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Lesson 1, Brownian motion

1 Introduction to the course

These “Lessons” class notes for the Stochastic Calculus class of Fall, 2018. They
contain the material from the lecture, and probably a little more. You will
probably need to read the “lessons” to do the assignments.

This class uses the term stochastic calculus in two senses. In one sense,
stochastic calculus refers to a set of tricks for calculating things related to random
processes. One such trick is using the recursive backward equation to calculate
expected values. Most of the information we have about stochastic processes
comes from calculations like these. A clever proof usually relies on a clever
calculation.

In another sense, stochastic calculus refers to the Ito calculus and related
topics. The basic operations of ordinary differential and integral calculus may
not work when applied to diffusion processes because they are not differentiable.
The chain rule for diffusion processes, which is called Ito’s lemma, requires you to
calculate to second order in Taylor series in order to get the first “Ito derivative”.

Stochastic calculus is more than a collection of mathematical facts. It is also
a framework for creating mathematical models of physical or economic random
processes. Most of these models involve simplifications and approximations.1

For example, the Black Scholes equation is derived from a model in which stock
trading takes place in continuous time and the stock price is a continuous func-
tion of time. Actual stock trades happen each millisecond (not continuously)
and stocks “tick” up or down by small but non-zero jumps. Brownian motion
itself is a simple model of a complex physical process of a small particle in water
interacting with a large number of even smaller water molecules. The Brownian
motion model is accurate on “coarse” time scales (larger intervals of time) but
not on the time scale of individual collisions between the particle and water
molecules. This is not specific to stochastic calculus. Newton’s laws of plane-
tary motion neglect special relativity, quantum mechanics, magnetic fields, etc.
Nevertheless, they are useful for modeling the motion of planets.

The class was originally created for the Mathematics in Finance program, but
it was always meant to be generic and useful to others with different applications
in mind. Many of the examples are not from finance. Still, the choice of topics
was influenced by financial applications. In particular, there is less about steady
states and correlation functions than a course aimed at physics or chemistry
students would have.

1The statistician George Box was commenting on the modeling process when he said: “All
models are wrong. Some models are useful.”
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The reasoning in this class isn’t rigorous in the pure math sense, but it is
serious. Someone with the right background in measure theory would be able
to make many of the arguments rigorous if she or he were interested. My wish
for the class is to add as much “value” to students as possible in 13 lectures.
That means sacrificing proofs to make time for applications.

Computing is an essential part of present and future applied mathematics.
Since this class is applied mathematics, it would be wrong to do it without
computing. In fact, the computational methods – simulation and PDE solving,
etc. – are core elements of modern stochastic calculus.

2 Introduction to Brownian motion

Brownian motion is the name of the phenomenon that small particles in water,
when you look at them with a powerful enough microscope, seem to move in a
random fashion. It is named after a Brit named Brown, but the Wikipedia page
suggests that it was first observed elsewhere (France?). It also is the name of
a mathematical model of this particle motion. In the Brownian motion model,
Xt is the location of a randomly moving particle at time t. The path is written
as just X. The value of the path, the location, is Xt. We use subscripts instead
of function notation, X(t), because, well, because probability people do.

The class starts with Brownian motion because it’s the simplest example
of a diffusion process, and diffusion processes are the main topic of the class.
Many of the properties of diffusion processes can be seen in Brownian motion
first and then generalized to more general processes. For example, the backward
and forward equations for Brownian motion are special cases of the backward
and forward equations for general diffusions.

The central limit theorem is behind the fact that Brownian motion is a model
for the random motion of small particles, and for many other random processes.
You can view the motion the the particle as the result of a large number of small
and independent steps. The position Xt is thought of as the result of a large
number (an infinite number in the Brownian motion limit) of small indepen-
dent steps. The sum of a large number of independent identically distributed
steps, according to the central limit theorem, is approximately Gaussian. The
Brownian motion limit produces Xt that is exactly Gaussian.

But the Brownian motion limit is about more than the distribution of Xt.
It’s about other properties of the whole Brownian motion path. For example,
is is about the hitting probability

Pr( |Xt| ≥ R for some t < T ) . (1)

There is a path version of the central limit theorem, called the Donsker in-
variance principle.2 The invariance principle says that you can estimate prob-
abilities like (1) for complicated physical processes like the physical Brownian
particle motion using the simple mathematical Brownian motion model.

2Monroe Donsker was a Courant Institute mathematician, a great mathematician, and an
interesting person.
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Finally, Brownian motion serves as a model of the random noise that “drives”
other diffusion processes. This allows us to express general diffusions as func-
tions of Brownian motion. The Ito calculus, developed several lessons from now,
is the tool for doing this. Brownian motion is used in computer simulation of
general diffusions through what is called the Euler Mayurama method.

Brownian motion is a random function of time. The position of a particle at
time t is Xt. We suppose X0 = 0 and model the motion for t > 0. The defining
properties of Brownian motion are

1. Xt is a continuous function of t.

2. The increment Xt2 −Xt1 is Gaussian with mean zero and variance t2− t1
(t2 > t1 for this to make sense).

3. X is a Markov process, which means that conditional on Xt, the future
(Xs, with s > t )is independent of the past (Xs with s < t).

The Markov property of the mathematical Brownian motion reflects the fact
that the increments of Brownian motion after time t1 are the result of small steps
after time t1 that are independent of whatever happened before t1. The random
forces moving the particle after t1 are independent of the forces that moved
it before t1. The increment variance formula (2.) depends only on the time
difference. The Brownian motion model is statistically homogeneous in time in
the sense that the distribution of the random increment doesn’t depend on Xt1

or t1, but only on the amount of time in the increment. From a microscopic
point of view, this reflects the idea that whatever in the environment that is
causing Xt to move is homogeneous in time. The physical Brownian particle
moving in a fluid is like this (to some degree of approximation).

A stochastic process (also called random process) is a function of t whose
values are random. Brownian motion is a stochastic process. A random vari-
able with a specific distribution may be called a sample of the distribution. A
sample of a stochastic process may be called a sample path. A diffusion pro-
cess is a random process that is a Markov process and has continuous sample
paths. Brownian motion is the central and most basic example of a diffusion
process. Other diffusion processes have non-Gaussian increments, or Gaussian
increments with non-zero mean.

Brownian motion is important for many reasons, among them

1. It is a good model for many physical processes.

2. It illustrates the properties of general diffusion processes.

3. It can be used to construct other diffusion processes through the Ito cal-
culus.

This first lesson focuses on Brownian motion itself, with some basic motivation
and properties. One important point is some things about Brownian motion
that can be calculated either directly or with the help of partial differential
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equations. Another point is the relation between Brownian motion and random
walk, which may be seen as a fancy version of the central limit theorem. This
relation motivates properties 1, 2 and 3. It also suggests computing methods
that give approximate solutions to some partial differential equations related to
Brownian motion.

3 Transition probabilities and value functions

The Brownian motion path is too complicated to be described by a single prob-
ability density. But there are useful probability densities for simpler quantities
related to the Brownian motion path. These densities do not describe the whole
path. They are densities of some simple functions of a Brownian motion path.
For example, Xt is the position at a specific time t. We denote the PDF of Xt

by u(x, t). There is a simple Gaussian formula for u(x, t), which comes from
the fact that Xt−X0 is the increment of Brownian motion for the time interval
ending at t2 = t and starting at t1 = 0. The increment is equal to Xt because
X0 = 0. It (by property 2) is Gaussian with mean zero and variance t. This is3

u(x, t) =
1√
2πt

e−
x2

2t . (2)

This probability density describes the probability density at time t but it says
little about the path Xs for 0 < s < t.

Properties 2 and 3 lead to formulas for the joint density of several ob-
servations of the Brownian motion path at several times. To start, suppose
0 < t1 < t2. Write X1 for Xt1 , etc. We want the joint density function
u2(x1, x2, t1, t2), which is defined by

u2(x1, x2,t1, t2) dx1dx2

= Pr(x1 ≤ X1 ≤ x1 + dx1 and x2 ≤ X2 ≤ x2 + dx2) .

The expression for u2 comes from the density of X1 and the conditional density
of X2 given X1. The PDF for X1 is (2) with x = x1. The conditional probability
of X2 given X1 is given by (not writing t1 and t2 to shorten the formulas)

u(x2|x1) dx2 = Pr(x2 ≤ X2 ≤ x2 + dx2 | X1 = x1) .

Property 2 implies that this is Gaussian with mean x1 and variance t2 − t1.
Thus

u(x2|x1) =
1√

2π(t2 − t1)
e
− 1

2(t2−t1)
(x2−x1)

2

. (3)

This is called the transition density of Brownian motion because it describes the
probability density of transitions from x1 at time t1 to x2 at time t2.

3The Gaussian density with mean µ and variance σ2 is 1√
2πσ2

e
− 1

2σ2
(x−µ)2

. Here, we have

µ = 0 and σ2 = t.
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Bayes’ rule for this context is

u2(x1, x2) = u(x1)u(x2|x1) .

Specifically, we get (with some algebra)

u2(x1, x2, t1, t2) =
1√

(2π)
2

(t2 − t1)t1

e
− 1

2

[
(x2−x1)2

t2−t1
+
x21
t2

]
. (4)

The formula for the joint density of three or more observations is analogous,
but its derivation requires the Markov property 3.

Suppose we want to know the expected value of some function of the Brow-
nian motion position at time T :

f0 = E[V (XT )] . (5)

The value function is the conditional expectation of V (XT ), conditional on the
location at an earlier time

f(x, t) = E[V (XT ) | Xt = x] . (6)

This is often written
f(x, t) = Ex,t[V (XT )] .

The subscript on the expectation indicates which “probability measure” is used
for the expectation. Future lessons will say more about probability measure, but
without giving all the mathematical details. Either the conditional probability
formula (3), or the property 2 that it comes from, gives (writing x for x2, y for
x1, T for t2 and t for t1)

f(x, t) =
1√

2π(T − t)

∫ ∞
−∞

V (x)e−
1
2

(x−y)2
T−t dy . (7)

In more complicated problems, the expectation (5) is calculated by solving the
partial differential equation that the value function satisfies. The value function
gives f0 because f0 = f(0, T ).

4 Partial differential equations

The probability density (2) satisfies a partial differential equation, or PDE,
that is called (depending on the context and the generality) the heat equation
or the diffusion equation or the Kolmogorov forward equation. We write partial
derivatives as

∂u

∂t
= ∂tu ,

∂2u

∂x2
= ∂2xu , etc .

This is simpler, and it emphasizes differentiation as an operator that can be
applied to a function. Direct calculation with (2) shows that

∂tu =
1

2
∂2xu . (8)
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Later on there will be derivations of this equation that are more satisfying than
direct calculation.

The heat equation (8) is more general than the Gaussian probability density
even though many derivations rely on something being Gaussian. For example,
suppose the distribution of X0 is random with PDF u0(x0). Suppose (as will
be justified more below) also that the transition density from time 0 to time t
is the Gaussian so that a transition y → x has the PDF 4

G(x, y, t) =
1√
2πt

e−
(x−y)2

2t . (9)

Then, as before (only the notation has changed, and that only a little) Bayes’
rule gives the PDF for Xt as

u(x, t) =

∫ ∞
−∞

u0(y)G(x, y, t) dy . (10)

This is the integral over places X may have started, called y with PDF u0(y),
multiplied by the probability density to go from y to x in time t, which is
(9). The more general probability density u(x, t) in (10) is Gaussian only if
u0 is Gaussian.5 But u still satisfies the heat equation (8). You can see this
by differentiating the integral on the right with respect to t and (twice) with
respect to x. The partial derivatives go under the integral and land on G. Direct
calculation (the same one as before) shows that G satisfies the heat equation. To
summarize: the probability density of the Brownian motion location Xt satisfies
the heat equation (8).

The value function (6) satisfies a PDE that is similar but has an important
difference in sign. The partial derivatives ∂2xf and ∂tf may be calculated from
the integral representation (7). Notice that (7) may be written using (9) as

f(x, t) =

∫ ∞
−∞

G(x, y, T − t)V (y) dy .

The sign difference, relative to (8), comes from

∂tG(x, y, T − t) = −1

2
∂2xG(x, y, T − t) .

The result is commonly written in the form

∂tf(x, t) +
1

2
∂2xf(x, t) = 0 . (11)

This is commonly called the backward equation (or Kolmogorov backward equa-
tion) to indicate that the unknown f is a value function and that the sign is
different. There is another derivation of this PDE that is more general and

4The G is for both Green and Gauss. In the theory of partial differential equations,
functions that play the role of G are called Green’s functions.

5This intuitive fact has a mathematical proof using the Fourier transform.
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does not rely on algebraic calculation like this. The meaning of “backward” and
“forward” will be explained soon.

There is a duality relation between the forward and backward equations. For
any t in the range 0 < t < T , the expected value (5) may be expressed in terms
of the conditional expected values (6) as

f0 =

∫ ∞
−∞

u(x, t)f(x, t) dx . (12)

Formulas like this are sometimes called the law of total probability. The ex-
pected value on the left is expressed in terms of conditional expectations on the
right and all possible values of Xt, weighted by their probability density. The
duality relation is that the forward equation implies the backward equation and
conversely. Here, we give the calculation to show that the forward and backward
equations are consistent. The proof that one implies the other is more technical.

The calculation relies on the fact that f0 does not depend on t. If we differ-
entiate with respect to t, the left side is zero. On the right side we may take ∂t
inside the integral and apply the product rule. The result is∫ ∞

−∞
[∂tu(x, t)] f(x, t) dx+

∫ ∞
−∞

u(x, t) [∂tf(x, t)] dx = 0 .

Suppose u satisfies the forward equation (8). Then this becomes

1

2

∫ ∞
−∞

[
∂2xu(x, t)

]
f(x, t) dx+

∫ ∞
−∞

u(x, t) [∂tf(x, t)] dx = 0 .

We may integrate by parts twice in the first integral then combine terms. The
result is ∫ ∞

−∞
u(x, t)

[
∂tf(x, t) +

1

2
∂2xf(x, t)

]
dx = 0 .

The term [· · · ] is zero if f satisfies the backward equation (11). A mathematical
proof would have to ask several questions: What about the boundary terms
in the integration by parts? How do we know that ∂2xf(x, t) exists? These
questions will be answered to some extent later in the course. It is “hard to
imagine” that this integral is always zero even though [· · · ] 6= 0. Unfortunately,
“hard to imagine” is not a mathematical proof. But it is related to one. In this
course, we will derive a backward equation and then use the duality relation
(12) to derive the corresponding forward equation.

The u equation (8) is called forward because it describes how u changes
(evolves) as time moves forward. The initial data u0(x) are specified in a
somewhat arbitrary way. Then the equation (8) describes how u changes as
t increases. The solution of (8) with initial data u0 is given by the integral
representation (10). The expression (9) makes sense only if t has moved in the
forward direction from 0 to t > 0. If you want to specify u(x, t) for t > 0
completely, it suffices to say that u satisfies the PDE (8) and has initial data
u(x, 0) = u0(x). The problem of finding u for t > 0 is called the initial value
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problem, because the initial values u0(x) must also be given. It is a theorem
that the solution of the initial value problem is unique – there is only one. We
showed that the integral (10) satisfies the PDE. It is not hard to see (exer-
cise) that this formula has u(x, t) → u0(x) as t → 0, so the initial condition is
satisfied. Therefore, the integral represents the unique solution.

The equation (11) is called “backward” for a similar reason. The value
function f satisfies final conditions f(x, T ) = V (x). This is “obvious” from the
abstract definition (6). If we know XT = x, then the expected value is irrelevant,
you just get V (x). The solution to the final value problem is also unique, so
the formula (7) represents this unique solution. It is necessary that t < T . The
value function evolves backwards in time from its given final condition. In the
integral, G(x, y, T − t) makes sense only if t < T .

5 Hitting probabilities

Suppose a > 0 is some “marker”. The hitting time for a is the first time X
“hits” a. This is written

τa = min{ t | Xt = a} . (13)

Hitting times may be defined for other processes. It is possible, for other pro-
cesses, that there is no hitting time because X never hits a. We define τa =∞
in those cases. We will see that for Brownian motion,

Pr( τa =∞) = 0 .

This means that the hitting probability is one. Philosophers argue whether this
means that the hitting time is “always” finite. Probabilists say almost surely
for events that have probability one.

Hitting probabilities may be calculated using either the forward or the back-
ward equation. The unknown in the equation is defined to capture the hitting
event. The forward equation represents probability density, which is defined in
terms of Pr(Xt ∈ (x, x+ dx)). For hitting problems, we refine this to require
that Xt has not hit the boundary before time t

u(x, t)dx = Pr(Xt ∈ (x, x+ dx) and Xs 6= s for 0 ≤ a ≤ t) . (14)

This definition is applied only for x < a. The hitting probability is one minus
the probability of not hitting, so

1− Pr( τa < t) = Pr( τa > t) =

∫ a

−∞
u(x, t)dx < 1 . (15)

The unknown u may be calculated by solving a partial differential equation with
a boundary condition at x = a.

I hope the following facts are easy to believe. We do not prove them rigor-
ously in this class but we give more reasons to believe them in future lessons.
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1. For x < a, the density (14) satisfies the forward equation (8). This is
because Xt is continuous so if Xt < a, then for times close enough to t,
the process does not “know about” the boundary a so it “looks like” a
regular Brownian motion.

2. As t→ 0, and for x < a, u(x, t) “looks like” the unconditional density (2).
The reason is the same – Xt does not feel the boundary for small enough
time.

3. u(x, t) → 0 as x → a. Since u is continuous for t > 0 at x = a (this is as
hard to prove as the other properties), this is the same as u(a, t) = 0.

It is possible to find a formula for u(x, t) from these facts.
The method of images is a trick for finding u. The trick is to find something

that satisfies the forward equation for x ≤ a by subtracting from the “free”
solution (2) another function that satisfies the forward equation. The free so-
lution may be thought of as the result of starting with a unit of probability at
the point x = 0. This is called a unit charge of probability starting at x = 0.
We subtract a negative unit charge starting at x = 2a. This is the image charge
that gives the method its name. The image charge solution is

1√
2πt

e−
(x−2a)2

2t .

Subtraction gives

u(x, t) =
1√
2πt

(
e−

x2

2t − e−
(x−2a)2

2t

)
. (16)

Let us check that this formula has the three properties above. For t > 0 this
satisfies the forward equation, because the forward equation is linear and both
parts satisfy it. As t→ 0, and for x < a, the solution looks like the free solution.
This is because the image part goes to zero very rapidly for x ≤ a as t→ 0. If

you fix x ≤ a, then the exponential part of the image term is e−
−(x−2a)2

2t ≤ e−−a2
2t

(because (x− 2a)2 ≥ a2 for x ≤ a). Therefore the exponential part goes to zero

“exponentially” as t → 0. The prefactor, which is (2πt)−
1
2 , “blows up” (goes

to infinity) as t→ 0, but it blows up more slowly than the exponential goes to
zero. As a result, the whole image term goes to zero as t → 0 for x ≤ a. This
is not true for x = 2a, where the image part blows up as t → 0. Fortunately,
x = 2a is not in the domain where we care what u(x, t) is.

The boundary condition u(a, t) = 0 is satisfied by the combination (16) by
symmetry. It is easy to check that if you take x = a then the two exponential
terms cancel. The symmetry is that u(x, t) takes “equal and opposite” values at
equal distances from x = a. The two symmetric points are x and 2a− x (draw
a picture). The point 2a− x is the image point for x, reflected about the point
a The symmetry property under reflection is

u(x, t) = −u(2a− x, t) .

9



The negative image charge is placed at 2a to insure this symmetry. If you put
in x = a, you get u(x, t) = −u(a, t), so u(a, t) = 0 (if u is continuous). This
is the property 3 above. This shows that the formula (16) is the probability
density we’re looking for.

The formulas (16) and (15) give a way to calculate the probability density
of the hitting time τa. Call this density va(t). It is defined by

Pr(t ≤ τa ≤ t+ dt) = va(t)dt .

It is found from

va(t) = − d

dt
Pr( τa > t) .

(Check the sign: va is positive and the survival probability Pr( τa > t) is a
decreasing function of t.) We could substitute the explicit formula (16) into this
and calculate, but there is less calculation if we instead use the forward equation
that u satisfies:

d

dt
Pr( τa > t) =

d

dt

∫ a

−∞
u(x, t)dx

=

∫ a

−∞
∂tu(x, t)dx

=
1

2

∫ a

−∞
∂2xu(x, t)dx

=
1

2
∂xu(a, t) .

In the last line, the boundary term at x = −∞ is zero because ∂xu(x, t) → 0
as x→ −∞, which you can believe based on the fact that it’s very unlikely for
x to have a large negative value, or you can check in the formula (16). The
derivative at the end is calculated by

1√
2πt

(
e−

x2

2t − e−
(x−2a)2

2t

)
∂x−→ 1√

2πt

(
−x
t
e−

x2

2t +
x− 2a

t
e−

−(x−2a)2

2t

)
x=a
= − 1√

2π

2a

t
3
2

e−
a2

2t .

Altogether, we find

va(t) =
1√
2π

a

t
3
2

e−
a2

2t . (17)

This formula says a lot about hitting.
When t → 0, the exponential factor dominates the power law prefactor.

This shows that it’s “exponentially” unlikely to hit the boundary quickly. You
can find the “most likely” hitting time by finding the maximum of va over t.
The result is t∗ = 1

3a
2. Since a is the distance from the starting point, this

says that the time to reach a point is roughly proportional to the square of the
distance. This is the basic scaling of Brownian motion – “time goes like space
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squared”. When t→∞, the exponential factor goes to 1, so only the prefactor
matters. That is va(t) ≈ 1√

2π
t−

3
2 . The tail of a probability distribution is the

part far from the most likely values. A probability distribution has heavy tails
if the density goes to zero slowly and light tails if it goes to zero rapidly. The
Gaussian density has light tails, since the density goes to zero exponentially.
The hitting time density (17) has heavy tails because the density has a “power
law” decay with power (the power of t) − 3

2 . This means that it isn’t so unlikely
for τa to be very big. It’s unlikely, but not very unlikely.

11


