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Lesson 4, Ito’s lemma

1 Introduction

Ito’s lemma is the chain rule for stochastic calculus. If Xt is a diffusion process
with infinitesimal mean a(x, t) and infinitesimal variance v(x, t), and if u(x, t)
is a function with enough derivatives, then Yt = u(Xt, t) is another stochastic
process. This satisfies

du(Xt, t) = ∂tu(Xt, t) dt+ ∂xu(x, t)dXt +
1

2
∂2
xu(Xt, t) v(Xt)dt . (1)

The first two terms on the right are from the ordinary chain rule that would
apply if Xt were a differentiable function of t. The last term is new to diffusion
processes. It arises from the fact that dX2 is of the order of dt. The chain rule
is a relation that holds to order dt, so you have to keep all terms of that order.

The formal Ito’s lemma relation (1) is formal. The terms dX and dt do not
have an independent mathematical meaning. The scientist’s understanding of
(1), which is usually a simple and reliable way to think about differentials, is
actually wrong here. Suppose ∆t > 0 is a small time step and ∆u = u(Xt+∆t, t+
∆t)− u(Xt, t). It is not true that

∆u = ∂tu(Xt, t)∆t+ ∂xu(Xt, t)∆X +
1

2
∂2
xu(Xt, t)v(Xt, t)∆t+O(∆t2) .

This is because the difference

r = (∆X)
2 − v(Xt)∆t

is actually on the order of ∆t. We can ignore r (as we will see) because it is
of order ∆t and it has mean zero. You cannot replace (∆X)2 with v(Xt)∆t
“pointwise” at any specific time. But you can use v(Xt)∆t as a substitute for
(∆X)2 in an average sense. This is the main technical issue of this lesson.

The formal expression (1) is meant to be a simply way to express the integral
relations. Integrate both sides over the time integral [T1, T2]. From the left side
of (1) you get ∫ T2

T1

du(Xt, t) = u(XT2 , T2)− u(XT1 , T1) .

We have not given a mathematical definition of
∫
du, so we can take this as the

definition. If we then integrate the terms on the right of (1), the result seems
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to be

u(XT2
, T2)− u(XT1

, T1) =

∫ T2

T1

(
∂tu(Xt, t) +

1

2
∂2
xu(Xt, t)v(Xt)

)
dt (2)

+

∫ T2

T1

∂xu(Xt, t) dXt . (3)

The integral on the right side on the first line is the ordinary Riemann integral
of the continuous integrand (· · · ). The integral on the second line is the Ito
integral with respect to the diffusion dXt defined in Lesson 3. We prove Ito’s
lemma by proving the integral version (2)(3).

Ito’s lemma also serves as the stochastic version of the fundamental theorem
of calculus. Without it, we would struggle to evaluate Ito integrals from the
definition, as on Assignment 3 with∫ T

0

WtdWt =
1

2
W 2
t −

1

2
T . (4)

In an ordinary calculus class, there may be some examples where Riemann
integrals are done directly from the definition, such as∫ a

0

x dx =
1

2
a2 .

This may be done directly from the definition using the identity

n∑
k=1

k =
1

2
n2 − 1

2
n .

But the easier way is to note that d
dx

(
1
2x

2
)

= x and then use the fundamental
theorem of calculus. The integral (4) can be done in the same way. Apply Ito’s
lemma (1) to the function u(w, t) = 1

2w
2 − 1

2 t. The necessary derivatives are
∂wu = w, ∂2

wu = 1, and ∂tu = 1
2 . Therefore

d

(
1

2
W 2
t −

1

2
t

)
= WtdWt +

1

2
dt− 1

2
dt = WtdWt .

The integral relations (2) and (3), together with this calculation, imply (4). It
is rare to find “indefinite integral” in this way using Ito’s lemma. It happens
only is special examples. Even for ordinary calculus, most integrands do not
have an indefinite integral in closed form.

2 Proof of Ito’s lemma

The proof of Ito’s lemma has two steps. First, we do a Taylor expansion of
∆u and identify the terms of order ∆t or higher. Then we show that adding
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up the terms (∆X)
2

and adding up the terms v(Xt)∆t have the same limit as
∆t → 0. Both of these arguments use ideas from Lesson 3 and Assignment 3.
There also is an application of Borel Cantelli to show that the arguments are
correct almost surely. For simplicity, we take the lower limit T1 to be zero. We
write the upper limit T2 as T .

Use the notation of Lesson 3. Take hn = 2−n, tk = khn, and write Xk for
Xtk , etc. Then1 It is easy to give a more correct argument, but it takes longer
and isn’t more interesting.

u(XT , T )− u(X0, 0) =
∑
tk<T

∆uk ,

where

∆uk = u(Xk + ∆Xk, tk + ∆t)− u(Xk, tk) , ∆Xk = Xk+1 −Xk .

The Taylor expansion is

∆uk = ∂xuk∆Xk +
1

2
∂2
xuk (∆Xk)

2
+ ∂tuk∆t

+O(|∆Xk|3) +O(∆t |∆Xk|) +O(∆t2) .

We sum over k. On the left side we get u(XT , t)−u(X0, 0). There are six sums
on the right to consider.

1. The first term on the right leads to the sum∑
tk<T

u(Xk, tk)∆Xk .

We showed in Lesson 3 that this converges almost surely as n→∞ to the
Ito integral ∫ T

0

u(Xt, t)dXt .

2. The second term is the most interesting one. Subsection 2.1 is devoted to
it.

3. The third term is the Riemann sum approximation to∫ T

0

∂tu(Xt, t) dt .

4. The fourth term involves
E
[
|∆Xk|3

]
.

1This identity is a little wrong because there is a tiny piece of time between the largest
tk < T and T . This was ignored in Lesson 3 and will be ignored here.
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This may be bounded using the Cauchy Schwarz inequality, and |∆Xk|3 =

|∆Xk| (∆Xk)
2
. Therefore

E
[
|∆Xk|3

]
= E

[
|∆Xk| (∆Xk)

2
]

≤
{

E
[

(∆Xk)
2
]

E
[

(∆Xk)
4
]} 1

2

≤
{
C∆t ·∆t2

}
≤ C∆t

3
2 .

The philosophy for this term is that higher moments control lower mo-

ments. In this case, the fourth moment E
[

(∆Xk)
4
]

controls the third

moment E
[
|∆Xk|3

]
. If you know the fourth moment is bounded then you

know that the third moment is bounded. You calculate the bound using
the Cauchy Schwarz inequality.

2.1 The second sum

It is similar (or the same as) the quadratic variation problems on Assignment
3. It starts with a technical trick to avoid a complicated mess. Instead of the
“pointwise” infinitesimal variance, we use a related quantity that is exact for
time ∆t

w(x,∆t) = Ex,t

[
(Xt+∆t − x)

2
]
.

As a reminder, the subscript Ex,t means to take the expectation with the con-
dition that Xt = x. An equivalent definition is

w(Xt,∆t) = E
[

(Xt+∆t −Xt)
2 | Ft

]
. (5)

If you know the path up to time t, which is the information in Ft, then you
know Xt. It is natural that the conditional expectation is a function of Xt. This
is almost the same as v(x)∆t but not quite. Our definition of a diffusion process
included the hypothesis that

w(x,∆t) = v(x)∆t+O(∆t2) . (6)

The proof that follows is “simplified” (avoiding a big mess) by using w instead
of v so as to not have an O(∆t2) “error term” someplace.

The second sum is

Sn =
1

2

∑
tk<T

∂2
xu(Xk, tk)∆X2

k .

This can be written as the sum of a “mean” and a fluctuating part:

Sn =
1

2

∑
tk<T

∂2
xu(Xk, tk)w(Xk, hn) +

1

2

∑
tk<T

∂2
xu(Xk, tk)

(
∆X2

k − w(Xk, hn)
)
.
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The first sum on the right, the “mean” part, is more or less the Riemann sum
approximation to the dt integral.∑

tk<T

∂2
xu(Xk, tk)w(Xk, hn) =

∑
tk<T

∂2
xu(Xk, tk)v(Xk)∆t+

∑
tk<T

O(∆t2) .

The first sum is the actual Riemann sum, which converges to the integral as
∆t→ 0 (which is the same as n→∞):∫ T

0

∂2
xu(Xt, t)v(Xt) dt .

The second sum is O(∆t) for a reason we saw in Lesson 3:∣∣∣∣∣∣
∑
tk≤T

O(∆t2)

∣∣∣∣∣∣ ≤ C
∑
tk≤T

∆t2

≤ C∆t
∑
tk≤T

∆t

≤ CT∆t = O(∆t) .

The “fluctuation sum” is the part that has mean zero and turns out to go
to zero almost surely as n→∞. It is

Rn =
∑
tk<T

∂2
xu(Xk, tk)

(
∆X2

k − w(Xk,∆t)
)
.

As in Lesson 3, we show Rn → 0 almost surely as n→∞ by calculating E
[
R2
n

]
.

Define
Vk = ∂2

xu(Xk, tk)
(
∆X2

k − w(Xk,∆t)
)
.

Then
E
[
R2
n

]
=
∑
tk<T

∑
tj<T

E[VkVj ] .

There are diagonal terms (j = k) and off-diagonal terms (j < k or j > k). All of
the off-diagonal expectations are zero. To see this, suppose k > j and condition
on Ftk . The values of Vj and Xk are known at time tk so Vj and Xk come out of
the conditional expectation. The conditional expectation of Vk is zero because
of the definition (5) of w. Therefore

E[VjVk] = E[ E[VjVk | Ftk ]]

= E[Vj E[Vk | Ftk ]]

= E
[
Vj ∂

2
xu(Xk, tk) E

[ (
∆X2

k − w(Xk,∆t
)
| Ftk

]]
= E

[
Vj ∂

2
xu(Xk, tk) E

[
∆X2

k | Ftk
]]
− E

[
Vj ∂

2
xu(Xk, tk)w(Xk,∆t

]
.

This is zero because of (5), as E
[

∆X2
k | Ftk

]
= w(Xk,∆t).
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The diagonal terms have the form

E
[
V 2
k

]
= E

[ (
∂2
xu(Xk, tk)

)2 (
∆X2

k − w(Xk,∆t)
)2]

.

We will see that E
[
V 2
k

]
= O(∆t2). This implies that the sum of the diagonal

terms is O(∆t) → 0 as n → ∞. The factor involving ∂2
xu is bounded by

assumption (u has enough bounded derivatives).
Here’s a “back of the envelope” summary of the argument. Suppose Yk is

a family of random variables with mean µ and variance σ2. To keep it simple,
suppose the Yk are independent and gaussian. Define

Sn =
∑
tk<T

Yk .

Suppose mn = E[Sn] has a limit as ∆t → 0. Let tN be the largest tk. That
is, let Nn be so that tN = max {tk | tk < T}. Then tN is within ∆t of T . The
number of terms is N ≈ T/∆t. The sum Sn is the sum of N independent terms.
Therefore mn = Nnµ ≈ Tµ/∆t. The mean of Sn will have a finite limit m as
∆t→ 0 if µ ≈ m∆t/T . That is, if µ = O(∆t). In the calculations that went into
our Ito integral/Ito Lemma proofs, ∆Xk and ∂2

xuk∆X2
k have expected value on

the order of ∆t.
The variance calculation is similar. We have

var(Sn) = Nσ2 ≈ Tσ2/∆t .

This has a finite limit as ∆t→ 0 if σ2 = O(∆t). The Ito integral contributions
ftk∆Xk have variance of order ∆t. That’s why the sum that approximates the
Ito integral has a finite variance. But ∆X2

n has variance O(∆t2) (an exercise).
If σ2 = O(∆t2) then var(Sn) = O(∆t). This goes to zero as ∆t→ 0.

3 Applications

The easy applications are the reward for working through all that theory. Stochas-
tic calculus will now start looking more like applied math and less like theo-
rem/proof pure math.

3.1 Geometric Brownian motion

Geometric Brownian motion is the solution to the SDE

dS = µStdt+ σStdWt . (7)

The trick is to find the SDE satisfied by

Xt = log(St) .
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The Ito calculus applies. Take u(s) = log(S), with derivatives ∂su(x) = 1
s and

∂2
su(s) = − 1

s2 . The infinitesimal variance is σ2S2
t . Informally we write

(σStdWt)
2

= σ2S2
t (dWt)

2
= σ2S2

t dt ,

But this isn’t really true on the differential level, only on the integral level. Ito’s
lemma (1) and the SDE (??) are used in the following calculation:

dXt = d log(St)

= ∂su(St)dSt +
1

2
∂2
su(St)v(St)dt

=
1

St
(µStdt+ σStdWt)−

1

2

1

S2
t

σ2S2
t dt

=

(
µ− 1

2
σ2

)
dt+ σdWt .

You can integrate the two terms, and use W0 = 0, to get

XT = X0 +

(
µ− 1

2
σ2

)
T + σWT .

Therefore (using eX0 = S0)

ST = eXT

= eX0e(µ−
1
2σ

2)T+σWT

ST = S0e
(µ− 1

2σ
2)T+σWT . (8)

We see that ST is a function of WT only. In general, the solution to an SDE
depends on the whole path W[0,T ]. There is an example of this in Assignment
4, the Ornstein Uhlenbeck process.

It is interesting to examine the solution in the special case of zero mean
growth, µ = 0. In this case, St is a martingale:

E[ dSt | Ft] = 0 .

This implies that
E[St] = S0 .

Some economists and political philosophers take St as a model of long term
wealth accumulation in a “fair” society. Suppose dt is the time period of a
generation. Then you are born with St wealth and you leave to your child
(assuming one parent =⇒ one child in this simple model) St +σdWt. That is,
you might die richer or poorer, but the expected value is zero. The wealth moves
from family to family in one generation without being created or destroyed.
Everyone has the same independent random process – the same chance to “get
ahead”. Your expected wealth after t generations is still S0.
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But the solution formula (8) implies that St → 0 as t → ∞ almost surely.
This is because Wt is on the order of

√
t, so the Brownian motion part is

dominated by the deterministic part − 1
2σ

2t. There is a proof in assignment 3.
If we think of a society as made of many independent “copies” of the process
St, then most of them have St → 0 as t→∞. Only a few have St � S0, so that
the average is still S0. The total wealth becomes concentrated in fewer richer
families as t→∞.

3.2 Ornstein Uhlenbeck, linear processes

The Ornstein Uhlenbeck process is governed by the SDE

dXt = −γXtdt+ σdWt . (9)

Models like this are used to model small fluctuations about a steady state. The
resting state is X = 0. The noise parameter σ represents the strength of the
noise that drives X away from equilibrium. The damping parameter γ represents
the strength of the force (or some other tendency) that returns X to its resting
state. Assignment 4 examines the OU process in some technical detail.

The OU process Xt settles down to a statistical equilibrium. The value of Xt

never stops changing, but the PDF f(x, t) converges to a limit as t→∞. The
limiting PDF, which is the equilibrium density is f∞(x). Assignment 4 gives a
simple formula for the equilibrium density.

We can learn about the equilibrium density using Ito calculations inside
expectations. Suppose u(x) is “any” function in the sense that the precise form
does not matter but the calculations may not apply. Let Xt be a diffusion with
infinitesimal mean a(x) and infinitesimal variance v(x). The time derivative of
the expectation value may be calculated as follows

dE[u(Xt)] = E[ d u(Xt)]

= E

[
∂xu(Xt)dXt +

1

2
∂2
xu(Xt) v(Xt)dt

]
= E

[
∂xu(Xt)a(Xt)dt+

1

2
∂2
xu(Xt) v(Xt)dt

]
= E

[
∂xu(Xt)a(Xt) +

1

2
∂2
xu(Xt) v(Xt)

]
dt .

We were able to replace dXt with its expectation value a(Xt)dt because we
are taking expectations. If you think about this point more deeply, you may
conclude that the tower property is involved. In more common notation, this
may be written

d

dt
E[u(Xt)] = E

[
∂xu(Xt)a(Xt) +

1

2
∂2
xu(Xt) v(Xt)

]
. (10)

For example, for the OU process we calculate

d

dt
E[Xt] = −γE[Xt] .
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This implies that
E[Xt] = e−γtE[X0] .

The expected value converges to the resting value exponentially with rate γ as
t→∞.

But Xt does not converge to the resting value X0 as t→∞. We can under-
stand this to some extent by assuming mean zero (E[X0] = 0) and computing
the time dependence of the variance

d

dt
E
[
X2
t

]
= 2E[Xt(−γXt)] + E

[
σ2
]

= −2γE
[
X2
t

]
+ σ2 .

We write St = E
[
X2
t

]
. In the equilibrium probability density, d

dtSt = 0. Here,
that leads to

−2γS∞ + σ2 = 0

S∞ =
σ2

2γ
.

The differential equation
d

dt
St = −2γSt + σ2

has solution

St =
σ2

2γ
+ e−2γt

(
S0 −

σ2

2γ

)
.

The variance at time t converges exponentially to the steady state variance,
which is not zero.

Physicists refer to these calculations as the fluctuation dissipation theorem.
It is possible to determine S∞ from the principles of equilibrium statistical
mechanics. It is possible to determine γ from simple dynamical models. Finding
σ is harder, as it requires modeling the noise process. The fluctuation dissipation
theorem tells you that you can determine σ from S∞ and γ. This argument was
first used by Einstein in his theory of Brownian motion.

4 The Ito isometry formula

The formula applies to a stochastic integral with respect to a martingale Xt

with infinitesimal variance v(x). It is important that Xt is a martingale – the
formula is not true if the infinitesimal mean is not zero.

E

[∫ T

0

ftdXt

]2

=

∫ T

0

E
[
f2
t v(Xt)

]
dt . (11)

This formula is a fancy version of the fact that when you add independent
random variables the variance of the sum is the sum of the variances. This
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fact applies not only to independent random variables, but also to martingales.
The calculation is the same. The left side of (11) is the variance of the sum
(the integral). The right side is the sum (the integral) of the variances. As an
example, apply this to

∫
WdW . The conclusion should be

1

4
E
[
W 4
T

]
− t

2
E
[
W 2
T

]
+

1

4
T 2 =

∫ T

0

t dt .

There is more than one way to derive the Ito isometry formula. One uses the
Ito calculus. Another starts with the approximations to the Ito integral, does a
calculation on the sum that involves figuring out why the off diagonal terms in
the square have expected value zero, then taking the limit n→∞.
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