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1 Active strategies for diffusions

This class discusses using dynamic stochastic models to design investment and
trading strategies. If you’re a scientist making a stochastic model of a system,
you ask what the model predicts about the system. This involves asking ques-
tions about paths of the stochastic process. An engineer or finance person might
instead use the stochastic model to design strategies. Optimal stochastic control
is one systematic way to use a stochastic model to design strategies. You give an
objective function (or merit function) which involves expectations of quantities
related to the stochastic process and your input controls, then you look for the
control strategy that minimizes or maximizes this objective function.

2 Utility and choice theory

Utility theory is a philosophy of how people make or should make financial deci-
sions under uncertainty. Today’s class is about optimal financial strategies, so
there has to be a criterion for optimality. In my opinion, the only sensible ap-
proach is to optimize expected utility. The von Neumann Morgenstern theorem
is the argument for using expected utility. It starts with some natural axioms
about choice. The conclusion is that any choice system that satisfies the von
Neumann Morgenstern axioms is given by a utility function.

The von Neumann Morgenstern framework involves choice under uncer-
tainty. Here, the uncertainty is about how much money you will have at a
certain time. Different financial strategies lead to different probability distri-
butions for this. Suppose X and Y are random variables that represent the
amount of money (your “wealth”) you might have. The axioms say that there
are three mutually exclusive possibilities

• X ≺ Y , you prefer Y to X, as random variables

• X ∼ Y , you are indifferent between the two

• X � Y , you prefer X to Y .

For example, if X ∼ N (0, 1) and Y ∼ N (5, 1), then most people would have
X ≺ Y .

Here are the von Neumann Morgenstern axioms
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1. If X ≺ Y and Y ≺ Z, then X ≺ Z. If X ≺ Y and Y ∼ Z, then X ≺ Z
(transitivity).

The next axiom involves a coin-toss interpolation between two random variables
If X and Y are two random variables and p is a probability ( 0 < p < 1), then
there is a random variable Wp where we toss a coin and with probability p
take Wp = X and with probability 1 − p we take Wp = Y . To motivate the
next axiom, remember that if f(t) is a continuous function of t with f(0) < 0
and f(1) > 0, then there is a t with 0 < t < 1 so that f(t) = 0. This is the
intermediate value theorem.

2. Suppose X ≺ Z ≺ Y , then there is p with 0 ≤ p ≤ 1 so that Z ∼ Wp

(continuity)

3. If Z ≥ 0 and Pr(Z > 0) > 0, then X ≺ X + Z (arbitrage)

4. If µ = E[X], and if we also use µ to denote the random variable that is
always equal to µ, then X ≺ µ (risk aversion)

These axioms are meant to be about probability distributions, but they are
stated here in terms of random variables. It is possible that X 6= Y as random
variables but have the same distribution. Two random variables have the same
distribution if for every number a, Pr(X < a) = Pr(Y < a).

5. If X and Y have the same distribution, then X ∼ Y .

All of these seem (to me) completely natural except the risk aversion axiom.
The opposite of risk aversion is risk seeking. Some financial situations, such
as stock investment competitions encourage risk seeking. An investment or
trading competition uses simulated trades with virtual money. Each competitor
starts with the same initial wealth and makes decides on simulated trades using
reported market prices during the period of the competition. The competitor
with the most simulated wealth at the end wins the competition. According
to a version of the efficient market hypothesis, none of the players has the
knowledge to have an expected return larger than the others. Therefore, your
chance of winning is greatest if your variance is the largest – more of your return
distribution is above the distributions of your competitors. If the distribution
is Gaussian (say), then your probability of winning approaches 50% in the limit
where your variance goes to infinity while your competitors’ variances stay finite.
The optimal strategy is to bet as wildly as possible.

My view is that risk seeking like this indicates that the incentive scheme is
broken. The person who wins a stock trading competition is not someone you
want investing your money. You can find other views expressed on the web. I
will take risk aversion as an axiom today.

A utility function U(x) tells you how much x money benefits you, or how
happy it makes you. It is a philosophical interpretation that cannot be made
completely precise. A utility function should be monotone increasing. If y > x,
then y makes you happier than x (as amounts of money). A utility function
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should be concave, which means u′′(x) < 0. The derivative of the utility tells you
how much more happy an increment of money makes you U(x+ dx) = U(x) +
U ′(x)dx. Economists call dU = U ′(x)dx the marginal utility corresponding to
the increment dx. Concavity represents the fact that the marginal utility of dx
decreases as x increases. If you have x = $100 and someone offers you dx = $1,
you might be pleased, but if you have x = $1, 000, 0000 and someone offers
you $1, your marginal pleasure would be less, still positive, but less. Therefore
U ′(x) should be a decreasing function of x, which is U ′′(x) < 0. I will say that
a function U(x) is a utility function if it is increasing and concave.

If X is a random variable, a random amount of money, then the expected
utility is

uX = E[U(X)] .

Part of the von Neumann Morgenstern theory is that choosing on the basis of
expected utility satisfies all of the von Neumann Morgenstern axioms. We prefer
Y to X if Y has more expected utility:

uX < uy =⇒ X ≺ Y , uX = uY =⇒ X ∼ Y .

We check that this satisfies the axioms 1 – 5.

1. If X ≺ Y ≺ Z, then uX < uY < uZ , so (because < is transitive) uX < uZ
and X ≺ Z. The other part is similar. If uX < uY and uY = uZ , then
uX < uZ , so X ≺ Z.

2. The expected utility uWp
is a continuous function of p (math people, a

concave function is continuous, and expectations with respect to continu-
ously changing probability distributions are a continuous function of the
parameter). We are given that uW0 = uX < uZ < uY = uW1 , therefore
there is a p with uWp

= uZ . This makes Wp ∼ Z, the agent indifferent
between Wp and Z.

3. The utility U is strictly increasing. Therefore, if Z > 0 then U(X + Z) >
U(X). If Pr(U(Z + X) > U(X)) > 0, and Pr(U(X + Z) < U(X)) = 0,
then E[U(X + Z)] > E[U(X)]. This is like saying that if f(t) ≥ 0 for all
t and if f is continuous and if f(t) > 0 for some t, then

∫
f(t)dt > 0.

A mathematical fact called Jensen’s inequality is the link between concavity
U(x) and risk aversion. It says that if U is a strictly concave function and if X
is a random variable with E[X] = µ and var(X) > 0, then

E[U(X)] < U(µ) . (1)

There is a geometrical proof that shows how concavity comes in. Consider the
line that it tangent to the graph of U(x) at x = µ. The line is the graph of the
function

V (x) = U(µ) + U ′(µ)(x− µ) . (2)
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The graph of U is below the graph of V because U is concave. This means
U(x) < V (x) if x 6= µ. Therefore

E[U(X)] < E[V (X)] , if var(X) > 0 .

If var(X) = 0, then X is always equal to the constant µ and E[U(X)] = U(µ).
Look back at the definition (2) of V and you will see that

E[V (X)] = U(µ) + U ′(µ) E[X − µ] = U(µ) .

This is a proof of Jensen’s inequality (1).

4. This is Jensen’s inequality. The expected utility of the constant µ is U(µ).
The expected utility of U(X) is less than that.

5. If X and Y have the same distribution, then they have the same expected
utility.

This shows that a choice based on expected utility satisfies the von Neumann
Morgenstern axioms.

The harder theorem, which is the von Neumann Morgenstern theorem, goes
the other way. If ≺, �, ∼ is a preference system that satisfies the von Neumann
Morgenstern axioms, then there is a utility function U(x) so that the preference
system is the same as the one determined by expectation of this utility. A choice
system that satisfies the von Neumann Morgenstern axioms is called rational
The theorem does not say that you have to use expected utility to be rational.
It just says that there is a utility function (increasing, concave) that gives the
same choices.

An investment advisor (an investor) can use expected utility to avoid pref-
erences that are not rational. An increasing and concave utility will guarantee
that the investor accepts arbitrages (axiom 3) and is risk averse (axiom 4). A
choice system that is not equivalent to an expected utility criterion is guar-
anteed either to be risk seeking or to decline arbitrage or both, under some
circumstances.

The technical meaning of the theorem is this: the decision criterion is a
linear function of the outcome probabilities. You can see this simply if X has a
discrete probability distribution. Suppose X can take only one of the n values
sj and Pr(X = sj) = pj . Then the expected utility is

uX =

n∑
j=1

U(sj) pj .

This is a linear function of the probabilities pj .
Here is a consequence of the von Neumann Morgenstern theorem. Any port-

folio criterion that is not equivalent to a linear function of the probabilities must
violate one or more of the von Neumann Morgenstern axioms. One example is
variance penalized expected return

M(X) = E]X]− λ var(X) . (3)
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This is a nonlinear (linear plus quadratic) function of the probabilities:

M(X) =; E[X] − λ
[

E
[
X2
]
− (E[X])

2
]

M(X) =

n∑
j=1

sjpj − λ

 n∑
j=1

s2jpj −

 n∑
j=1

sjpj

2
 .

The last term on the right leads to p2j appearing in the formula for M(X).
Exercise 1 asks you to construct an example of this.

Here is some non-mathematical commentary. Investors face a tradeoff be-
tween return and risk. You can increase your expected return only by taking
more risk. Utility theory (above) and mean-variance analysis (exercises 1 and
2) are different approaches to this. The utility theory approach seems indi-
rect. Risk aversion comes from Jensen’s inequality, which comes from decreasing
marginal utility. Mean variance analysis seems more straightforward, subtract-
ing a penalty for variance. Investment advisors prefer mean variance analysis
partly because it is easier to explain to clients

The field of behavioral finance is in part about decisions people make that
are irrational in the sense that they violate the von Neumann Morgenstern
axioms. Some people use this as an argument against using expected utility
to guide investment decisions. I think this is a mistake. People may wish to
be “rational” but lack the internal computing power to determine the expected
utility of every financial decision. Using computers and utility theory may help
investors avoid irrational decisions.

A drawback of utility theory for practical investing is that nobody knows
their utility function. To be fair, this drawback is shared with other ways to take
into account risk aversion, such as the parameter λ in the variance penalized
criterion (3). It is common to use power law utility

U(x) = xγ , 0 < γ < 1 . (4)

This is sometimes called CRRA, for constant relative risk aversion.

3 Optimal dynamic investment

Here is an example of a dynamic investment problem. At any time t, the
wealth is divided between two investments, called cash and stock. More formally,
“cash” is called the risk-free asset and “stock” is the risky asset. Let Zt denote
the wealth at time t. The investment strategy is Zt = Xt + Yt, where Xt is
the investment in stock and Yt is cash. In a time dt, the investments change
according to

Xt → (1 + µdt+ σdWt)Xt (5)

Yt → (1 + rdt)Yt (6)

5



The parameters are r, the risk free rate of return, µ, the expected rate of return
of the stock, σ, the volatility of the stock. If there is no “trading” (re-allocation
of assets), then Xt will be a geometric Brownian motion that satisfies

dXt = µXtdt+ σXtdWt .

The solution, we saw in Week 4, is

Xt = X0e
σWt+(µ−σ22 )t .

Without trading, the cash component would satisfy

dYt = rYtdt , Yt = Y0e
rt .

Cash is risk free because the risk free rate r is assumed known at the beginning
and is constant, and because there is nothing random in the evolution of Yt
(without trading). The dW term in (5) makes stock a risky asset. In this
model, µ and σ are taken to be known constants.

With dynamic trading, the investor chooses Xt and Yt at time t subject only
to the constraint that Xt + Yt = Zt. Once this allocation is made, we “watch”
the markets for time dt. The two assets change value according to (5) and (6).
The result is

dZt = µXtdt+ σXtdWt + rYtdt

dZt = rZtdt+ (µ− r)Xtdt+ σXtdWt (7)

The quantity (µ− r) is the excess return.
A non-anticipating strategy is a function Xt that is determined by the path

from time 0 to time t. Any strategy (assumed to be non-anticipating) leads to
a tine T wealth ZT that is a function of the strategy and the Brownian motion
path W[0,T ]. The best strategy for a given agent (“agent” = “utility function”)
is the one that maximizes the expected utility. This leads to the problem

max
strat

E[U(ZT )]

The final wealth is given by integrating dZ from (7) from t = 0 to t = T :

ZT = Z0 + r

∫ T

0

Ztdt+ (µ− r)
∫ T

0

Xtdt+ σ

∫ T

0

XtdWt .

This is one of the Merton optimal dynamic investment problems.
Optimal policy problems like this may be solved using value functions. The

value function for this problem is

f(z, t) = max
strat

E[U(ZT ) | Zt = z] . (8)

This is the maximum over strategies Xs that are defined for t ≤ s ≤ T . As
before, the value function satisfies a PDE for t < T and a final condition

f(z, T ) = U(z) . (9)
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This formulation implicitly includes the assumption that trading is arbitrary
and free. That’s why the value function f(z, t) does not depend on the value of
Xt. The agent can choose any “stock position” (value of Xt) at time t regardless
of Xs for s < t as long as the money comes from cash (the risk free asset). The
agent can buy or sell dX value of risky asset at the same price (buying = selling)
and using dX amount of cash (no transaction cost). Economists call an ideal
market like this frictionless. An agent who buys and sells without influencing
the price is a price taker. All these assumptions are approximations. It is
possible to model transaction cost and market impact (the effect of dX on the
market price).

The PDE is the Hamilton Jacobi Bellman equation. It is based on the
dynamic programming principle, which is the idea that when you make a decision
at time t, you can assume that all decisions after that will be optimal. In the
conditional expectation that defines the value function (8), the wealth at t is z.
Suppose the agent chooses to allocate x to the risky asset at this time. Then at
time t+ dt, the wealth would be given by (7)

Zt+dt = z + rZtdt+ (µ− r)Xtdt+ σXtdWt .

The optimal expected utility starting from t+ dt would be

f(z+dZt, t+dt) = f(z, t)+∂zf(z, t)dZt+
1

2
∂2zf(z, t)(dZt)

2 +∂tf(z, t) dt . (10)

We should use the “Ito rule” and replace (dZt)
2 by its expected value, which is

σ2x2dt, according to (7) with Xt = x. The optimal x is the one that maximizes
E[ f(z + dZ, t+ dt)]. The only random term on the right (the only thing that
goes inside the expectation) is dZt. The only quantities that depend on x are
dZt and (dZt)

2. Therefore, we can maximize over them to find the optimal x,
which we call x∗.

x∗ = arg max
x

(
∂zf(z, t) E[ dZt] +

1

2
σ2x2dt∂2zf(z, t)

)
.

In (7) we see that
E[ dZt] = rzdt+ (µ− r)xdt .

Since z is independent of x, we may leave it out of the maximization. The result
is

x∗ = arg max
x

(
(µ− r)x ∂zf(z, t) +

1

2
σ2x2∂2zf(z, t)

)
dt .

The solution to this maximization problem is

x∗ = − (µ− r) ∂zf(z, t)

σ2∂2zf(z, t)
. (11)

The dynamic programming principle (Bellman’s principle) is that f(z, t) is the
expected value function if we use the optimal investment at time t. This is x∗
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given by (11). Using this value in (10) makes both sides equal to f(z, t). This
cancels from both sides of (10), which leaves (with the Ito rule)

0 = [ rz dt+ (µ− r)x∗ dt ] ∂zf(z, t) +
1

2
σ2x2∗ ∂

2
zf(z, t) dt+ ∂tf(z, t) dt .

After the algebra, the resulting equation is

0 = ∂tf(z, t) + rz∂zf(z, t)− (µ− r)2

2σ2

( ∂zf(z, t))
2

∂2zf(z, t)
. (12)

This equation was derived in this way (more or less) by Merton as part of his
theory of optimal dynamic investment and consumption. Exercise 4 adds the
consumption piece.

Exercise 3 works out this Merton theory more explicitly for the case of a
power law utility. You can see in that example that f(z, t) is a utility function
as a function of z for each t. You might wonder whether it’s true in general
that ∂zf(z, t) > 0 and ∂2zf(z, t) < 0 as long as the final utility U(z) has these
properties. Here are two ways to see that f(·, t) is a utility. You can see it is
true by differentiating the equation with respect to z and see that the signs of
∂zf and ∂2zf do not change. This is “straightforward” but might take a long
time to get the details right.

4 Option hedging in continuous time

A stock option it the right to buy or sell a specific stock at a specific price at
a specific time or until a specific time. The right to buy is a call option. The
right to sell is a put option. If the right exists only at time T , it is a European
style option. If the right exists at any time up to time T , it is an American style
option. Options are traded in public exchanges and their price is determined in
the market. However, the Black Scholes theory of option pricing says what the
option price should be, in an economic model. Market prices disagree with this
simple theory, but the theory nevertheless provides an important way to think
about buying and selling options.

The terminology of this section is that T is the expiration time of the option.
An option has a strike price, written K, that is the price at which the stock will
be bought or sold. An option is the right to buy or sell, but not a requirement.
Consider a European style option. Suppose you own a put option (option to
sell) at price K and the price is ST . If ST > K, then you can sell a share of
stock for ST on the market or for price K to the counterparty (the person who
sold you the option). If you have a share of stock, you get more by selling on
the market, so you don’t exercise the option. We say the option is out o the
money. If ST < K, then you can buy a share for ST and sell for K. This gives
you a profit of K − ST . For European options that are traded on exchanges,
the option is settled in cash, which means that the exchange gives you the cash
value of the option. For a put, this is

V (ST ) = max {K − ST , 0} = (K − ST )+ .
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For a call, similar reasoning gives

V (ST ) = max {ST −K, 0} = (ST −K)+ .

American style options with the early exercise feature present the owner with a
dynamic optimization problem – finding the optimal strategy for exercising the
option.

The Black Scholes pricing theory was first developed by Fisher Black and
Miron Scholes using reasoning similar to that of Section 3. This section explains
the reasoning, as I have come to understand it. Later the binomial tree model
was invented as a way to explain option pricing to people who are not familiar
with stochastic calculus. This is explained in Section 5. The explanations
here may be a little quick, because the course Derivative Securities covers that
material more deeply.

The Black Scholes model of the trading world is this. There is a risk free
asset, cash, with rate of return r. There is a risky asset, the stock, whose price
is St that is a geometric Brownian motion with parameters µ (expected rate of
return) and σ (volatility). The market is full of “agents” (traders) who can buy
or sell the option or the stock without market “frictions”. The amount of cash
or stock can be positive or negative. For cash, this is written as “borrowing =
lending”; the interest rate you get for your cash is the same as the interest you
pay if you borrow. It might seem surprising that this is approximately true for
big agents. Owning a negative amount of stock is called having a short position.
Selling stock you don’t own (to get a negative amount of stock) is short selling.
The Black Scholes theory allows all this, and with zero transaction cost. For
European style options, the theory assumes that if you own the option at time
T , then

You can get into the Black Scholes theory by asking about dynamic repli-
cation of an option without buying or selling the option itself. The time t, the
agent has a wealth Zt. The agent allocates Xt to the stock and the rest to cash.
The agent seeks a trading strategy so that ZT = V (ST ). We say the trading
strategy replicates the option. The strategy satisfies eqrefdZ, which means that
it is self financing. The trader starts with some wealth and then only takes that
wealth to the market. The equivalent of the value function is the wealth you
need at time t with stock price s to replicate the option:

f(s, t) = Zt so that ZT = V (ST ) . (13)

This f is the Black Scholes arbitrage price of the option. The idea is that
if the option price is different from the arbitrage price, then you can make a
guaranteed profit by replicating the option. For example, if the option price
is P > f(St, t), then the trader can sell one option and receive P . The trader
then uses f < P of the money to replicate the option and keeps the rest. At
time T , the trader has ZT = V (ST ), so he/she can satisfy the person he/she
sold the option to. The rest is risk free profit. Basic finance theory (economic
philosophy) is that arbitrage opportunities like this cannot exist. If they did
exist, smart traders would jump on them and they would quickly be sold out.
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The technical argument of Black and Scholes is ingenious no matter how you
say it. In this version, the trading strategy will have the effect that

Zt = f(St, t) , for all t ≤ T .

This means that if you follow the strategy (details in the next paragraph) and
if you start with the right wealth at time t0, then at all later times up to time
T , you still have exactly the wealth to replicate the option.

For the calculation, we use the terminology of Black and Scholes by writing
the stock component of the portfolio as Xt = ∆tSt. That means that ∆t is
the number of shares of the stock that you own. As in the Merton theory,
this can be any real number. The cash position (amount of wealth in cash) is
Yt = Zt −∆tSt. We calculate dZ = f(St, t) using the market formula (7) and
using Ito’s lemma. The resulting equation gives a PDE for f , which is the Black
Scholes equation. First,

dZ = rYtdt+ ∆tdSt .

This is the “tricky” part of this approach to Black Scholes theory. You imaging
that you trade (choose ∆t and Yt), and then keep them for time dt while the
market moves. We used the same idea in the Merton theory. We then use the
“budget constraint” to eliminate Yt and write

dZt = r(Zt −∆tSt) + ∆tdSt .

The desired replication formula Zt = f(St, t) allows this to be written as

dZt = r(f(St, t)−∆tSt) + ∆tdSt .

We compare this to what you get from Ito’s lemma, which is (using the Ito rule,
(dS)2 = σS2

t dt)

dZt = df(St, t) = ∂sf(St, t)dSt + ∂tf(St, dt)dt+
1

2
∂2sf(St, t)σS

2
t dt .

We compare these expressions and see that we can eliminate the dS term (the
term with dW ) if we take

∆t = ∂tf(St, t) . (14)

Finally, we equate the remaining terms and drop the dt from both sides. We
get

r [ f(St, t)− St∂s(f(St, t)] = ∂tf(St, t) +
1

2
σ2S

2
t ∂

2
sf(St, t) .

Some algebra puts this into a more standard form

0 = ∂tf + rs∂sf +
1

2
σ2s2∂2sf − rf . (15)

This is the Black Scholes equation.
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5 Hedging in discrete time

6 Black Scholes formula

The Black Scholes formula is a formula for the solution of the Black Scholes
equation with final condition f(s, T ) = V (s) = (s−K)+ or f(s, T ) = (K− s)+.
One way to find the Black Scholes formula is to use the fact that the Black
Scholes equation is a backward equation for a geometric Brownian motion

dSt = rStdt+ σStdWt . (16)

This is different from the geometric Brownian motion model used to derive the
PDE (15) in that the expected rate of return is r instead of µ. More precisely,
f is the value function

f(s, t) = E
[
V (ST )e−r(T−t) | St = s

]
. (17)

To be clear, (17) with process (16) is a formula for the solution of (15), but
it is not the derivation. Nevertheless, (17) says that the option price is the
expected payout if S is the risk-free process (16). An investor is risk free or risk
neutral (as we said before) if he/she makes the price of a risky asset equal to its
discounted expected value. The conclusion of the Black Scholes theory may be
stated as giving the price as the discounted expected value using the risk free
process.

The Black Scholes formula may be derived using the “risk free representa-
tion” above. The solution of the SDE is

ST = S0e
σWT+(r−σ22 )T .

We can get the distribution of WT using
√
TZ, where Z ∼ N (0, 1). For a put,

we get

f(S0, 0) = e−rTE
[

(K − S0e
σ
√
TZ+(r−σ22 )T )+

]
.

As an integral, this is

f(S0, 0) =
1√
2π
e−rT

∫ z0

−∞

(
K − S0e

σ
√
TZ+(r−σ22 )T

)
e−

1
2 z

2

dz .

The endpoint of integration is the value of z that makes ST = K. The result is

z0 =
log(K/S0)−

(
r − σ2

2

)
σ
√
T

.

The part of this formula involving just K is

1√
2π
e−rTK

∫ z0

−∞
e−

1
2 z

2

dz = e−rTN(z0) .
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7 Exercises

1. Show that the variance penalized expected value violates axiom 3 for any
λ > 0. Find random variables X and Z with Z ≥ 0 and Z > 0 with
positive probability so that M(X + Z) < M(X). For this example, you
can use discrete probability, such as X = 2 with probability .3, etc. It
may be simpler to think in terms of X and Y with Y ≥ X.

2. The Markowitz mean variance allocation theory involves random variables
Rj , which represent the return (profit) from investing one unit of money
on asset j. These have expected returns

µj = E[Rj ] .

The covariance is
Cij = cov(Xi, Xj) .

Suppose you have a unit amount of money and invest wj of that in asset
j. Then your total return is

X =

n∑
j=1

wjRj = wtR .

The vector notation in the last version on the right is w ∈ Rn with com-
ponents wj and R ∈ Rn with components Rj . The expected return is

r = E[X] =

n∑
j=1

wjµj = wtµ . (18)

The covariance matrix C has entries Cjk. The variance of the return is

σ2 = wtCw . (19)

The budget constraint involves the vector 1 ∈ Rn with all components
equal to one:

n∑
j=1

wj = wt1 = 1 . (20)

An allocation (or portfolio) is w that satisfies the budget constraint. An al-
location is efficient if it maximizes r with a fixed σ2 and budget constraint
(20). An allocation is inefficient if it is not efficient. Suppose X = wtR

is an efficient allocation and X̃ = w̃tR is an inefficient allocation with
the same variance. Show that U(X) > U(X̃) for any utility function, if
R is Gaussian. According to von Neumann Morgenstern choice theory,
any rational investor would prefer an efficient allocation to an inefficient
allocation with the same variance. Harder, attempt only after the rest is
finished: Show that this may not be true for non-Gaussian returns. Hint.
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If Y and Z are Gaussian with the same variance, then you can think of Z
as larger than Y in the sense of the arbitrage axiom if the mean of Z is
larger. However, there are non-Gaussian random variables Y and Z have
µY < µZ and σ2

Y = σ2Z but Z is not an arbitrage from Y in the sense
that Pr(Z < a) > Pr(Y < a) for some a. This can happen if Z has fatter
tails than Y . [My opinion. Mean variance analysis is popular even though
it can lead to “irrational” allocations. You might excuse this by saying it’s
only supposed to apply to Gaussian returns. Yet, nobody thinks returns
are anything like Gaussian.]

3. Suppose the utility is a power law (4). Take the ansatz f(z, t) = A(t)zγ .

(a) Substitute the ansatz into the Merton PDE (12) to show that the
ansatz works. Find the differential equation and then the formula
for A(t).

(b) Show that the optimal allocation has the form x∗ = mz and find a
formula for the Merton proportion as a function of the parameters γ,
σ, and r.

(c) An investor is risk neutral if they maximize expected wealth rather
than expected utility. How does the Merton strategy break down in
the risk neutral limit γ → 1?

(d) We saw that in geometric Brownian motion, it can happen that the
expected value grows exponentially but the median value goes to zero
exponentially. Can this happen for this Merton problem? Can the
expected utility grow exponentially while the median utility decays?
What does this say about how the utility function zγ captures risk
aversion?

4. (Extra credit, do only after everything else is done, and if you’re interested
in economics.) Here is the optimal policy problem that includes consump-
tion. The rate of consumption at time t will be Ct. You “consume” money,
so the wealth dynamics with consumption are

dZt = rZtdt+ (µ− r)Xtdt+ σXtdWt − Ctdt .

As with wealth, we use the utility of consumption rather than consumption
itself. The reasoning is similar. You might be very happy to consume two
cookies rather than one cookie, but you may not care as much for cookie
101 if you already have 100 of them. There is a discount rate, ρ, in addition
to the risk free rate. If you consume c at time t, the utility “today” (time
t = 0) is reduced by e−ρt. The agent chooses Xt and Ct at time t in a way
that seeks to maximize

H = E

[∫ T

0

e−ρtU(Ct) dt

]
.
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The constraint is ZT ≥ 0. Formulate a value function, the dynamic pro-
gramming principle, and the Hamilton Jacobi Bellman equation appropri-
ate for this problem. Describe the solution when the utility function has
the form U(c) = cγ .

5. Most people remember the approximate form of the Black Scholes equation
without getting it exactly right. Here are two checks that help you get
the terms (the signs, etc) right.

(a) Suppose the payout is V (s) = 1 for all s. Then the option is not
random and is not risky. A risk free asset is supposed to increase in
value according to the risk free rate (otherwise, there is an arbitrage).
Use this reasoning to determine the value of the option and show that
this satisfies the Black Scholes equation (15).

(b) Suppose the payout is V (s) = s. Then the option is the same as the
stock. What is f in that case? Show that this satisfies (15)
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