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1 Introduction value functions

There is an important two way relation between diffusion processes and par-
tial differential equations. In one direction, we learn about diffusion processes
by solving some associated diffusion equations, which are partial differential
equations. In the other direction, we find solutions of diffusion equations by
expressing the solution as the expected value of some quantity related to a
diffusion process. This allows us to find the value by simulation.

This class explores the relation between diffusion equations and diffusion
processes in the special case in which the diffusion process is Brownian motion
and the diffusion equation is a variant of the heat equation. Week 4 describes
this relationship for general diffusions and diffusion equations. The fundamental
ideas are the same, but general diffusions are able to model a bigger range of
systems.

In this class, X; will be Brownian motion. The cumulative normal distribu-
tion function is

N(z)=Pr(Z <zx), Z~N(0,1)

1 /”” 22 d
= — e 2 dz.
V2T J—so
This has the values

N(z) = 0asz— —o0
N(z) = 1lasz — 400

2 Deriving backward equations
Let X; be Brownian motion. A simple value function is
fla,t) =B[V(X7) | Xy =] . (1)

This is defined for any ¢ < T'. This function satisfies the backward heat equation

ouf + 521 =0. (2)



These equations are supplemented with final conditions
f(a,T)=V(z). (3)

The final time is the largest ¢ where f is defined, which is ¢ = T. The final
conditions specify f at the final time. The PDE (partial differential equation)
(2) may not be obvious, but the final conditions are obvious. If you put t = T in
the value function definition (1), you find yourself asking what is the expected
value of V(Xr) conditional on X7 = x.

We give two derivations of the backward equation eqrefbes. The first one
uses specific calculations with the fundamental solution (also called heat kernel
or Green’s function). People often don’t like this derivation because it gives no
insight as to why f satisfies the PDE or the significance of the PDE. Another
drawback is that you have to know the fundamental solution before you find the
PDE. This is possible for Brownian motion and a few other specific examples,
but it is not possible for most diffusions. The second derivation may be applied
to any diffusion process. We will see in Week 4 that it gives the backward
equation in terms of the infinitesimal mean and infinitesimal variance of the
diffusion process.

The first derivation starts with an expression of f(z,t) as an integral of the
final data, V', This integral expresses f(x,t) as the expected value (1) when X,
is Gaussian with mean x and variance T'—¢. This is the conditional distribution
of X7 after a time increment of length 1" — ¢ starting at X; = z. We use y to
represent a possible value of X, so the conditional density is
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Therefore, the expected value (1) is
fa) =BV | Xo=al = [ Ve a9
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This integral formula for the value function allows us to derive the PDE (2),
and it tells us some things about what kind of function the value function can
be.

We verify that f satisfies the backward equation (2) by calculating the partial
derivatives of the integral representation (5). If you differentiate with respect
to x or with respect to ¢, the derivatives go inside the integral and then onto
the fundamental solution (4). That is,

O0f(,1) = 0, / V()Gly,x. T — t)dy = / V()[0:Gly, . T — )] dy |

and

02 (1) = / V)[02G(y. 2. T —1)] dy |



We add these together and get
1 1
o + 325 = [V 0607 -0+ L0260 T 0] dy.

We can calculate the combination of derivatives in [---] by differentiating the
formula (4). Here is the time derivative calculation. You have to do this slowly
and carefully to get the signs and the powers of (T' — t) right.
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We have to do two 9, calculations, but they are not as tricky. First
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Now, compare the two results and you see that the (T — t)*% terms and the
(y — 2)%(T — ¢)~2 terms cancel in 8,G + 192G. The calculation

0y, 2, ~ 1)+ 302Gy, 2, T~ 1) =0

implies that the value function satisfies the backward equation (2). Section 3
gives some uses of the integral formula (5).

The second derivation uses “local information”, the infinitesimal mean and
variance of Brownian motion. The derivation looks at the terms in Ito’s lemma
and asks what equation f would have to satisfy to that

Yi = f(X, 1)
is a martingale. Once Y; is a martingale,
E[Yr | Xjo4] =Y; .
In other notation, this is

E[f(Xr) | Xi =] = f(x,1) .




If f(x,T) has final values f(z,T) = V(x), we have the desired expected value
formula (1).

The first second derivation uses the fact that if you watch the value function
change with time, you see a martingale. For our process, [to’s lemma gives

df (Xt,,t) = Ou f(X¢, 1)d Xy + [Op f(Xe,t) + %azf(Xtat) dt

If the term in square brackets is zero, [---] = 0, then

This implies that Y; is a martingale, because any Ito integral with respect to
Brownian motion is a martingale. That’s one of the Doob martingale theorems.

T>
YT2 - YT1 = f(XT27T2) - f(XTUTl) = a$f(Xt’t)dXt .
T

The term in brackets is zero exactly with the backward equation (2) is satisfied.
This derivation may seem mysterious, but it is simple and powerful. We will
use derivations like this to find backward equations for other situations.

3 Digital options, smoothing

A digital option is one that pays all or nothing depending on some criterion. A
digital payout would be

. lif z > xg
V(x)—{ 0if x <z

Corresponding to this is the value function (1). In this case, the value function
may be written as a probabability

f(l‘,t) ZPI‘(XT >$0|Xt=l‘) .

In fact, the expected value of any 0,1 function (a function that takes values
V =0or V =1 only) is the probability that the value is 1.

The value function may be expressed in terms of the cumulative normal dis-
tribution function. One way to derive the formula uses the fact that, conditional
on X; = z, the final position is X7 ~ A (z,T —t). You can represent such a
random variable Y ~ N (z,T —t) in terms of the standard normal Z ~ N(0,1)

as
Y=ax+VI-t7.

This is Gaussian with mean x and variance T — t. The condition X7 > x( has
the same probability as Y > xy (because X7 and Y have the same distribution).



Therefore
f(z,t) =Pr(Y > x9)

=Pr(x+\/T—tZ>x0)
:Pr(Z> xo—x>
T—t
:1—Pr<Z< xo_m)
Tt

Flat)=1— N( xoT_xt) . (6)

This has the feature than f(z,f) = 0 as ¢ — —oo and f(z,f) = 1 as z — oo.
This is clear from the definition of f, and you can see it in the solution formula.
Write
o — T

Tt
Then f(xz,t) =1 = N(z). For example, we see that z — —oo as z — o0, s0
1—N(z) = 1—1=0. The solution formula (6) implies that for a fixed ¢, f
makes a transition from 0 to 1 as = goes from —oo to co.

The specific formula (6) tells us that the transition from f =~ 0 to f =~ 1
happens quickly with ¢ is close to T. The “length scale” of the transition
is /T —t. This means that when z goes from zg — VT —t to x¢g + V1 — t,
the value function f(x,t) goes from a value close to zero to a value close to
1. We say that the solution of the backward equation is “smoothing”. The
sharp discontinuity is the final condition is smoothed into a rapid but smooth
transition.

z =

4 Quadratic exponential and the ansatz method
Suppose the payout function is a quadratic exponential
V(z) = e’

This is called “quadratic exponential” rather than “Gaussian” because it is not
a probability density. Still, everything related to Brownian motion seems to
turn Gaussians into Gaussians. Therefore, we guess that the value function has
the form

flat) = A(t)es®e" . (7)

A mathematical guess like this is called an ansatz (German word that means
this). You guess the form and then see whether you can find formulas for A(t)
and s(t) so that the ansatz (7) satisfies the backward equation (2) and the final
condition. The ansatz “method” is to make an ansatz like (7) and then show it
works. It’s hard to call it a method because it’s really just a guess. Experienced
people may be led to specific guesses in specific ways, but even for them it’s



guessing. The final condition is easy, it gives final conditions for A and s, which
are

AT)=1, s(T)=r. (8)

The ansatz method requires you to put the ansatz (7) into the backward
equation (2) and see what this says about A and s. We use a dot for time

derivatives, so ¢(t) = %£q(t).

Of = A(t)e_s(t);‘j - éxQA(t)e_s(t)‘”2 .

Then )
Opf = —2s(t)xA(t)e D>

and , ,
O2f = —2s(t) Ae™ D" L 4s(t)2 A(t)a2e D7

You put this into the backward equation and find
. 1
A(t)e-s“)wz—sx2A(t)e—s<t>x2+§ [—2s(t)Ae-s<t>w2 + 4s(t)2A(t)xZe—s<t>x2} =0.

The exponential factor e—s(t)z? appears in every term and may be cancelled.

The rest may be re-arranged to the form
2 [5() A+ 2s()2A] + [A() - s(D)A(B)] = 0.

The quantities in square brackets are functions of ¢ alone. Therefore, the ex-
pression on the left is a quadratic function of x for each fixed ¢t. A polynomial
that is equal to zero, as this one is, must have all coefficients equal to zero. This
gives two equations

5(t) = 2s(t)? (9)
A(t) = s(t)A(t) . (10)

It is “easy” to solve these differential equations with the final conditions given.
Exercise 1 asks you to do the algebra and interpret the results.

The ansatz method is used in quantitative finance in several places. There
are affine interest rate models in which the exponent is a linear function of the
x variable with a time dependent coefficient and pre-factor.

5 Hitting probabilities and boundary conditions

A hitting time is the first time a stochastic process X; “hits” a specific value
or satisfies a given condition. There are hitting time problems in finance that
come from contracts with conditions that depend on stochastic market prices.
Among these are knock-out options, that pay nothing if the price ever exceeds
a specified knock-out price.



Suppose X; is a Brownian motion with Xy = x¢ in the range a < zg < b.
Suppose you get a payout V(Xr) if a < Xy < b for all ¢ in the range 0 < t <
T. Otherwise, you get zero. The value function for this payout satisfies the
backward equation (2) if a < x < b, but clearly f =0 if x = a or x = b. These
are absorbing boundary conditions (because the Brownian motion is “absorbed”
and stopped if it ever touches a boundary point). They are also called Dirichlet
boundary conditions.

6 Running payouts

A running payout is a payout that you get continuously in time rather than just
at the final time. A running payout might take the form

T
Y :/0 V(X,)dt .

A value function approach to this uses a value function that only “sees” the
coming reward after time ¢, not the reward that has arrived (accrued, in financial
language) so far. That is

f(.’t,t) =E

T
/ V(Xs)ds | X = m] . (11)

An TIto’s lemma derivation of a backward equation uses the observation that
when time goes from ¢ to ¢ + dt, the integral decreases by V(x)dt. Therefore

E[df (X¢,t)] = =V (Xy)dt .

The Tto calculation from before (look at the quantity in square braces) implies
that

0uf(z,1) + %éﬁf(x,t) - V(). (12)

Of course, the final condition is f(x,T) = 0 because the payout stops at the
final time 7.

7 Finite difference methods

Finite difference methods are numerical algorithms for solving (approximately)
PDEs. They apply to a vast range of PDEs of all types and from all fields.
This section describes some finite difference methods for solving the backward
equation. The derivation uses the convergence of random walk to Brownian
motion (Week 1). The finite difference approximation is the backward equation
that the random walk satisfies. There are ways to derive these and other finite
difference methods that do not rely on probability.

Consider the value function that satisfies the simple backward equation (2).
We often call z the space variable and t time variable. We consider a random



walk approximation to Brownian motion. There is a space step Ax and space
grid points x; = jAz. There is a time step At and discrete times ¢, = kAt.
The random walk (notation from Week 1) has XtAkt = z; for some integer j. In
one step, the walk can go left, or not move, or move right. The probabilities to
move left, right, or not move are a, ¢, and b respectively.

XAt — Az with probability a
Xpt =49 XAt with probability b (13)

XA+ Az with probability ¢

The discrete value function will be called F. [Be careful when writing by hand
to make the continuous value function f look different than the discrete value
function F.] Assume that the final time T is one of the discrete times. There is
an n with T' = t,,. We may have to adjust At to make this happen. The values
of F are

Fj =E[V(X2) | XPt =1,] . (14)
This is like the definition of the continuous value function (1), but applied to
the random walk X instead of the Brownian motion X.

We have to relate the probabilities a, b, and ¢ to the space step Az and
the time step At. The relationship comes from the fact that the random walk
increment in one time step should have the mean and variance of the Brownian
motion increment over a time At, which is At. The expected value of the
discrete increment should be zero:

B[ xp - x| =o0.

th—1
The possible values of the increment are + Az and 0, so we get
0=a(—Az)+b(0)+ c(Ax) .
This gives
a=c.

The random walk is symmetric. The variance calculation is similar
At = a (Az?) + b(0) + c(Az?) = 2aAz? .

This leads to the CFL ratio formula

1A

CFL is for the mathematicians Richard Courant (founder of the Courant In-
stitute), Kurt Friedrichs (one of its first faculty) and Hans Lewy. Their 1928
paper laid the foundations for finite difference solution of PDEs. The fraction

is the CFL ratio
At

- (16)



The coefficients have to add up to one because they are probabilities. This leads
to a formula for b

at+b+c=1

1 1
AtbtA=1
2" TP

b:l—)\zl—%. (17)
The fact that b > 0 implies that
1-— ﬂ >0.
Ax? —
This may be written as
A= AA—; <1. (18)

This is the famous CFL stability limit. People usually want a large CFL number
A so that fewer time steps are required. The formulas (19) with (15) and (17)
make sense even if A > 1. But the code will “blow up” if you do.

The code FiniteDifference.py uses these formulas. The number of grid
points in space, n, is specified, along with the length of the interval, L. This
determines the space step Az. The CFL ratio X is used to find At. This time
step is then adjusted down slightly so that 7" is an integer number of time steps
from ¢t = 0, which is T' = n;At. Most of the work of the code is the time step
calculation (19).

The discrete value function satisfies a discrete recursion relation relation.
The expected values Fj,_;; may be computed from the values Fj; using the
fact that if X2! = x;, then X/ is one of the values x; — At = z;_1 or x; or
xj + At = xj41, and the probabilities are a, b, and c¢. The calculations we're
about to do simplify because X2t is a Markov process (definition in Week 1).
This implies that, for example, that if X2* steps from Z;j—1 to xj, then the
expected value going forward from z; doesn’t depend on the fact that it came
from x;_1. In formulas, this is

B[ V(XA | X81, = o and X3! = ;] = B[V(X2) | XA = 2]

tr—1

The conditional expectation calculation using these ideas is
Feag =B[V(XA) | XA, = )]
= B[V (X2 | X3!, =]
+OE[ V(XA | X, = aj]
+ CE{V(XtAnt) | Xpt = xjﬂ]

Fr1j=aFkj1+bF;+cFju. (19)



This calculation starts with given final values F,, ; = V(z;). Then it loops
over k doing time steps going backwards from n;. Each time step is a loop over
j. The boundary conditions in the code are that f(0,¢) = f(L,t) = 0. This
translates into Fy o = 0 and Fj 1 = 0. That leaves n “interior” grid points

Z1,-- , %y, which are separated by Axz. Therefore,
L
Ax =
n+1
The calculations (19) are done for j = 1,--- ,n. In principle you don’t have

to store the boundary values because they are known and don’t have to be
computed. Storing them makes the code simpler. You can do the formula (19)
for every j value without writing special code for the end cases j = 1 and j = n.
Values used in this way are ghost values.

8 Exercises

1. Carry out the ansatz analysis of Section 4
(a) Solve the differential equation (9). Hint. It may be written

ds

The integral of the left side is —% + C. The integral of the right side
is 2t+C. The constant is determined by the final condition s(T") = r.
If you want the Wikipedia solution, it might help to know this is an
example of a Riccati equation.

(b) Solve the differential equation (10) and use the final condition to find
a formula for the prefactor A(t).

(c) Is s(t) an increasing or decreasing function of t? What does this say
about the “width” of the payout and the width of the value function?
Intuitively, why should one be wider than the other?

(d) TIs A(t) increasing or decreasing? Why should the maximum of f(x,t)
for t < T be larger/smaller (you pick) than the maximum of V?

(e) Show that
d o0

Are your formulas for s and A consistent with this? Could you derive
the formula for A from this identity and the formula for s?

2. Suppose z > 0 and t < T'. Define the survival probability starting from x
between times ¢ and T to be

flz,t,T) =Pr(Xs >0 forall s € [t,T]) .
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This is the probability that the Brownian motion does not hit x = 0 at any
time between ¢ and T. We put in the dependence on the final time T to
enable the calculations below. Consider the seemingly different problem
with payout V(z) = 1ifz > 0 and V() = —1 if < 0. The corresponding
value function is

g(x,t,T)=E[V(X7) | Xt =] .
This is defined for any z and t <T.

(a) Show that g(—z,¢,T) = g(x,t,T) for all x and ¢ < T. Show that this
implies that ¢(0,t) =0if ¢t < T.

(b) Show that g(x,T,T) = f(z,T,T) if x > 0. Assuming that the so-
lution to the problem f satisfies is unique, show that g(z,t,T) =
f(z,t,T)if x > 0. (The finite difference approximation suggests that
the solution is unique because it gives an algorithm for computing it.
A course on PDE typically has a real mathematical proof.

(c) Define the hitting time to be the first time the Brownian motion
touches the boundary, x = 0:

T=min{s| X, =0} .
Let u(s) be the PDF of 7. Show that, conditional on X; = «,

u(T) = =0 f(z,t,T) .

(d) Find a formula for ¢ in terms of the cumulative normal. This is
similar to the formula in Section 3.

(e) Find a formula for w(7"). We used this formula in Exercise 6 of Week
1. This exercise fulfills the promise made there.

3. Download and run the posted code FiniteDifference.py. Check that
the resulting plot matches the posted plot. Modify the code to compute
the expected running payout function (11) with payout V(x) = er@=%)7,
Choose L = 10, r = 1, and T = 2. Plot a series of computations in the
same figure, as FiniteDifference.py does, to see how many grid points
are needed to get an accurate solution. Explore the grid spacing needed
for accurate solution when r is larger — in a qualitative way (larger r
needs more/fewer/a lot more/a lot fewer points. Part of this exercise is
to derive a finite difference method for the backward equation (12). You
can do this by making a random walk approximation to the process and
a corresponding finite sum approximation to the running payout.

4. Consider the digital option of Section refsec:d. This exercise asks you to
replicate the option payout using a given initial endowment (amount of
money) and a trading strategy on Brownian motion. The trading strategy
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is a function a(z,t). The initial endowment is a number g. The Brownian
motion starts at Xo = 0.

T
Ur=gyg +/ a(X, t)dXy .
0

This random variable replicates the payout if Ur = V(Xr). Find a way
to replicate the digital payout in this way. Hint. Use Ito’s lemma, the
value function from Section 3, and the formula

1 1..2

aLN(Jf) = \/72?6751

. Write a simulation code to verify the trading strategy of Exercise 4. Much
of the code can be taken from Week 2. Choose a time step At and make
the proper Ito approximation to the Ito integral of Exercise 4. Estimate
the mean square replication error, which is

E[(UT - V(XT))Q} .

This should decrease to zero as At — 0. You need to make many paths
to estimate the expected value accurately.
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