watch the process Yt, and based on the path Y[0,t], you decide whether to stop at
time t. Hitting times are examples of stopping times. Another example might
be

τa = min

{
t |
∫ t

0

Xs ds = a

}
.

This one depends on the whole path X[0,t], not just its value at time t. A
stopping time may not rely on knowing the future. It is rare that the last time
something happens is a stopping time, but it can be:

τa = max

{
t |
∫ t

0

X2
s ds = a

}
.

Here, X2
t > 0 (almost surely), so the last time is also the first time. More typical

example (sort of contrived):

τa = max

{
t |
∫ t

0

(
X2
s −

√
(s)
)
ds = a

}
.

If the integral is equal to a at time t, we don’t know whether the integral will
increase and then decrease back to a in the future.

If Yt is a stochastic process and τ is a stopping time, the stopped process is
the one that stops moving at time τ . The wedge notation is an efficient way to
say this: a ∧ b = min(a, b). The stopped process has the value Yt if t < τ and
the value Yτ if t > τ :

Ỹt = Yt∧τ .
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The Doob stopping time theorem states that if Yt is a martingale and if τ is a
stopping time, then the stopped process Ỹt also a martingale. This will become
obvious, particularly in the discrete time case, if you think about it for some
while. The proof in the discrete time case is simple. The continuous time proof
is more technical but isn’t really different.

The stoping time theorem has a finance interpretation. The martingale Yt
is thought of as the fluctuating price of some asset. The martingale property
says that you cannot make an expected profit by buying the asset at time t and
selling at time s > t. The expected price at time s is the purchase price Yt, see
(18). The stopping time is a possibly more sophisticated strategy. You buy at
time t then sell at time τ . You have to know at time s whether to sell at time s,
because if you sell at a different time you don’t get the price Ys. The stopping
time theorem says that even this larger family of strategies cannot produce an
expected profit. If τ > t and s > t, then

E[Yτ∧s|Ft] = Yt . (19)

If you give a final “give up” time, s, then you cannot make an expected profit.
The gambler’s ruin paradox concerns what happens if you leave out the give

up time s in (19). Let Xt be a Brownian motion starting at X0 = 0 and let τ
be the the first hitting time when Xt = 1. We know that τ < 0 almost surely,
and that E[τ ] =∞. Clearly Xτ = 1. We make an expected profit X|tau−X0 if
we buy at time 0 and sell at time τ . The
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