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1 About this Stochastic Calculus course

This short course is about building and understanding models of random pro-
cesses. The models are stochastic differential equations (usually called SDEs),
which are a random process analogue of ordinary differential equations (ODEs).
A function of time will be called a process. It is either deterministic or random,
so there are deterministic processes and random processes, the latter also called
stochastic processes. Ordinary calculus (derivatives and integrals) is the mathe-
matical machinery used to create and understand ordinary differential equation
models of deterministic processes. Stochastic calculus serves the same function
for stochastic processes.

A differential equation model describes the small changes that happen in
small amounts of time. The “system” is the thing being modeled. Let Xt be a
variable that describes the system at time t. The tradition in stochastic calculus
is to use capital letters for random quantities and to put the time as a subscript.
In ordinary differential equations, the state at time t might be written as x(t).
In the informal language of scientists and engineers, let dt be a small increment
of time. The corresponding increment of X is dX = Xt+dt−Xt. A deterministic
process model gives dX as a function of Xt, which may be written as

dXt = a(Xt)dt . (1)

This is an ordinary differential equation. It is traditional to put the dt on the
other side, as

dXt

dt
= a(Xt) .

A stochastic process model is a description of dX as a random variable. The
distribution of dX depends on Xt and dt.

This course describes a class of stochastic processes called diffusions or dif-
fusion processes. A diffusion process is determined by the mean and variance
of dX. More precisely, you have to specify the conditional infinitesimal mean,
or drift, and the infinitesimal variance, or quadratic variation. The increment
in the ordinary differential equation is proportional to the time increment dt.
This also holds for the infinitesimal mean and variance.

a(x)dt = E[ dX | Xt = x] (2)

µ(x)dt = var[ dX | Xt = x] . (3)
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This might seem surprising, since the probability distribution of a random vari-
able is not determined by just the mean and variance. It turns out, for diffusion
processes, that dX is close enough to being Gaussian that the mean and vari-
ance is enough. To summarize: a deterministic ordinary differential equation
model is specified by the function a(x). A stochastic diffusion process model is
specified by the infinitesimal mean a(x) and the infinitesimal variance µ(x).

The simplest way to enter the world of stochastic diffusion process models
is to take µ(x) = 1 and a(x) = 0. This process is Brownian motion. It models a
“system” that is moved by a steady stream of infinitesimal “shocks” that have
the same distribution. We require only that the mean is zero. The constant
infinitesimal variance can be normalized to µ = 1 by a scaling. Much of this
class is about this example.

Geometric Brownian motion is a simple diffusion process in which dX is
proportional to X. This may be appropriate for modeling a population where
“birth” (dX > 0) and “death” are specified as percentages of the population. It
is used to model the random changes in the price of a “stock” (financial asset).
Here too, prices go up and down in percentages. The infinitesimal mean being
proportional to x means

a(x) = rx . (4)

The parameter r is the expected growth rate (for populations) or the expected
rate of return (for prices). The standard deviation of dX also should be pro-
portional to x. The standard deviation is the square root of the variance. We
want the standard deviation to be proportional to x, so

√
µ(x) = σx, for some

constant σ. You can take the square root of both sides of (3), and the result is

(var[ dX | Xt = x])
1
2 = σx

√
dt . (5)

We use this in the form

var[ dX | Xt = x] = σ2x2dt =⇒ µ(x) = σ2x2 . (6)

The parameter σ is called the volatilty in finance and economics.
The term geometric comes from the fact that the “log process” Yt = log(Xt)

is closely related to ordinary Brownian motion. After Week 2, you will be
able to verify that it has constant infinitesimal variance µ = σ2 and constant
infinitesimal mean

a = r − 1

2
σ2 . (7)

The 1
2σ

2 is the “Ito term” that we will find in Week 2 using Ito’s lemma. Let Wt

be a Brownian motion as above with infinitesimal mean a = 0 and infinitesimal
variance µ = 1. Then Yt may be written

Yt = y0 + σWt + (r − 1

2
σ2)t . (8)

You can check this, since var(dY ) = σ2var(dW ) = σ2dt, and E[dY ] = E[dW ](r−
1
2σ

2)dt. A geometric series is the exponential of an arithmetic series. If we think

2



of Wt as “arithmetic” Brownian motion, then geometric Brownian motion is a
fitting way to describe the process

Xt = X0e
σWt+(r− 1

2σ
2)t . (9)

This formula expresses a diffusion process Xt in terms of a Brownian motion.
The classes of weeks 3 and 4 describe the stochastic differential equation ap-
proach to stochastic modeling that relates any diffusion to a corresponding
Brownian motion.

Basic probability uses probability densities to find expected values of func-
tions of a random object. Week 3 introduces methods for getting expected values
related to diffusion processes that do not use probability densities. The expected
values are value functions, which depend on parameters x and t. Various value
functions satisfy partial differential equations (PDEs) in x and t, which are in
the family of backward equations. The relationship between diffusions and and
PDEs can be used in the other direction. Associating a diffusion process to a
PDE allows you evaluate the PDE solution by simulating the diffusion.

Week 4 explains the Stochastic differential equation (SDE) approach to de-
scribing a diffusion model of a stochastic process. The SDE approach relates
a diffusion process to Brownian motion. This is another reason why Brownian
motion is central to stochastic calculus. There is an Ito’s lemma for a general
diffusion process. The SDE and Ito’s lemma form a stochastic calculus version
of the chain rule from ordinary calculus.

Engineers and finance professionals use diffusion models to find and opti-
mize control and decision strategies for stochastic processes. The Ito integral
may be thought of in terms of dynamic trading strategies. Many stochastic
control and decision problems have value functions that satisfy PDEs. These
are distinguished from “passive” value functions by being (usually) nonlinear.
Week 5 discusses these issues in the context of trading and hedging strategies on
an asset whose price is a geometric Brownian motion. This includes the Black
Scholes theory of option pricing and Merton’s theory of optimal asset allocation.

Stochastic calculus needs a new way to specify the probability distribution of
random paths. In basic probability, you learn that if a random object is specified
by finitely many continuous components, you can specify its distribution using
a probability density function. The distribution of a discrete object can be
specified by giving the probabilities of every possible outcome. Neither of these
approaches works for random paths because a path is not a discrete object, nor
is is specified any finite collection of parameters. The number of parameters
needed to describe an object is the dimension. If no finite set of parameters can
do it, the object is called infinite dimensional. The random paths of stochastic
calculus are infinite dimensional objects.

The theory of diffusion processes uses abstract probability measures to specify
the distribution of random paths. Along with probability measures, there is an
abstract form of integration that is related to the Lebesgue integral you might see
at the end of a course on mathematical analysis. Expected values of functions of
a random path are defined in this way. This is the infinite dimensional substitute
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for integrating over parameters using a probability density to get the expected
value of a function of a finite dimensional random object. This machinery is
hard to use in specific applications, which is why the value functions of Week
3 are important. This course gives at best a very superficial description of
probability measures.

The exception to this “no measures” rule comes in Week 6 with Girsanov’s
change of measure theorem. Two probability distributions on the same set of
paths may be related by a likelihood ratio. The likelihood ratio is the ratio of
probability densities when there are probability densities. But a likelihood ratio
sometimes can relate probability distributions for two diffusion processes. Gir-
sanov’s formula is a formula for the likelihood ratio that relates two diffusion
processes with the same infinitesimal variance but different infinitesimal mean.
One example is the Black Scholes theory of option pricing, which has the “his-
torical” process with a historical rate of return and volatility, and a risk neutral
process with the same volatility but different rate of return. Another example
is in the theory of fixed income assets where Girsanov’s formula gives a change
of numeraire.

2 Brownian motion paths, scaling

Brownian motion is a specific diffusion process that plays a special role in
stochastic calculus. A Brownian motion path is a function of a time variable
t written Xt. We assume the starting value X0 = 0 and that Xt is defined
for t ≥ 0. In the language of the introduction, Brownian motion has infinitesi-
mal mean a = 0 and infinitesimal variance µ = 1. This section describes those
properties a little more deeply. It also explains the independent increments prop-
erty, which should be called the i.i.d. increments property, but isn’t. Scalings
describe how big some quantity is relative to another. If a quantity is random,
you don’t say exactly big it is, but roughly how big it typically is. The scaling in
this section concerns how big increments of Brownian motion are over a specific
amount of time.

Let us start with a reminder of conditional probability and independence.
Conditional probability and conditional expectation are ways to express how
probabilities change when you acquire new information. For example, suppose
Y = (Y1, Y2) is a two component random variable with probability density
u(y1, y2). The probability density of Y2 alone is the marginal

v(y2) =

∫
u(y1, y2) dy1 . (10)

This is the probability density of Y2 if you have no information about Y1. It is
the unconditional density of Y2. The conditional distribution of Y2, if you know
the value of Y1 is

u(y2|y1) =
u(y1, y2)∫
u(y1, y2) dy2

. (11)
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One obvious difference between the unconditional density (10) and the con-
ditional density (11) is that the conditional density is a function of y1. The
conditional density or the conditional probability distribution is a function of
the information you have. As long as Y1 and Y2 are related, the conditional
distribution of Y2 depends on Y1. If the conditional density (11) does not de-
pend on Y1, then Y1 and Y2 are independent random variables. You can think
of Y = (Y1, Y2) as a random object. Knowing Y1 is some information about this
random object. Conditional probability and independence are about how this
information changes or doesn’t change the distribution of another part of the
random object, Y2.

We next describe some properties of Brownian motion without saying why
they are true. You might say that they are the definition of Brownian motion.
But this raises the question of whether these properties are possible. Is there a
probability distribution for random paths with these properties? More impor-
tantly, do these properties describe something that might arise naturally as a
model of a physical process? Section 3 gives answers to these questions. Brow-
nian motion is a limit of random walk, which obviously exists and is a natural
stochastic model. Brownian motion is a simple approximate way to describe
many simple stochastic processes.

We write X to represent the whole path with values Xt. This is an infinite
dimensional random object. The value of X at a specific time t1 is partial
information about X. Going further, let X[t1,t2] denote the piece of the path
with t ∈ [t1, t2], which is determined by all the values Xt for t ∈ [t1, t2]. This
is more information, but still partial information about the whole path X. The
increment process or increment path over [t1, t2] will be written Y[t1,t2]. Let s be
a positive time increment with s ≤ t2 − t1. The corresponding increment of X
is

Y[t1,t2],s = Xt1+s −Xt1 . (12)

We choose not to consider Y[t1,t2],s for s < 0 or s > t2 − t1, because then Y[t1,t2]

would depend on X values outside the interval [t1, t2], and this would mess up
the upcoming definition of the independent increments property.

Brownian motion has the independent increments property, which is the
property that increments over disjoint time intervals are independent. If t1 ≤
t2 ≤ t3 ≤ t4, then [t1, t2] and [t3, t4] are disjoint time intervals. [This might not
be exactly true if t2 = t3, but that case is also allowed in the independent in-
crements property.] The property is that the increment paths Y[t1,t2] and Y[t3,t4]

are independent. The distribution of the random increment Y[t3,t4], as a path,
is independent of the increment Y[t1,t2]. Remember that Y[t1,t2] and Y[t3,t4] are
infinite dimensional random objects.

The independent property can be repeated to get more independent incre-
ments. For example, suppose we have four intervals with eight endpoints [t1, t2],
[t3, t4], [t5.t6], [t7, t8], with t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5 ≤ t6 ≤ t7 ≤ t8. The first two
corresponding increment processes are independent of each other, because the
first two intervals are disjoint. Also, the first two increment processes are part
of the increment process Y[t1,t4], which contains both of them. This makes them
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independent of anything in Y[t5,48], including the increment processes for [t5t6]
and [t7, t8]. Exercise 2 shows that random objects can be pairwise independent
without forming an independent family. Increment paths over any collection of
disjoint intervals form an independent family.

For Brownian motion, increments over the same amount of time have the
same probability distribution. If t4 − t3 = t2 − t1, then the random objects
Y[t1,t2] and Y[t3,t4] have the same statistical properties. Increments are identically
distributed as well as independent. This “same distribution” property is because
the same the same random noise process is running the whole time This is
explained in Section 3, just after the formula (22).

Let us look at a Brownian motion path from the point of view of integral
calculus. Break a path into many small pieces and ask what happens when you
put the pieces together. Choose a “final time” T and a number of increments
n, then define the corresponding increment of time ∆t = T/n. We keep T
fixed, so ∆t goes to zero as n goes to infinity. The n equal length time intervals
have the form [tk, tk+1], with tk = k∆t, and k = 0, 1, . . . , n − 1. We write
∆Xk = Xtk+∆t−Xtk for the corresponding increments of X. The i.i.d. property
implies that these ∆Xk are i.i.d. random variables.

The overall increment XT −X0 = XT is the sum of the small increments

XT =

n−1∑
k=0

∆Xk . (13)

The expected value of XT is the sum of the expected values of ∆Xk. These are
all the same (the i.d. of i.i.d.), so we drop the index k and just write

E[XT ] = nE[ ∆X] .

The variance of XT is the sum of the variances (the first i. of i.i.d.), so we also
have

var(XT ) = n var(∆X) .

We assumed that the infinitesimal mean of Brownian motion, which is the a(x)
in (2), is zero. When ∆t is small, but not the “infinitely small” dt, we write the
infinitesimal mean axiom as

E[ ∆X] = o(∆t).

This means that
E[∆X]

∆t
→ 0 , as ∆t→ 0 .

But 1
∆t = n

T , so we may do the following possibly silly calculation

E[XT ] = nE[ ∆X]

=
T

∆t
E[ ∆X]

= T
E[ ∆X]

∆t
→ 0 as ∆t→ 0 .
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[This reasoning used the “little oh” symbol. This course will also use its relative,
the “big Oh”. You should look this up if it’s unfamiliar.] The “silly” thing is
that E[XT ] does not depend on n or ∆t. Therefore, the only way E[XT ]→ 0 as
n→∞ is E[XT ] = 0.

The variance calculation is similar. The infinitesimal variance formula (3)
with µ(x) = 1 for all x may be written in little oh notation as (with µ(x)∆t =
∆t)

var(∆X) = ∆t+ o(∆t) .

Therefore, reasoning as before

var(XT ) = n var(∆X)

=
T

∆t
var(∆X)

=
T

∆t
(∆t+ o(∆t))

= T + T
o(∆t)

∆t
→ T as ∆t→ 0 .

As before, var(XT ) does not depend on ∆t, so we learn that

E[XT ] = 0 (14)

var(XT ) = T . (15)

In the case of Brownian motion, the infinitesimal mean being zero implies that
the mean itself is exactly zero. The infinitesimal variance µ = 1 implies that
the variance is equal to T .

We want to go beyond the mean and variance calculations to describe the
probability distribution of XT . But this requires another hypothesis. The rea-
soning that we used to derive (14) and (15) applies to the increments ∆Xk too.
They all have the same distribution, so we drop the subscript and write ∆X for
a random variable with the same distribution. The mean of ∆X is zero and the
variance is equal to the time, which is ∆t,

E[∆X] = 0
var(∆X) = ∆t .

}
(16)

But what does ∆X look like as a random variable? One simple possibility
is that ∆X is a scaled version of a random variable, Z whose distribution does
not depend on ∆t. Suppose Z is a random variable with

E[Z] = 0

var(Z) = 1 .

The following scaling hypothesis is consistent with the ∆X moments (16):

∆X =
√

∆t Z . (17)
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I want to emphasize that this hypothesis is just a guess. It isn’t required by
the mean/variance relations (16) or the independent increments property. In
fact, the centered Poisson process has independent and identically distributed
increments and the mean variance formulas (16), but does not have a scaling
property of the form (17). If we make the scaling hypothesis, then ∆Xk =√

∆tZk, with i.i.d. Zk, so the sum formula (13) may be written

XT =
√

∆t

n−1∑
k=0

Zk .

The central limit theorem applies to this sum because the the distribution of
the Zk is independent of n or ∆t. The central limit theorem implies that XT is
approximately Gaussian. This approximation gets better and better as n→∞.
But (as we already said), the distribution of XT does not depend on n or ∆t.
This implies that XT is Gaussian, exactly.

Any information about XT also applies to any increment of the process X
over the time period T . The intervals [tk, tk+1] are disjoint, so the ∆Xk are
independent. We just saw that the first increment ∆X0 = X∆t is Gaussian
with mean zero and variance ∆t. Therefore, for all k,

∆Xk ∼ N (0,∆t) , i.i.d. (18)

The increments for other diffusion processes, not simple Brownian motion, are
approximately Gaussian for small ∆t, but they are not exactly Gaussian in
general.

The scaling hypothesis (17) turned out to be self consistent, which means
consistent with itself. We assumed only the scaling, then applied the central
limit theorem to deduce that the increments are Gaussian with distribution (18).
But mean zero Gaussians are all scalings of each other. In particular, if Z is a
standard normal Z ∼ N (0, 1), then ∆X has the same distribution as

√
∆tZ,

which is (17). What we did is like a “guess and check” strategy from elementary
math. We guessed something about the answer and then verified that we were
right. Well, not quite, but since the guess was self consistent, at least we did
not show that we were wrong.

3 Random walk and convergence in distribution

Brownian motion is a “coarse grained” approximation to random walk, and
random walk is a “find grained” model that leads to Brownian motion. To
define random walk, let Uk be an i.i.d. family of random variables with

E[U ] = 0

var(U) = σ2 .

The random walk process is

Sn =

n−1∑
k=0

Uk .
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The coarse grained description is a simple but approximate description of Sn
when n is large. The central limit theorem gives a simple approximate descrip-
tion of the distribution of Sn, it is approximately Gaussian. But the simple
version of the central limit theorem does not describe Sn as a process.

The “walk” part of random walk comes from the case when U = ±1 with
equal probability. The position of the walker after n steps is Sn. The walker
starts at S0 = 0. A step in the random walk is Sn+1 = Sn + Un. The step goes
to the right if Sn+1 = Sn+1 and to the left otherwise. Left and right have equal
probability Pr(Un = 1) = Pr(Un = −1) = 1

2 . A “coarse grained” description
means a description of features you can “see from far away”, which are the big
(coarse) features. For example, a typical size of Sn is (see Exercise 3) is on the
order of

√
n. The central limit theorem says that

Pr(a
√
n < Sn < b

√
n) ≈ 1√

2π

∫ b/σ

a/σ

e−
1
2 z

2

dz . (19)

This is a “coarse grained” statement because a
√
n and b

√
n are far apart. The

Gaussian approximation can be wrong on a fine scale. For example, because Sn
is always an integer,

Pr

(
1

4
≤ Sn ≤

3

4

)
= 0 .

The endpoints 1
4 and 3

4 are too close together for a coarse grained approximation
to apply.

How do you decide which questions are “fine grained” or “coarse grained”?
One criterion is whether the question “disappears under scaling”. This is related
to mathematical statements of the central limit theorem that use “scalings”. We
will use the following scaling idea. Choose a small ∆t and arbitrarily decide that
one step in the random walk happens in every ∆t interval of time. This means
that step Sn → Sn+1 = Sn + Un happens at time tn = n∆t. The value of
the random walk at time T is Sn. This is likely to be a large number because
var(Sn) = nσ and n→∞ as ∆t→ 0. We use Brownian motion scaling to define
a rescaled process X∆t that has the same variance as Brownian motion. This
involves only multiplying the random walk by the appropriate scaling factor, as

X∆t
tn =

√
∆t

σ
Sn .

[The notation X∆t
tn is not great, but the other notations I tried were worse.] In

this way, the random walk process Sn is scaled to the random path X∆t
tn .

This scaled path is only defined for times tn that are multiples of ∆t. The
definition is extended to all t ≥ 0 by “connecting the dots”, which means linear
interpolation. If t is not one of the times tn, we choose n so that tn < t < tn+1.
Then choose α so that t = αtn + (1− α)tn+1. The interpolated path value is

X∆t
t = αX∆t

tn + (1− α)X∆t
tn+1

.
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If you set α = 0 in this formula, both sides evaluate to X∆t
tn . If you set α = 1,

then both sides are equal to X∆t
tn+1

. This is the continuous and piecewise linear
function that has the given values at the times tn.

If you fix any t and take the limit ∆t → 0, then the family of random
variables X∆t

t has mean zero and variance that converges to t. The variance
is equal to t if t is one of the times tn. Otherwise it is within ∆t of t. The
distribution of X∆t

t converges to normal mean zero variance t, by the ordinary
central limit theorem. This means that if V (x) is a continuous and bounded
function of x, then

E
[
V (X∆t

t )
]
→ EN (0,t)[V (Y )] as ∆t→ 0 . (20)

The notation E∗∗[V (Y )] means the expectation, assuming that Y has the dis-
tribution ∗∗. In this case, that distribution is normal mean zero and variance t.
This may be written more explicitly as

EN (0,t)[V (Y )] =
1√
2πt

∫ ∞
−∞

V (y)e−
y2

2t .

This limit defines what it means for X∆t
t to converge to N (0, t), in distribution.

The central limit theorem is about convergence in distribution.
Convergence in distribution does not mean that the numbers X∆t

t converge
to Y as ∆t → 0. The numbers X∆t

t probably don’t converge at all as ∆t → 0.
This is because n → ∞ as ∆t → 0 for fixed t. When you go from ∆t to 1

2∆t,
you use twice as many numbers Uk. That means that the new sum with 2n
terms is likely to be much different from the old sum with n terms. But even
if the numbers X∆t

t did have a limit as ∆t → 0, there would be no reason for
this limit to be Y . In fact, it’s a “dumb question” because there is no relation
between X∆t

t and Y . Even if they had the same distribution, there would be
nothing connecting them. Two random variables with the same distribution do
not have to be equal or even related to each other. To make this point in a
different way, the distribution limit formula (20) would be true if we had −Y
instead of Y on the right side. If X∆t

t converges to Y , then it does not converge
to −Y .

The point of this section is that the distribution of the scaled path X∆t con-
verges to the distribution of a Brownian motion path. This theorem is called
Donsker’s invariance principle and was first proved by Courant Institute math-
ematician Monroe Donsker. If V (X) is a bounded continuous function of the
path X, then

E
[
V (X∆t)

]
→ EBM[V (X)] as ∆t→ 0 . (21)

This theorem includes the central limit theorem, because V (X) = function of Xt

is allowed. But there are many path functions that are functions of the path
as a whole and not on Xt for just one t. These are called path dependent in
finance. Here are some examples
Extreme values: The maximum over a fixed time range is

V (X) = MT = max
0≤t≤T

Xt .
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This is path dependent because different paths achieve their maximum at differ-
ent times. We will find a simple formula for PDF of MT for Brownian motion.
There is no exact formula for the maximum of a random walk, but it is ap-
proximately the same as for Brownian motion if n is large – after rescaling of
course.
Integrals: Economists consider integrals of the form∫ T

0

e−ρ(T−t)U(Xt) dt.

You can imagine many other path functions that involve integrals involving the
path.

Brownian motion, summary

Relation to random walk

The increment process of a random walk would be defined as

S[n1,n2],m = Sn1+m − Sn1
.

This is like the increment of Brownian motion (12), except that the endpoints
n1 and n2, and the increment m are integers. The increment process of random
walk is determined by the steps in that interval. The increment is zero if m = n1.
For m > n1 but n ≤ n2, the increment includes all the steps starting after n1

and going up to m:

S[n1,n2],m =

n1+m∑
k=n1+1

Uk . (22)

Random walk increment processes over disjoint intervals are independent be-
cause they are determined by independent random steps. The steeps are i.i.d,
so increment processes of the same length are identically distributed.

If you think of the steps Uk as “noise” or “shocks”, then the increment ran-
dom walk process S[n1,n2],m represents noise that arrive after step n1. In the
Brownian motion scaling limit, this noise arrives all the time rather than at
specific times. The Brownian motion increment (12) represents the noise that
arrives after time t1. This noise is called white noise and is more abstract than
makes sense for these six classes. Like the random steps Uk a white noise pro-
cess in disjoint intervals is independent. Increment processes, which are sums
or integrals of random steps or white noise, are independent for disjoint in-
tervals of time. The variance of a random walk increment is proportional to
the number of steps. The variance of a Brownian motion increment is pro-
portional to the amount of white noise, which is proportional to the amount
of time: var(Y[t1,t2],s) ∼ s. We choose Brownian motion scalings so that tbe
proportionality constant is equal to 1. Therefore

var(Xt1+s −Xt1) = s .

This simple formula which holds for all positive numbers t1 and s is the limit
of approximate formulas for X∆t that only hold at the times tk.
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Brownian motion is Gaussian

We start with a review of the multi-variate normal distribution. This material
should be familiar, though the notation may be different from what you’ve seen.
Otherwise, you should stop and look up the multivariate distribution.

Let Y = (Y1, . . . , Yn) be a multivariate random (Gaussian) variable. The
PDF of Y is Gaussian if it involves a “quadratic exponential”. A quadratic
function of y ∈ Rn has the form

φ(y) =
1

2
ytHy − ξty + C . (23)

The 1
2 in the first term and “−” sign in the second term will simplify things

later. In this formula, y and ξ are column vectors, and H is a symmetric n× n
positive definite matrix, which is called the information matrix. This is the
multivariate version of the simple quadratic function ay2 + by+ c, except that a
is replaced by 1

2H and b is replaced by −ξt. You can “complete the square”, as
you can for simple quadratics. One way to do this is to calculate [This formula
is true only if Ht = H.]

1

2
(y − µ)

t
H(y − µ) =

1

2
ytHy − µtHy +

1

2
µtHµ .

This matches the form of φ if ξ = Hµ, which is the same as µ = H−1ξ. The in-
verse matrix exists because H is positive definite. Therefore, φ may be expressed
as

φ(y) =
1

2
(y − µ)

t
H(y − µ) + C̃ .

The new constant C̃ depends on C and µ, but the exact value will be determined
later. The Gaussian probability density is

u(y) =
1

Z̃
e−φ(y) =

1

Z
e−

1
2 (y−µ)tH(y−µ) . (24)

This is multi-variate normal with mean µ and covariance C = H−1. The nor-
malization constant Z is “just some number”. The formula involves π, square
roots, and det(H).

The Brownian motion path is Gaussian in a more abstract sense. The prob-
ability density formula (24) does not directly apply to “infinite dimensional”
objects such as paths. But multivariate Gaussians have the property that any
linear function of a multivariate Gaussian also is Gaussian. IfX is Gaussian with
n components and Y = AX for some d×n matrix A, then Y is a d−component
Gaussian. The mean and covariance matrix of Y can be calculated from the
mean and covariance of X. A version of this applies when X is a Brownian
motion path.

Although there is no Brownian motion probability density, there is a proba-
bility density for the values of the path at a finite set of times. Brownian motion
starts at t0 = 0. Consider an increasing sequence of times t0 < t1 < · · · < tn and
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consider the corresponding values Xj = Xtj . [I hope this conflict of notation
is not confusing.] We seek a formula for PDF (X1, . . . , Xn) ∼ un(x1, . . . , xn).
This should take the form

un(x1m. . . , xn) =
1

Z
e−φ(x1,...,xn) ,

where φ is a quadratic function of x1, . . . , xn. We will find a formula for φ,
which will turn out to be quadratic.

We build the formula for φ in a sequence of steps that uses the fact that
increments are independent Gaussians. To start, X1 ∼ N (0, t1). The PDF of
X1 is

u1(x1) =
1

Z
e−

x2
1

2t1 .

[We write Z for any normalization factor. Numbers Z in different formulas are
not the same. This saves us from the distraction of writing formulas normaliza-
tion constants that are not helpful.] Next, the increment X2−X1 is independent
of X1 and has mean zero and variance t2 − t1. The conditional distribution of
X2, given X1, is normal with mean X1 and variance t2 − t1. The conditional
density is

u2(x2|x1) =
1

Z
e−

(x2−x1)2

t2−t1 .

The joint density is given by Bayes’ rule as the product of the marginal of X1

and the conditional of X2 given X1. That is

u2(x1, x2) = u2(x2|x1)u1(x1) =
1

Z
e
− 1

2

[
(x2−x1)2

t2−t1
+

x2
1

t1

]
. (25)

As a reminder, the Z values in the last 3 formulas are all different. The density
formula (25) is a multivariate Gaussian of the form (24) with

φ(x1, x2) =
1

2

[
(x2 − x1)2

t2 − t1
+
x2

1

t1

]
.

This is a quadratic function of (x1, x2), but you would have to do some algebra
to identify the entries of the precision matrix H. We see that µ = 0, because
∇φ(0) = 0. We use the independent increments property to go further. The
increment X3 − X2 is independent of X[0,t2], and it is normal with mean zero
and variance t3 − t2. Therefore, the conditional density of X3 depends only on
X2 and is given by

u3(x3|x1, x2) =
1

Z
e
− (x3−x2)2

2(t3−t2) .

The joint density of X3 with (X1, X2) is given by the same Bayes’ rule

u3(x1, x2, x3) =
1

Z
e
− 1

2

[
(x3−x2)2

t3−t2
+

(x2−x1)2

t2−t1
+

x2
1

t1

]
.

The pattern of the general formula should now be clear. The formula is simpler
if we define x0 = 0.

un(x1, . . . , xn) =
1

Z
e
− 1

2

∑n−1
j=0

(xj+1−xj)
2

tj+1−tj . (26)
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Brownian motion is self similar

There is a sense in which Brownian motion is the same on every scale. Imagine
watching the process Xt but with time running faster or slower than t by a
factor of R. The variance of XRt is Rt. This is rescaled to have variance equal
to t by by multiplying by 1√

R
. The rescaled process is

X ′t =
1√
R
XRt . (27)

This has the E[X ′] = 0 and var(X ′) = t. It turns out that the process X ′, as
a random path, has the same probability distribution as X. This is the self-
similarity property. If you rescale time (t) and space (X) by the appropriate
powers of the scaling parameterR, the rescaled process is identical to the original
process. Identical means identical in the statistical sense. The scaling formula
(27) is a similarity transformation. Getting the same process makes the process
self-similar.

To see what that means, imagine R being large. If t ∈ [0, 1] then Rt ranges
from 0 to R, which is a larger range. After rescaling space by the right factor,
the behavior on scale R is the same as the behavior on scale 1.

4 Exercises

1. The correlation coefficient between random variables Y1 and Y2 is a mea-
sure of the relation between them

ρ12 =
cov(Y1, Y2)√

var(Y1) var(Y2)
.

Random variables are uncorrelated if ρ12 = 0. If ρ12 6= 0 then Y1 and
Y2 are not independent. Suppose Z ∼ N (0, 1). This means that the
distribution of Z is Gaussian, or normal, mean zero variance 1. Suppose
Y2 is any random variable var(Y2) > 0, and Y1 = ZY2. Show that Y1 and
Y2 are uncorrelated but not independent.

2. Let Y1, Y2, and Y3 be three binary random variables, which means that
they take values Y = 0 and Y = 1 only. They are pairwise independent if
Y1 is independent of Y2, Y1 is independent of Y3 and Y2 is independent of
Y3. Give an example in which they are pairwise independent and “fair”
(Pr(Yj = 0) = 1

2 for each j), but not independent. If they are an indepen-
dent family of random variables, then Pr(Y1 = 0, Y2 = 0, Y3 = 0) = 1

8 .
Find a family that is pairwise independent (so Pr(Y1 = 0, Y2 = 0, ) = 1

4 ,
etc.) but not independent.

3. Suppose X ∼ N (0, σ2). Show that

E[|X|] =

√
2

π
σ .
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Show that if Sn is a random walk with var(U) = σ2, then

E[|Sn|] ≈
√

2

π
σn

1
2 .

Verify the approximate formula (19).

4. Interpolation means finding a value for a function at value of its argument
when values on either side are known. Applied to Brownian motion, this
would mean finding a value for Xt if t1 < t < t2 and Xt1 and Xt2 are
given. This is a random process, so the value of Xt is not determined by
Xt1 and Xt2 . Instead, we seek the conditional probability distribution

Xt ∼ u(x | Xt1 = x1, Xt2 = x2) .

This is a question about the increment Y[t1,t2],t−t1 . Simplify notation by
defining values of the increment at t1, t = 22, and t

Y1 = Y[t1,t2],t1−t1 , Y2 = Y[t1,t2],t2−t1 , Y = Y[t1,t2],t−t1 .

Of course, Y1 = 0. The remaining values (Y, Y2) are a two dimensional
Gaussian. Write the PDF for the joint density u(y, y2) = ∗ ∗ ∗, then use
this to to find the conditional density of Y given Y2. Unwind this to find
the conditional distribution

Xt ∼ N (µt, σ
2
t ) , conditional on Xt1 = x1, Xt2 = x2 .

Show that µt is linear interpolation of the values x1, x2. Show that σ2
t

goes to zero as t → t1 or t → t2 and explain why this is natural. Show
that σ2

t is maximized at the midpoint 1
2 (t1 + t2). If the value of Xt2 were

not given, then σ2
t = t− t1. Explain why σ2

t is smaller than this.

5. The exponential random variable is a positive random number with PDF
u(t) = λe−λt if t > 0 and u(t) = 0 if t < 0. Call this distribution Exp(λ).
Download and run the code ExponentialSampler.py. This is Python 3.
It uses Numpy version 18 or later. If you get an error message because
of the random number generator, you may need to update your Numpy.
I strongly advise using Python 3 in command line mode rather than in
an IDE. That’s what most serious developers do. You should get some
output at the terminal, a plot should pop up, and it should write a plotfile
ExponentialHistogram.pdf. You have to close the popup file manually
each time you run the code.

(a) Show that E[T ] = 1
λ .

(b) Show that if U is a standard uniform (U ∈ [0, 1] uniformly dis-
tributed), then T = − 1

λ log(U) has T ∼ Exp(λ). The random
number generator rg.random() returns a standard uniform. This
explains line 32 in ExponentialSampler.py.
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(c) Consider the conditional distribution of T ∼ Exp(λ) conditional on
T > ts. Show that this conditional distribution is ts + Exp(λ). This
means that conditional on T > Ts, the extra time T − ts is also expo-
nential with the same rate. The exponential distribution is used to
model how long it takes a new lightbulb (or any device) to break. Ex-
plain that in the exponential model, a lightbulb that has not broken
yet is as good as new.

(d) Explain why the procedure sim(..) produces T that with the con-
ditional distribution of part (c).

(e) Let Tk be an independent sequence Tk ∼ Exp(λ). LetN = min {k|Tk > ts}.
Calculate E[N ] as a function of λ and ts. Show that the number pro-
duced by the code ExponentialSampler.py agrees with this.

6. Modify the code from Exercise 5 to study the hitting time related to
exponential random variables. Define

Rn =

n∑
k=1

Tk , Tk ∼ Exp(λ) i.i.d.

From Exercise 5 part (a), we know E[Rn] = n
λ . Consider a positive “gap”

g, and consider

N = min
{
n | Rn >

n

λ
+ g
}
.

Consider the random variables Yk = Tk − 1
λ and Sn = Rn − n

λ . let Xt

be a standard Brownian motion with X0 = 0 and var(Xt) = t. The first
hitting time (also called first passage time) at M > 0 is

T = min {t | Xt ≥M} .

We will see (Week 3) that T has PDF

u(t) =
M√
2πt3

e−
M2

2t .

Use this density and the Brownian motion scaling of the random walk
Sn to estimate the distribution of N when g is large, with λ fixed. You
may assume that the hitting time N of the random walk, properly scaled,
is approximately related to the corresponding hitting time for Brownian
motion.

Modify ExponentialSampler.py from Exercise 5 to test this theoretical
prediction. Modify the function sim to simulate a first hitting time for
the random walk. Make a histogram of the random times N . Make bins
of width L, so that the bin counts are Bj = # {k | jL ≤ Nk < (j + 1)L}.
Make a plot showing the empirical bin counts and the theoretical predic-
tion. Make a table of this information. The Brownian motion approxima-
tion is valid when g is large, because that forces a large number of steps
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before Rn ≥ 1
λ +g. The histogram will be too noisy to be useful if L is too

small. If the bins are too large, then there will not be enough bins to be
an interesting test of the theory. Once your code is running, experiment
with parameters to get as good a agreement with theory as you can.

Your code must follow style rules followed by ExponentialSampler.py.
These include: all floating point number output must be formatted. Never
use [str(x) if x is a floating point number in the code you upload. You
are free to do that while debugging. Comment a lot. Make the comments
useful. Use white space to make things line up vertically as much as pos-
sible to make the code easy to read, Use a docstring for any function. Put
your name and contact information at the top, along with when and why
you wrote the code. Put relevant numbers in the plot title and legends.
Do not “hard wire” code parameters. Every code parameter should have
a variable name and an assignment statement with a comment. Tabular
output should be aligned under table headings.

17


