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1 Introduction

Suppose you have a stochastic model of something and you want numbers —
specific facts about what your stochastic process does. You can get numbers by
solving a backward or forward equation (depending on what you want to know),
or by simulation. This lesson describes the basic tools for direct simulation of
stochastic models.

For example, suppose X; is a diffusion process that satisfies the SDE

The goal is to evaluate the expectation

f=Eso[V(Xp0m)] - (2)

The “observable” V' could be a final time function like V(Xo71) = X2, or it
could be path dependent as in V(Xo 1)) = [ r(X)dt.

Monte Carlo* analysis means finding numbers that themselves are not ran-
dom but are related to a random process. and X; is a diffusion process with a
given SDE. We use f for a Monte Carlo simulation. We have the computer cre-
ate create a large number of sample paths for the SDE, called Xt(”) for ¢ running
from 0 to T" and n running from 1 to N. The direct Monte Carlo estimate is

. 1 &
F=5 2 VX - (3)
n=1

This is like random sampling in statists. As in statistics, it is important to have
error bars, which give an idea how accurate f is likely to be.

Most diffusion processes cannot be simulated exactly. Instead, they are sim-
ulated approximately using a time step At. The Euler Maruyama formula (often
just called the Euler formula) is a time stepping method to create approximate
sample paths. Define ¢, = kAt and X,gn’At) to be an approximation to Xt(:).
We want the approximate process to have increments with approximately the
right mean and variance over a time step of size At. This can be done using

X = X0 (XA G EVALZY ()

I Monte Carlo is the capital city of the country Monaco. The country is so small and the city
so big that most of Monaco is inside Monte Carlo. Monte Carlo is famous for gambling and
car racing. Using random numbers in computation is like using random numbers in gabmling,
which is how computing with random numbers came to named after a center of gambling.



The numbers Z én) are independent standard normals
ZM ~ N(0,1), idd. . (5)
This equation has the property that
Bl X - x4 | B = a(x(m4) (6)
An exact path satisfies this only approximately

B[ X - x| | = a(x)at+ o). (7)

Direct simulation often is inaccurate because most paths make a small con-
tribution to the sum (3). For example, suppose dS; = oS dWy, Sop =1, and we
want 1 = Eq ¢[S7]. We saw in an earlier lesson that S; — 0 almost surely as
t — 00, so most paths have Sp < 1, There are rare outliers with large Sp > 1
that make 1 = Eq o[S7] possible.

You can get more accurate Monte Carlo estimates by cheating. The technical
term is importance sampling. Instead of generating Xt(") from your diffusion

process and finding the sample mean, you simulate a different process Yt(n).
You find a quantity called the likelihood ratio, L(Y]or)]. This has the property
that

Ex[V(X7)] = Ey [V(Y7)L(Yjo.1))] - (8)

The importance sampling procedure is to generate many Y sample paths and
use the importance sampling estimate

N
N 1 n n
Jo= 5 oV LY. (9)
n=1

The trick is to find a process Y so that makes the important events more likely.
The method is more complicated, but the answer can be much more accurate.

The formula (8) is a relationship between two random processes called a
change of measure. For diffusions, the change of measure formula is described
by Girsanov’s theorem. The theorem tells us that one diffusion can be related
to another in the sense of (8) if and only if they have the same noise term. For
diffusions it is possible to change the infinitesimal mean but not the infinitesimal
variance. When two processes have the same infinitesimal variance, the formula
for L is Girsanov’s formula.

The quantity L in the change of measure formula (8) is the called the Radon
Nikodym derivative. The L is for likelihood ratio. If the processes X; and Y;
had probability densities, I would be the ratio. But probabilities in path space
do not have probability densities, though many quantities related to paths do
have densities (such as the density of X; at a specific time ¢ and the hitting time
density). Instead, probabilities for diffusion processes are given by probability
measures.



A probability measure assigns probabilities directly to events, rather than
using a probability density. Suppose X € R is a random variable with u(z) for
its probability density. Suppose A C R is some event. In probability, an event
is just a set of outcomes. For example, the event that 0 < X < 1 is represented
by the set A = [0, 1]. If there is a probability density, then integration gives the
probability of an event:

Pr(A) — / ey

In abstract probability, the probabilities of events are given without using a
probability density. A system of probabilities P(A) for all “reasonable” events
A is called a probability measure if it has some natural properties of probabili-
ties and is continuous (technically, countably additive) in a certain sense. It is
possible that two probability measures are related by a likelihood ratio even if
they are not given by probability densities. The Girsanov theorem for diffusions
is one of those cases.

2 Direct simulation and Monte Carlo

Suppose X is some kind of random object, like a random path for instance, and
V(X) is a function of the path, and that we want to know

f=E[V(X)].

Suppose that we are able to create samples. For now, this means independent
copies X(™ with the same distribution as X. In more sophisticated Monte
Carlo, it may be impossible to make independent samples — take the Courant
Institute class on Monte Carlo Methods and pay attention to Markov chain
Monte Carlo (MCMC) if you're interested. For diffusion processes it is usually
impossible to create paths with the X distribution exactly. Instead we make
approximate paths using Euler’s method (4). But, for now, forget these pieces
of reality and suppose the X (™) have exactly the desired distribution and that
they are exactly independent.

The direct estimator (3) is a Monte Carlo method for estimating f = E[V].
The next step is the direct Monte Carlo error bar, which estimates the accuracy.
For now, we use the simplified notation

Vo =V(X™).

The direct error bar comes from the central limit theorem applied to the direct
estimate (3). If N is large, then the sample mean f is approximately normal
with mean f and variance

V&I’(]?) = 0']?;: ! var(V) = 12 . (10)
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Let ¢ ~ N(0,1) be a standard normal random variable. Then f approximately
(for large N) has a representation

o 2
f~F+ vﬁi

We turn this around for the error bar as

Zzz

f

Don’t worry that ¢ seems to have the wrong sign. If £ is standard normal, then
—¢& also is standard normal. This doesn’t say what the error is, but it does say

/ +2
that the error size is on the order of % This is the one standard deviation
error bar. A Monte Carlo result would be expressed as

~

f=r=

5
<l\')

. 11
VN )
For example, an estimate might be f = 2.48+.08. This indicates that your best
guess is 2.48 and that it’s probably off by something like .8.

Usually, you have to estimate the standard deviation oy from the data. The
number you need to estimate is

a@:E{(fo)Q] .

A natural Monte Carlo estimate is

2V:N§:(V f) . (12)

Some people suggest ﬁ instead of %, because it gives an unbiased estimate,
which means the expected value of the estimate is the actual value:

LN

This is true, but the standard deviation is what goes in the error bar, not
the variance. The square root is a nonlinear function and our estimate of the

standard deviation is
oy =\ o¥ .

If U is a positive random variable that is truly random, then
E[\FU} £ /E[U].

Therefore, if E Fﬂ = 0%, then E[ov] # ov.

4



Moreover, the difference between % and ﬁ is unimportant unless N is

smaller than it should be for Monte Carlo. The bias of an estimator of a quantity
AisE {g — A} . The bias of o, or &y is order 4, while the difference |7y — oy | is

on the order of Tlﬁ Correcting for the bias won’t make the estimate significantly
more accurate.

The big picture is the philosophy against spending lots of time making error
bars precise. It is unprofessional to give Monte Carlo results without error bars.
And it is a waste of time to make error bars very precise. They are a rough
estimate of the error. “Don’t put error bars on error bars.”?

Summary of direct simulation Monte Carlo The problem is to estimate
E [V(X[O,T])} . Here, X is the solution to an SDE (1). You choose computational
parameters At, the time step for Euler’s method (4), and N, the number of
paths. You generate N paths. The total work is the number of paths times
the number of time steps per path, which is W = NT/At¢. You compute
V,, = V(X™ and average (3). You compute the sample variance (12) and take
the square root for the sample standard deviation. You report the estimate f
and the error bar &y /v/N.

2.1 Histograms

A histogram is a graph of bin counts. Let X (") be samples of a random variable.
This could be from computer simulation or actual samples of something. A bin
is an interval on the x axis whose bin size is the length Axz. We write By, for
bin k. It is convenient to take xj as the center of By, so

By, = [ack - %Aw,xk + %Am] .

It is convenient in the mathematical discussion (but not in the code) not to
specify the range of k or the location of xy. In the code, there must be a largest
and smallest k. The bin count N is the number of sample points in By:

Nk:#{n|X(”)eBk} .

A histogram is a plot of the bin counts.

Sometimes you plot the raw bin counts, but often you don’t. You may be
making the histogram to estimate the probability density X (") ~ wu(z). In this
case the probability of a sample landing in bin k is (exactly or approximately)

Pr(X(") € Bk> :/ u(z) de = Az u(zy) .
B

k

If you have N samples altogether, the expected count for bin &k is N times the
probability for one sample:

E[N,] = NPr(X(") c Bk) ~ NAzu(zy) .

2A piece of advice from Malvin Kalos, one of the masters of Monte Carlo from his genera-
tion.



Some algebra turns this into an estimator of the probability:

— Ny
u(zy) = AN -

(13)

It may be more informative to plot u(xy) instead of the raw counts Nj. The
difference is only a scaling of the y axis.

3 Importance sampling

Direct simulation simulation Monte Carlo is an impractical way to estimate
E[V(X)] in many real applications. This is because values of X that contribute
most to the expectation are very unlikely. Typical X values have much smaller
V(X) than the mean.
Geometric Brownian motion illustrates this. Consider the simple case of
uw=0,0=1
dSy = S dWy, Sp=1.

This is a martingale so for all £ > 0,
E[S]=1.
But the solution formula is S; = eWi=3t For simulation, we can take Z ~

N(0,1) and take W; = /tZ (this has the same distribution as W;, which is
normal mean zero, variance t). This puts the formula is a more explicit form

St ~ eﬁziét .
In order to have S; > 1 (the mean value), we have to have
1
VtZ — 3620,

This is )
Z > 5\/1? .

For example, with t = 36 it’s Pr(Z > 3) ~ .0013. If you simulated 1000
independent samples Zj, the expected number of hits (samples with Z; > 3,
Sk,36 > 1), is 1.3. The other 996.7 samples would be “wasted”, contributing
little to the expected value.

Importance sampling means changing the probability rules to make the im-
portant X values more likely — putting more X values in the region that is
important for the expectation. This has to be done in a way that doesn’t
change the expectation value. If X has probability density u(z), the trick is to
find a different density v that puts samples where you want them, and then to



take into account the fact that you used the wrong density. Here is the algebra:

Eu[V(xy]::}Cw V(@)u(z) do
= = X U(:C) v\ XL
- [ V@i
:[_vun@m@mx,mwzzgi

B[V(X)] = B[ V(X)L(X)] , L(z) = 22 (14)

In finance people imagine that there is a “u—world” where X ~ wu and a
“v—world” where X ~ v. In the u—world, the number you want is E[ V(X)].
In the v—world, it’s E[V(X)L(X)]. A typical value of V or X in the u—world
may be very different from typical values in the v—world. The likelihood ratio
L(x) makes the expectations equal.

The measure of success in importance sampling is variance reduction. You
hope that the v—world variance is less than the original u—world variance.
These variances are

on(V(X)), and of(V(X)L(X)) .

In practical estimation, you can estimate the variances and see whether you
decreased the variance. If you choose a bad strategy, then fancy v—world im-
portance sampling can have a higher variance than direct u—world simulation.

Take the geometric Brownian motion example. If we want to make large Z
more likely, we can sample from a Gaussian with a positive mean Z ~ N (y, 1).
The likelihood ratio for this is (the random variable is z in this example)

v(2)

L(z) =

I

Ver
22— 2xp + p? — 22
2

exp

1,2
= e Fte2t |

The importance sampling formula is

Eno.n[V(2)] = e Eprun [V(Z) e 2] . (15)

On the right side, we “pull” Z to the right by giving a mean pu > 0. We
“discount” the larger Z values with the discount factor e #%. If you did this
with V' = 1, the expected value would go down because most of the samples
would be discounted. The outside factor e2#” fixes this effect, giving the exact
answer even if V = 1.



4 Probability measure

The probabilities of paths that we use in stochastic calculus cannot be defined
directly using probability densities. The expected values of random variables
cannot be found directly by integration with respect to a probability density.
The issue is that there is nothing in path space that is like dz in R™. Instead
of integration on R™ with respect to dx, we integrate in probability space with
a probability measure dP.

The first step is to define abstract probability measure and integration (ex-
pected value) with respect to a general (abstract) probability measure. The
second step is to define the specific probability spaces and probability measures
that are relevant for stochastic calculus. These are path space and versions
of Wiener measure. This Stochastic Calculus class is not a course in abstract
measure theory and integration any more than an ordinary Calculus class is a
course on mathematical analysis. Many mathematical details are missing, as
they are in an ordinary calculus class. Still, abstract probability measures seem
to be the simplest way to understand some important topics such as importance
sampling and change of measure for diffusion processes.

Probability measure is an abstract concept that forms the basis for most
modern probability theory. Here is a superficial description of abstract measure
based probability theory. A good graduate probability theory book has a more
complete discussion. In the abstract approach, a “probability” consists of three
things:

o A probability space, 2. We think of this as the set of all possible “out-
comes”. A specific outcome is w € Q.

o A o—algebra, F, of subsets of 2. We think of A € Q as an event, which is
a set of outcomes whose probability we know. We say A is measurable if
AeF.

e A probability measure, P, which is a number P(A) € [0,1]. We think of
P(A) as the probability that the event A happens. In terms of random
outcomes, P(A) = Pr(w € A).

Probability theory requires F to be “complete” in a sense similar to the
completeness of the real numbers. This makes the algebra a o—algebra. The
measure P must be “continuous” in the sense that the probability of a limit
event is the limit of the probabilities. This is called countable additivity. The
term complete in probability does not refer to the o—algebra property, but to
something more technical that is irrelevant in this course.?

3 A probability is complete if any set of outcomes that “should” have probability zero does
have probability zero. More technically, if A € F and P(A) =0, and if B C A, then B € F
and P(B) = 0. This may seem natural, but it is inconvenient in the common setting where we
have two probability measures P; and P> with different events of probability zero. It is hard
to have Fi = F2 (the same measurable events), when this happens. (Comment for experts:
For 2 = [0, 1], this corresponds to using Borel measure, which is not complete, rather than
the complete Lebesgue measure.)



Here are more details of c—algebra and probability measure. It may help to
look ahead to the examples if this seems too vague. Suppose F is a collection of
subsets of 2. We want A € F to mean “we know whether w € A”. We say F is
an algebra if it is closed under the operations of intersection (and), union (or),
and complement (not). Closed means that doing one of the operations does not
take you out of F. For example, suppose A; € F and Ay € F. If we know
whether w € A; and whether w € As, then it is reasonable to assume that we
know whether w € A; N Ay. The intersection A; N Ag is the set of outcomes
in Ay and in As. The union A; U Ay is the set of outcomes in Ay or in As, or
both. The complement A is the set of outcomes not in A;. If we know whether
w € Ay, then we know whether w € A, which is the same as w ¢ A;. Ordinary
algebra (ordinary arithmetic, actually) has binary operations +, x (operations
on two numbers), and a uniary operation — (taking the negative of a number).
The algebra of sets has binary operations union (U) and intersection (N) and
the uniary operation of complement (A — A€).

There may be subsets A C €2 so that we don’t know whether w € A or not.
Not every set is measurable. Two particular sets must be measurable, A = Q
and A = () (the empty set is the set with no elements). This is natural from the
"what we know” interpretation. We know whether w € Q (it is). We require
that an algebra of sets satisfy the axiom Q € F. We know whether w € 0 (is
isn’t). We require that ) € F. Note that if Q € F, then the complement axiom
(Ae F = A° € F) implies that § = Q¢ € F.

A set algebra is a o—algebra if it is closed under infinite sequences of union or
intersection operations. If A,, € F is an infinite sequence of measurable events,
then the infinite union

A= A,

13

also has A € F. This is something like completeness of the real number system.
Suppose ar > 0 is a sequence of real numbers whose sum is bounded in the

sense that
n
Z ap < C
k=1

for all n (there is a C' > 0 so that ... ). In the real number system, there is an

S so that
o0
S = Z ag .
k=1

This is not true in the rational numbers (fractions with integers on the top and
bottom). For example, the Taylor series for e* gives

=1
eZZE
k=0

All the terms on the left are rational numbers, but the infinite sum, e = 2.718..
is not a rational number. The rational numbers are not complete because a



limit or an infinite sum of rational numbers may not be a rational number. A
o—algebra is a family of sets that includes set limits (unions and intersections
of infinite sequences of sets).

A measure is a number P(A) associated to each measurable A € F. For
a probability measure, 0 < P(A) < 1 for every A € F. This represents the
probability that the event A happens, which is the probability that w € A. A
measure must be additive, which means that if Ay € F and Ay € F, and if
A1 NAs =0 (Ay and Ay are disjoint), then P(A; U Ay) = P(A1) + P(As). This
implies that if A C B then P(A) < P(B). This is because B = AU (A°N B, and
A is disjoint from (A° N B), and therefore P(B) = P(A) + P(A°N B) > P(A).

A measure is countably additive if it respects limits in the following way.
Suppose A; C As--- is an “increasing” sequence of events. The “limit” event

is the event is
o0
A=A
n=1

The definition of countable additivity is that the probability of the limit event
is the limit of the probabilities:
P(A) = lim P(A,) . (16)
n—oo
From this abstract point of view, to make a probability model of random
something you have to say what sets are measurable events and say how the
probability of these events is defined. The usual way to define F is to define
some sets that you want to be measurable (whose probability you want to define)
and then say that F is the smallest o—algebra that contains these events. This
F will contain all the sets you said, and all limits of those, and limits of those,
and so on. This o—algebra is generated by the sets you give. Any collection of
sets generates a o—algebra.

Measure from a probability density. A probability density on R defines
a probability measure with = R as its measure space. The o—algebra is
generated by all intervals [a, b]. The o—algebra that contains these also contains
infinite intervals. There are many ways to see this including

[0,00) = U[n7n+1] = U[O»n] .

It contains “open” intervals (intervals that do not contain the endpoints) such
as (note: (—o0,al® = (a,0), etc.)

(a,b) = (—o00,a]® N [b,00)° .

This o—algebra is called the Borel sets.
If w is a probability density and A is a Borel set, then the probability measure
is



This definition works (we are not going to show) because it makes sense if A is
an interval and because the integral respects limits.

Combining measures. Suppose P; and P, are two probability measures with
the same probability space {2 and the same o—algebra F. Suppose that g; > 0
and g2 > 0 and ¢q; + g2 = 1. Then there is a combined probability measure
P(A) = ¢1P1(A) + ¢2P2(A). You can check that P is countably additive and
has P(£2) = 1 as a probability measure should. You can think of w ~ P as first
tossing a coin — with probability ¢; you take w ~ P; and otherwise you take
w ~ Ps. You can take combinations of n measures, if you take measure Py with
probability gi. This would be P(A) = >, ¢xPr(A). You can even take integral
combinations, integrating P; with respect to a probability density w(t). That
would be P(A) = [ P,(A)u(t) dt.

Singular measures. Some measures on {2 = R do not have a probability
density. A measure like that is called singular, or, more properly, singular with
respect to Borel measure. The most singular measure on R is a point mass, or
delta measure. This is the measure that has all it’s probability at the point
x = a and no probability at any other point. This is called J,. It is defined by
0s(A)=11ifa € A and 6,(A) =0if a ¢ A. This measure is countably additive,
and checking this fact clarifies something about countable additivity. Suppose,
for example A, is the interval
4, = [1, 1] .
n

This is an increasing family of events because A, C A,4+1. All of them have
0(A,) = 0 because 0 ¢ [1,1]. The limit (the union) of the A, is

A=(0,1] = GAH.
n=1

Note that 0 ¢ A, because (0, 1] does not include the left endpoint 0. The limit
of the numbers % is 0, but the union of the sets A,, does not include zero.

The Dirac delta function, which is written §(z), is an informal way to express
the singular measure dg. This function is infinite at = 0 and zero elsewhere
in a way that fabd(x)dx =1ifa <0< band zeroif b < 0or a > 0. The
point mass probability measure makes sense in any dimension and even in any
probability space. Integral combinations of point mass measures give other
singular measures.

For example, in 2d (2 = R?), define a(t) = (cos(t),sin(t)) and consider the

probability measure
1 2

This is a uniform density on the unit circle. If A is the event that (x,y) is in the
“first quadrant” (i.e., z > 0 and y > 0), then P(A) = 1, because one quarter of
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the unit circle is in the first quadrant. IF A C R? is any measurable event, then
P(A) = Pr((cos(t),sin(t)) € A) .
This singular measure “lives” on the unit circle.

Continuous path space, diffusion measures. For this example, a path is a
continuous function X; defined for 0 < ¢t < T. The space of paths like this is
written C([0,T]). The probability space is @ = C([0,T]). This is often called
path space.

There can be several ways to generate a desired o—algebra. The standard
one for diffusions can be generated by events that depend on X at some time
t € [0,77], such as

Xom€eAif a< Xy <b.

By taking intersections we get events selected by criteria like
a1 <Xy, <b; and ag < Xy, < by .

Taking intersections of an infinite sequence (because it’s a o—algebra) we can
get the event*

X >0 forall te[0,T].

5 Expectation and integration

In abstract probability, the expected value is the integral with respect to the
probability measure. This section describes abstract measure-theoretic inte-
gration with respect to an abstract probability measure. Abstract probability
measure is useful, in part, because this abstract integral is easy to define. Sup-
pose (2 is a probability space with F and P, and that V(w) is a function we
want to integrate. The integral we need to define is

Ep[V] = /Q V(w)dP(w) . (17)

When © = R (and w is z), and u(z) is a probability density, the abstract
expectation (17) is the same as

E.[V] = /00 V(z)u(z)dr .

— 00

The abstract and concrete expectations should agree in the concrete setting.

41t is possible to put the positive rational numbers in into a single list. For example, you
can make a list (¢q1,¢2,4q3,---) = (1/1,2/1,2/2,3/1,3/2,3/3,---). It’s OK for the list to have
duplicates (like 1/1 = 2/2). Take the event A, to be X4, > 0. The intersection of the
sequence A = NA, has X € A if and only if X4 > 0 for every positive rational number ¢g. But
Xt is a continuous function of ¢, so this implies that X; > 0 for every t.

12



The two expressions for expectation are related through the informal identity
dP(z) = u(x)dx . (18)

This says that the probability of a little bit of x space around z is equal to
u(z) multiplied by the length of that little bit. Earlier, we expressed this as
Pr(z < X <z +dz) = u(x)dz. In view of this, many people feel it’s more
natural to write P(dx) than dP(z). Either way, (18) expresses the probability
measure P in terms of the “natural” measure, usually called Lebesgue® measure.
For this class, the point of abstract probability measures is that there is no
natural measure like dz to help define the probability measure for diffusions.
There is a natural dz in R or R™, but not on C([0,T]). Diffusion measure is a
probability measure without a probability density.

Think of finding the expected value of a function V(x) when the random
variable X ~ u(x) is one dimensional with probability density u. The expecta-
tion is the area “under” the graph of a function V(z)u(z),

E[V]=1I= /C>o V(z)u(z)dx .

— 00

The Riemann integral approach is to divide the z—axis into pieces of size Azx.
An z—point z; = kAz has an approximate piece of area Ay = AzV (xg)u(zy).
The Az approximation to the total area is

IRVAQC = Z AIV(JCk)U(Ik) .
k

The Riemann integral is the limit

In = Alilgo a0 -
Measure theoretic approach to integration (outlined below) was invented be-
cause the limit is problematic if V' is a “general” function (not continuous, not
monotone, not the sum continuous and/or monotone functions).

The Riemann approach to integration has another disadvantage for general
measure spaces: there is no analogue of little z intervals of length Az, if you
are integrating over a general probability space 2. The trick to avoid this is
to consider little intervals of length Av on the y—axis instead. The v—points,
which are v, = kAw, divide the v—axis into small pieces of height Av. Define
events

A ={kAy <V < (k+1)Ay} .

The approximation V(w) & v(z) is accurate with an error less than Av in Ag.
Therefore, the part of the expectation/integral over Ay is approximately

UkP(Ak.) .

5 After the French mathematician who participated in developing measure theory, pro-
nounced “luh-beg”.
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The Av approximation to (17) comes from adding up these approximate inte-
grals:
Ia,AU = ZUkP(Ak) . (19)
k
The measure-theoretic expectation/integral is the limit as Av — 0.
It is “easy” to show that the limit (19) exists. The first step is to make sure
the approximations are defined, which is the hard part if there is a hard part. A
function V(w) is called measurable if sets defined by inequalities are measurable

Ly={w|V(w) <v}, My =Aw]|V(w) <v}. (20)

Measurable means that L, € F and M, € F for all v. The hypothesis L, € F,
informally, is that P(V < v) is well defined. If the probabilities of the events,
V < wvand V < v are not defined, then (in this theory), E[V] is not defined
either. Strict inequality, P(V < v) can be different from non-strict inequality,
P(V <w) if P is a delta measure, or if the random variable V' is constant a lot
of the time.

In earlier lessons we replaced the general limit At — 0 with the specific limit
At = 27" with n — oo. We use that philosophy here and define Av = 27" and
take n — oco. With this trick, the step from n to n + 1 means dividing an event
A; into two disjoint pieces:

A, =B,UCy, BkﬂCk:(Z),
with
Bk:{vk§V<vk+%Av}, Ck:{vk+%Av§V<vk+1}.

Note that the event V = vy + %Av (if V lands exactly on the boundary between
By, and Cy) is assigned to C and is not in B. When you go from n to n + 1,
the contribution from Aj becomes the sum of contributions from Bj and Cj.
The result changes a little:

The n + 1 contribution is larger (technically, not smaller). Therefore the ap-

proximate integral (19) increases (doesn’t decrease), but not by much (the last
step uses Y, P(Cy) < 1):

1
Iyine = > wkP(By) + (v + 5A0)P(Cy)
k
1
< Lopw+ EA”; P(C})

1
S Ia,Av + iA'U .
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We have a sequence of approximations satisfies (writing n for Av,, = 27")
|Ia,n+1 - Ia,n| S 27",

We saw in an earlier lesson that > 27" < oo implies that

V]:/QV(w)dP( )=1I,= lim I, (21)

n— oo

exists.
This definition can also be given in terms of simple functions. The indicator
function of an event D C (Q is

1 ifweD
lD(w){ 0 ifwgD.

The integral of an indicator function, hich is its expected value if w ~ P, should
be
| 10()iP() = El10) = P(D).

A function W(w) is a simple function if it takes only finitely many values. This
is the same as saying there are events D; C €2 and numbers w; so that

M
w) = ijlpj (w)

The integral of a simple function should be

/W )dP(w ij/hj )dP(w ij

If V' > 0 is any measurable function, and if W is a simple function with W (w) <
V(w) for all w € Q, then we should have

/V )dP(w /W )dP(w

The definition (21) is equivalent to

/V )dP(w —sup/W )dP(w

over all simple functions W < V. On the right, sup means supremum. This is
like mazimum except that the supremum may not be attained.® The approxi-
mations (19) are integrals of simple functions

W:kalAk .

6Suppose S is some collection of numbers. The supremum is the largest number you can
get as a limit of numbers s € S. It is a theorem in mathematical analysis that if S is bounded
(there is some ¢ with s < ¢ for all s € S), then S has a supremum. For example, the supremum
of the numbers 1— % is 1, which is not attined because 1— % < 1 for all n. If S is not bounded
we say the supremum is oo.

15



It often happens that

V(w)dP(w) = oo .
Q
In this case we say the integral diverges. If the integral is finite, we sometimes
say V is integrable. This is not to be confused with the term measurable, which
refers to the level sets of V.

If V has both negative and positive values, we write V (w) = max(V (w),0)
and V_(w) = |V(w) — Vi (w)] for the positive part and negative part of V' (some
people define the negative part without |-| to be negative). If V and V_ are
integrable (finite integrals), then we say that V is integrable and define the
integral as

| v@rre) = [ Viwp) - [ V@)

The condition that V; and V + — are integrable is the same as the condition
that |V] is integrable.

In probability language, suppose X is a random variable. A mathematical
probabilist would say that the expected value of X exists if

E[|X]] <oo.

The expected value is

The Kolmogorov strong law of large numbers says that if | X| is integrable, and
if X,, are independent “copies” of X (independent with the same probability
distribution), then the sample means converge to px almost surely. The sample

means are
1 n
Sp = — E X5 .
n
k=1

The strong law says
Sn — pux as n — oo almost surely .

The hypothesis | X| < oo is crucial. Consider the Cauchy random variable with

u(z) = %H{EQ. It may seem that E[X] = 0 by symmetry, but

2 o0
E[\X|]:f/ L dr=o0.
T 0 1-|-CE

The sample means of a Cauchy random variable do not converge at all (a home-

work exercise).

6 Change of measure in diffusions
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