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1 SDE models, diffusions

This is the most important of the six classes. It describes how stochastic dif-
ferential equations, SDEs, are used to create models of random processes in
continuous time with continuous paths. The class starts with some terminology
and the philosophy related to SDE models. This and the next section are all
definitions and theory. The applications come in Sections 3 and 5, and in the
exercises. There is less motivation here because the motivation is similar to
Week 2 (for Ite’s lemma) and Week 3 (for backward equations).

A random processXt is an Ito process if it may be represented as an indefinite
integral in the form

Xt =

∫ t

0

as ds+

∫ t

0

bsdWs . (1)

The coefficients as and bs may be random, but it is understood that that bs is
non-anticipating. It is not necessary that at and bt be functions of Wt or Xt.
For example, we could have

Xt = t2 +

∫ t

0

bs dWs , bs =

∫ s

0

u dWu .

The integrands as and bs on the right side of the Ito process formula (1)
determine the infinitesimal mean and infinitesimal variance of Xt. Suppose
dt > 0 is an infinitesimal but non-zero increment of time (a more mathematical
version is coming) and dX = Xt+dt −Xt is the corresponding increment of X.
The infinitesimal mean is at means

at dt = E
[
dXt |W[0,t]

]
. (2)

The conditional expectation on the right is the conditional expectation given
that you know everything relevant that happened up to time t. In this case, the
only thing you might or might not know is the value of the Brownian motion
path. We discuss this issue more below.

It might be more familiar to math-trained people to take a small but not
infinitesimal increment ∆t > 0. The corresponding increment of X is ∆X =
Xt+∆t −Xt. The infinitesimal mean formula is

at ∆t = E
[

∆X |W[0,t]

]
+ o(∆t) . (3)
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I think of the informal version (2) as a shorthand way to write this. I believe
(personal belief, others disagree) that more formal statements like (3) do not
make people who use them more likely to reason correctly. I see plenty of finance
and economics papers written in terms of the fanciest mathematical formalism
that make elementary reasoning mistakes that would be less likely using simpler
and more intuitive reasoning such as (2).

The infinitesimal variance is

b2t dt = var
(
dX |W[0,t]

)
. (4)

This is the same as the expected square of the increment

b2t dt = E
[

(dX)
2 |W[0,t]

]
. (5)

This is because

var( dX | · ) = E
[

(dX)
2 | ·

]
− (E[ dX | · ])2

= E
[

(dX)
2 | ·

]
− a2

t dt
2 .

In the language of Week 2, the dt2 term on the right is tiny and can be ignored.
In the ∆t language, (4) would be

b2t∆t = var
(

∆X |W[0,t]

)
+ o(∆t) . (6)

This is equivalent to an expected square formula

b2t∆t = E
[

(∆X)
2 |W[0,t]

]
+ o(∆t) . (7)

The derivation is almost the same. If you’re not used to “big Oh” and “little
oh” reasoning, you can use the less formal version with differentials given above,
or you can look it up in Wikipedia.

var( ∆X | · ) = E
[

(∆X)
2 | ·

]
− (E[ dX | · ])2

+ o(∆t)

= E
[

(∆X)
2 | ·

]
−
(
a2
t ∆t+ o(∆t)

)2
+ o(∆t)

var( ∆X | · ) = E
[

(∆X)
2 | ·

]
+ o(∆t) . (8)

The infinitesimal mean and infinitesimal variance formulas come from the
Ito process representation and properties of integrals and continuous functions.
For example,

E
[

∆X |W[0,t]

]
= E

[∫ t+∆t

t

as ds |W[0,t]

]
The expectation of the Ito integral part is zero. If as is a continuous function
of s, then ∫ t+∆t

t

as ds = at∆t+ o(∆t) .
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For the infinitesimal variance, which is the same as the infinitesimal square, let
Yt be the Brownian motion integral

Yt =

∫ t

0

bs dWs .

The increment of this is

∆Y =

∫ t+∆t

t

bs dWs

The Ito isometry formula from Week 2 gives

E

(∫ t+∆t

t

bs dWs

)2

| ·

 =

∫ t+∆t

t

E
[
b2s | ·

]
ds .

The conditioning is the Brownian motion path up to time t. This means that
in the conditional expectation bt is known and bs ≈ bt if s ≈ t (because bs is a
continuous function of s). Therefore∫ t+∆t

t

E
[
b2s | ·

]
ds = b2t∆t+ o(∆t) .

You can check, as we checked (8), that the ds integral in (1) changes this by
a “tiny” amount, which means o(∆t). This shows that the Ito process (1) has
infinitesimal mean (3) and infinitesimal variance (6) if at and bt are continuous
functions of t. What I call “infinitesimal variance” is more commonly called
quadratic variation. The infinitesimal mean is drift.

This reasoning is used to write integral expressions for stochastic processes
that satisfy specified drift and quadratic variation conditions. Suppose you
have a stochastic process Xt and some reasoning suggests that the drift is at
and the quadratic variation is µt. You pick any square root b2t = µt. Then the
integral (1) has the desired properties. From this we learn that an Ito process
is completely determined by its infinitesimal mean and variance. You might of
this as Gaussian-like. Gaussian random variables are determined by their mean
and variance. But Ito processes do not have to be Gaussian.

An Ito process is a diffusion if it is also a Markov process. The Markov
property is that the distribution of the future, conditional on the past, is the same
as the distribution of the future conditional on the present. This means that
the distribution of the increments (see Week 1 for the definition of increment
processes) in the future of t depends on Xt alone, not on values of Xs for
s < t. Many probability classes discuss the Markov property when talking
about Markov chains. The Markov property for Ito processes is less technical.
We saw that an Ito process is determined by its infinitesimal mean and variance.
Therefore, an Ito Markov process, a diffusion process, is determined by the the
infinitesimal mean and variance at time t as functions of Xt. If Xt is such a
process, there are functions a(x, t) and b(x, t) so that

dXt = a(Xt, t) dt+ b(Xt, t) dWt . (9)
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This is a stochastic differential equation or SDE.
There are weak and strong ways to understand an Ito process. The weak

way to that Xt is a stochastic process determined by its infinitesimal mean and
variance as (2) and (4). This is natural from a modeling point of view. In the
strong interpretation you think of Xt as a function of the Brownian motion path
W[0,t] through the integral representation (1). This is convenient for computing
and analysis. The weak interpretation The theory of Ito processes says that if
Xt has continuous sample paths and has infinitesimal mean and variance

2 Ito’s lemma for diffusion processes

Let Xt be an Ito process specified in the strong way (1), which we write as

dXt = atdt+ btdWt . (10)

For a general Ito process, as opposed to a diffusion process, the coefficients at
and bt are any random but non-anticipating functions. Suppose f(x, t) is some
function, the corresponding “Ito’s lemma” is

df(Xt, t) = ∂xf(Xt, t) dXt +

[
∂tf(Xt, t) +

1

2
b2t ∂

2
xf(Xt, t)

]
dt . (11)

The “Ito rule” behind this is (dXt)
2

= b2t dt. We can write this in a different
way using the Ito formula (10) for dX. The formula becomes (for me, anyway)
more clear when we leave out the arguments Xt, t everywhere, so f(Xt, t) = f
and ∂tf(Xt, t) = ∂tf , etc.

df = bt∂xf dWt +

[
∂tf + at∂xf +

1

2
b2t ∂

2
xf

]
dt . (12)

This formula has the consequence that Yt = f(Xt, t) is a martingale if and only
if the coefficient of dt is zero, which is

f(Xt, t) is a martingale ⇐⇒ ∂tf + at∂xf +
1

2
b2t ∂

2
x = 0 . (13)

This is the main step in deriving backward equations for general diffusion pro-
cesses.

The derivation follows the one from Week 2. You expand in a Taylor series.
As in Week 2, we write f for f(Xt, t), etc.

df(Xt, t) = f(Xt + tdX, t+ dt)− f(Xt, t)

= ∂xfdX +
1

2
∂2
xf (dX)

2
+ ∂tfdt+ tiny terms .

The “tiny terms” are things like 1
2∂tf(dt)2 and 1

6∂
3
xf(dX)3. The more subtle

step is
(dX)2 = b2tdt+ tiny .
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Part of being an Ito process is the square increment expectation:

E
[

(dX)2 |W[0,t]

]
= b2tdt .

This means that
E
[

(dX)2 − b2tdt |W[0,t]

]
= 0 .

We showed in Week 2 that this is tiny.
A more formal explanation of Ito’s lemma would go like the one in Week

2. Look back at that one to follow this. Here, I will be “sketchy”, to give you
an idea what’s going on without explaining it completely. I hope this helps
you understand and use the Ito formulas (11) or (12). The formula (12) is
understood as shorthand for

f(XT2 , T2)− f(XT1 , T1) =

∫ T2

T1

∂tf(Xs, s) dWs

+

∫ T2

T1

[
∂tf(Xs, s) + as∂xf(Xs, s) +

1

2
b2s ∂

2
xf(Xs, s)

]
ds .

The discrete times corresponding to a small ∆t are tk = k∆t. The corresponding
increments are

∆Xk = Xtk+1
−Xtk

∆fk = f(Xtk+1
, tk+1)− f(Xtk , tk) .

We write fk for f(Xtk , tk), and similarly for derivatives.

f(XT2
, T2)− f(XT1

, T1) ≈
∑

T1≤tk<T2

∆fk

=
∑

T1≤tk<T2

∂xfk∆Xk +
1

2
∂2
xfk(∆Xk)2 + ∂tfk∆t+ · · · .

We use (1) to replace ∆Xk with btk∆Wk + atk∆t. This is because

∆Xk =

∫ tk+1

tk

bsdWs +

∫ tk+1

tk

asdt .

We need to know what happens when we replace bs with btk , since∫ tk+1

tk

btkdWs = btk∆Wk .

The difference is ∫ tk+1

tk

( bs − btk) dWs .

This “should be small”, because bs is close to btk .
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The weak interpretation of Ito’s lemma is justified in a possibly simpler way
using the weak understanding of the Ito process. The weak understanding of
Ito’s lemma in the dW form (12) is

E
[

∆f |W[0,t]

]
=

[
∂tf + at∂xf +

1

2
b2s ∂

2
xf

]
∆t+ o(∆t) (14)

E
[

(∆f)2 |W[0,t]

]
= b2t ∆t+ o(∆t) . (15)

Both of these may be seen using Taylor expansions. It’s easy to get these terms
and to guess that other terms are “tiny” in the sense of being o(∆t). It’s not so
easy to prove it (as far as I know, maybe someone can correct me). For example,
there are terms involving (∆X)3 and (∆X)4. If Xt were Brownian motion, the
cubic term would be zero and the quartic term would be 3∆t2. When Xt is a
more complicated Ito process, the appropriate sized are harder to prove.

3 Ornstein Uhlenbeck

The Ornstein Uhlenbeck process, or OU process, satisfies the SDE

dXt = −aXtdt+ σdWt . (16)

We imagine that the friction coefficient a is positive, but many facts about the
OU process are true for any a. Ornstein and Uhlenbick (Einstein first, but he
had too many things named after himn) used this as a model of the velocity
of small particle in water. The term −aXtdt represents friction from the water
trying to make the particle move slower. The term σdWt represents random
impacts of water molecules on the particle, which make it move. The particle
slows down quickly when a and keeps its velocity longer when a is small. The
noise coefficient σ determines the strength of random forces that take Xt from
its equilibrium position X = 0.

The OU process is used to model physical or financial quantities that have
an equilibrium position or value when the equilibrium is disturbed by random
noise. If the equilibrium position is x∗ 6= 0, the SDE (16) may be modified to

dXt = −a(X − x∗)dt+ σdW . (17)

In finance, this might apply to the short term interest rate, rt. In the model,
there is a “natural” rate r∗ that is disturbed by random “shocks”. But rt will
tend, on average, to revert to r∗ over time.

The OU SDE (16) may be solved using the integrating factor method you
learned in your class on differential equations (and possibly forgot). We give the
calculations in the language of stochastic calculus and Ito’s lemma. We write
the equation as

dXt + aXtdt = σdWt .

Then we multiply by the integrating factor, eat. On the left, you have

eatdXt + eataXtdt .
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In differential equations class, this is more likely written using derivatives, and
the calculation would be

eat
dX

dt
+ eataX =

d

dt

(
eatX

)
.

We can do the corresponding calculation for the OU process using Ito’s lemma.
We want to calculate d(eatXt). Here are the calculations in the language of Ito’s
lemma in the form (11)

f(x, t) = eatx

∂xf = eat

∂2
xf = 0

∂tf = aeatx

d [ f(Xt, t)] = d
[
eatXt

]
= eatdXt + aeatXtdt .

Therefore, the SDE (16) is equivalent to

d
[
eatXt

]
= eatdWt .

The next step in the integrating factor method is to integrate the perfect differ-
ential (in differential equations, the perfect derivative), to get

eaTXt −X0 =

∫ T

0

eatdWt .

Finally, you multiply by e−aT to arrive at a formula for XT

XT = e−aTX0 +

∫ T

0

e−a(T−t) dWt . (18)

This solution formula reveals most of the important facts about the OU
process. One is that the OU process “forgets” its initial state, X0. As T →∞,
the influence of the initial state, which is e−aTX0 disappears exponentially.
Another is that the distribution of XT converges to a Gaussian as T → ∞.
In fact, the whole right side of (18) is Gaussian, with mean e−aTX0. An Ito
integral with respect to Brownian motion where the integrand is just a function
of t (i.e, is not random), is Gaussian. This is the Gaussian nature of Brownian
motion. You can “see” it using the approximation∫ T

0

ctdWt ≈
∑
tk<T

ctk∆Wk .

The right side is a sum of independent Gaussians ∆Wk with weights ctk that are
not random. Therefore, the right side is mean zero Gaussian for any ∆t > 0. If
the variance has a limit, then the distribution has a limit, which is the Gaussian
with that variance. In this case, the variance is given by the Ito isometry formula

E

(∫ T

0

e−a(T−t)dWt

)2
 =

∫ T

0

E

[(
e−a(T−t)

)2
]
dt .
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The quantity in square braces [· · · ] on the right is not random, so the integral
is

E

(∫ T

0

e−a(T−t)dWt

)2
 =

∫ T

0

e−2a(T−t) dt =
1

2a

(
1− e−2aT

)
.

In particular

lim
T→∞

var(Xt) =
1

2a
. (19)

The OU model (17) is an example of an equilibrium model because there
is an equilibrium distribution, an equilibrium PDF, for Xt. The PDF of Xt

converges to the equilibrium distribution as t→∞. The process Xt itself does
not stop moving, but for large t it moves “within” the equilibrium distribution.
Brownian motion is not an equilibrium model because the variance of Wt goes
to infinity as t → ∞. The OU model can maintain an equilibrium because of
the mean reversion term −a(X − x∗)dt. The mean of Xt reverts to x∗, but Xt

itself (as was just said) fluctuates about x∗ with a variance of about 1
2a when t

is large.
Equilibrium models may be appropriate for some quantities in financial mar-

kets, such as interest rates. They are not may not be appropriate for prices of
traded assets (stocks). If the stock price were mean reverting, you would be
able to profit by buying whenever Xt < x∗ and selling whenever Xt > x∗. That
said, a Nobel Memorial Prize in economics was given to people who showed
empirically that actual stock prices are slightly mean reverting.

4 Backward equations for diffusions

Let Xt satisfy an SDE (9). If V (x) is a payout function, the corresponding value
function is

f(x, t) = E[V (XT ) | Xt = x] . (20)

The value function satisfies the backward equation

∂tf + a(x)∂xf +
1

2
b2∂2

xf = 0 . (21)

This PDE has final conditions f(x, T ) = V (x). The final condition and the
PDF determine f(x, t) for t ≤ T . This equation may be justified using one of
the justifications from Week 3. If f satisfies this, then (13) implies that f(Xt, t)
is a martingale. That means that

E[ f(XT , t) | Xt = x] = f(x, t) .

The final condition f(x, T ) = V (x) shows that this f is precisely the value
function (20).

As for Brownian motion, there are other backward equations for other func-
tions of the process. Consider a continuous payout random variable

Y =

∫ T

0

R(Xs)ds .
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We form a value function at time t by considering only the payouts in the future
of t:

Yt =

∫ T

t

R(Xs) ds . (22)

The value function for this is

f(x, t) = E

[∫ T

t

R(Xs) ds | Xt = x

]
. (23)

We find the PDE that f satisfies by looking for a martingale. We find a value
function by looking for a martingale related to this. So consider the process

Zt = f(Xt, t)−
∫ T

t

R(Xs, s) ds = f(Xt, t)− Yt .

This satisfies ZT = 0, because both (22) and (23) give zero. Ask what PDE
f should satisfy so that Zt is a martingale. In a small increment of time, the
integral Yt decreases by R(Xt) dt:

dYt = −R(Xt) dt .

With Ito’s lemma, we get

dZt = QdWt+

[
∂tf(Xt, t) + a(Xt)∂xf(Xt, t) +

1

2
b(Xt)

2∂2
xf(Xt, t) +R(Xt)

]
dt .

There is a formula for Q, but I didn’t write it to emphasize that it doesn’t
matter. Zt is a martingale if

∂tf(Xt, t) + a(Xt)∂xf(Xt, t) +
1

2
b(Xt)

2∂2
xf(Xt, t) +R(Xt) = 0 .

Therefore, we should solve

∂tf(x, t) + a(x)∂xfx, t) +
1

2
b(x)2∂2

xf(Xt, t) +R(x) = 0 . (24)

We should use final condition f(x, T ) = 0, which expresses the fact that the
running payout pays zero in zero time.

5 Geometric Brownian motion

A geometric Brownian motion is a diffusion process that satisfies the SDE

dSt = µStdt+ σStdWt . (25)

The parameters µ and σ are the expected rate of return (or just expected return
and volatility respectively. This seems to be a natural model of the price of a
traded asset (a stock). The price goes up or down by an amount proportional
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to St. This means that the probability of S = 100 → S = 102 is the same as
the probability 300→ 309. Both are 2% increases.

This equation may be solved using basic differential equation ideas supple-
mented with Ito’s lemma. The differential equations method is separation of
variables, which means putting S and derivatives of S on one side and then
integrating both sides. The first step of this program is

1

St
dSt = µdt+ σdWt . (26)

The indefinite integral of the right side is∫ T

0

µdt+

∫ T

0

σdWt = µT + σWT .

In ordinary calculus, you would recognize 1
s
ds
dt = d

dt log(s). We do the corre-
sponding calculation for the diffusion process using Ito’s lemma with

f(s) = log(s)

∂sf(s) =
1

s

∂2
sf(s) = − 1

s2

∂tf(s) = 0

(dSt)
2 = σ2S2

t dt .

Ito’s lemma (11) then gives

d log(St) =
1

St
dSt −

1

2
σ2S2

t

1

S2
t

dt .

We re-write this for our calculation in the form

1

St
dSt = d log(St) +

σ2

2
dt .

This puts (26) into the form

d log(St) =

(
µ− σ2

2

)
dt+ σdWt .

We integrate both sides from t = 0 to t = T to find

log(ST )− log(S0) =

(
µ− σ2

2

)
T + σWT .

With a little more algebra, this is the solution formula

ST = S0e
σWT+

(
µ−σ22

)
T
. (27)
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Exercise 2 looks at this solution from different points of view.
The solution formula (27) allows you to find the PDF of ST . The distribution

is called log-normal because log(ST ) is normal. Exercise 5 asks you to calculate
and plot this density. Other than plotting, I don’t know much use for it. If I
want to calculate expectations of functions of ST , I use the Gaussian distribution
of WT instead. We will see this in Week 5, when we derive the Black Scholes
formula. The formula (27) shows that ST > 0. You will see in Exercise 5 that
computations using the Euler Maruyama method (29) might fail to give positive
results if the time step is too large.

The formula (27) has the striking feature that the usual growth rate of ST
for large T is slower than eµT . This is strikingly clear when µ = 0. Then the
process (25) is a martingale, so its expected value does not change with time.
However, for large T , WT is on the order of

√
T so eσWT is the smaller part and

e−
1
2σ

2T is the larger part. This GBM converges to zero in distribution. You will
see this in the plots of Exercise 5. The expectation

E[ST ] = S0

is achieved by having rare paths much larger than S0 while typical paths are
much smaller. This is an example of a strongly skewed distribution with a PDF
that is not symmetric around the mean.

6 Computational methods

This section discusses two computational problems. One is generating sample
paths for a diffusion process from the SDE. The other is finite difference meth-
ods for solving the backward equation. Most modeling projects involve first
formulating a stochastic model such as an SDE and then doing computer work
of some kind to explore the behavior of the model. The material here should
seem natural, given similar methods for simpler problems we have already done.
These methods do not produce the exact solution, neither for sample paths nor
for backward equations. They have parameters ∆t or ∆x. As these parameters
go the zero, the computed solution converges to the actual (model) solution.
The trick in practice is to choose ∆t or ∆x small enough to get the accuracy
you need. The computer time increases as ∆t and ∆x decrease, so you don’t
want to take these parameters smaller than necessary.

Consider the SDE (9). Choose a ∆t and approximation times tk = k∆t.
Denote the values of the approximate sample path by

X∆t
k ≈ Xtk .

An optimistic approximation to the SDE for non-zero ∆t would be

X∆t
k+1 = a(X∆t

k ) ∆t+ b(X∆t
k ) ∆Wk . (28)

Everything here is known, except possibly ∆Wk. We take this to be the incre-
ment of Brownian motion over the time increment ∆t. These increments (as we
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have seen since Week 1) are Gaussian with mean zero and variance ∆t. You can
ask the Gaussian random number generator to give you random variables with
that distribution (see the code StockSim.py), or you can ask for Zk ∼ N (0, 1)
and take ∆Wk =

√
∆tZk. In this case, the computer program would implement

the formula

X∆t
k+1 = a(X∆t

k ) ∆t+ b(X∆t
k )
√

∆t Zk , Zk ∼ N (0, 1) . (29)

This is the Euler Maruyama method, which is how diffusion processes are usually
simulated.

This may seem odd, particularly if you have experience with numerical meth-
ods for ordinary or partial differential equations. For those problems there
are families of sophisticated and extremely accurate methods, including Runge
Kutta methods, finite element methods, and so on. There are whole gradu-
ate courses devoted to such methods. The simplest method, which is Euler’s
method, is explained in the first class. The rest of the course explains better
methods. Yet, for SDE, there do not seem to be methods that are much better
than the simple Euler Maruyama method (28).

7 Exercises

1. Let Xt be an OU process with a deterministic starting point X0 = x0.
Let u(x, t) be the PDF for Xt.

(a) Use the solution formula (18) to show that u = N (µt, vt) and find
formulas for the mean µt and variance vt.

(b) Find the solution formula like (18) for the process 17 that reverts to
x∗.

(c) Show that Pr(Xt < 0) > 0 for any x0 and σ > 0 and t > 0 and x∗.

(d) Suppose Xt satisfies the SDE (9) and u(x, t) is the PDF of Xt. The
forward equation is

∂tu = −∂x ( a(x)u(x, t)) +
1

2
∂2
x

(
b(x)2u(x, t)

)
.

Check by explicit calculation that the solution formula from part (a)
satisfies the forward equation for (16).

(e) Show that if Xt ∼ N (0, 1
2a ), then XT has the same distribution for

any T > t. Hint, show that this satisfies the forward equation.

(f) Use your formulas for the mean and variance of Xt to find the value
function for an OU process (16) mean reverting to x∗ = 0. Show that
your formula satisfies the backward equation and appropriate final
condition.

2. The geometric Brownian motion SDE 25 may be solved using the log
variable transformation. There are several equivalent ways to derive the
transformation.
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(a) Set Xt = log(St). Use Ito’s lemma to find the SDE that Xt satisfies.
Show that Xt = a+ bt+ cWt is a solution. The process Xt is Brow-
nian motion with drift. This is the derivation given above, explained
slightly differently.

(b) Write the backward equation for St. Consider the log change of
variables f(s, t) = g(log(s), t). Show that this g satisfies

∂tg + α∂xg + β∂2
xg = 0 .

Find the relation between α and β here to a, b, and c from part (a).
What diffusion process has this PDF as its backward equation?

3. Assume that the higher moments of the diffusion process are of the size
they would be for Brownian motion, which is

E
[
|∆X|3

]
≤ C∆t

3
2

E
[
|∆X|4

]
≤ C∆t2

Suppose f(x, t) has partial derivatives up to order 4 in both variables.
Define ∆f = f(Xt+∆t, t+ ∆t)− f(x, t) Show that

E[ ∆f | Xt = x] =

[
∂tf(x, t) + a(x)∂xf(x, t) +

1

2
b(x)2∂2

xf(x, t)

]
∆t+o(∆t) .

Show that

E
[

(∆f)2 | Xt = x
]

= [b(x)∂xf(x, t)]
2

∆t+ o(∆t) .

This is a weak version of Ito’s lemma.

4. Consider the Ornstein Uhlenbeck process (16) and running payout∫ T

t

X2
s ds .

Evaluate the value function (23) explicitly using variance formulas for the
OU process. Verify that this function satisfies the backward equation (24).

5. The code StockSim.py does the Euler Maruyama method to compute a
geometric Brownian motion governed by the SDE (26).

(a) Run with a larger T and ∆t and see that it is common to produce
negative approximate prices. For this, you do not need so many paths
and the plots will not look good. This is OK because the results are
not good either.

(b) Find a formula for u(s, t), which is the PDF of ST . You can use the
solution formula (27) for this. Add the exact PDF to the plot and
see what ∆t you need to get a good match.
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(c) The problem gets harder for larger T . Do a calculation with larger
T to see that the PDF of ST is not at all symmetric.

(d) A volatility surface model makes σ a function of s. A volatility skew
adds a slope, which is σ(s) = σ0+σ1(s−S0). A volatility smile adds a
positive quadratic term. Experiment with volatility skew, both posi-
tive and negative and see how this impacts the PDF. Add two curves
to the plot, one with positive and one with negative skew. Choose
the slopes s1 so that the PDF is noticeably different but not com-
pletely different. At this point, your plot will have four curves. Make
sure the vol surface curve legend labels have the corresponding skew
values. Volatility skew and smile are used to explain the observed
fact that market option prices for put options that are unlikely to be
“in the money” are much higher than the Black Scholes theory says
they should be.
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