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Tentative (more text)

1 Conditional expectation

Conditional expectation describes how our expected values change when we get
partial information about the outcome. Fancy reasoning with conditional expec-
tation expresses this differently from the elementary method using conditional
probability densities or distributions. The

An example is the value function

f(x, t) = E[V (XT ) | Xt = x] . (1)

One formalism for this would involve the joint probability distribution

(Xt, XT ) ∼ u(x1, x2) .

The conditional density of XT conditional on Xt = x1 is

u(x2|x1) =
u(x1, x2)∫
u(x1, x2)dx1

.

The left side is a probability density as a function of x2 for each value of x1, but
x1 is just a parameter describing the partial information. Suppose V (x1, x2)
is a random variable whose value depends on X1 and X2. The conditional
expectation of V , if X1 is known, depends on the value of X1 = x1, but it is
still a random variable. We call it Ṽ (x1)

Ṽ (x1) = E[V (X1, X2) | X1 = x1 ] =

∫
V (x1, x2)u(x2|x1) dx2 .

If we don’t know the value of X1, this conditional expectation is a random
variable Ṽ (X1). This is like V (X1, X2), except that it depends only on X1. The
tower property gives

E[Ṽ (X1)] = E[V (X1, X2)] .

Partal information about a complex random variable X means learning the
values of some components of X. In the example above, we learned one of the
two components of X. The conditional expectation of V (X) is the expectation
given that information. When X is a path, partial information might mean
knowing the first part of the path but not all of it. If the path is X[0,T ] and t < T ,
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we might know X[0,t]. The conditional expectation would be the expectation
knowing this information. Like the example, the conditional expectation is a
function of what you know. So there could be a function Ṽ (x[0,t]) so that

Ṽ (x[0,t]) = E[V (X[0,T ]) | X[0,t] = x[0,t] ] .

Then there is a random variable that depends on the part of the path that you
know Ṽ (X[0,t]). The tower property gives

E[V (X[0,T ]) ] = E[ Ṽ (X[0,t]) ] .

As an example, suppose Xt is Brownian motion and consider the random
variable

V (X[0,T ]) =

∫ T

0

esdXs .

The conditional expectation, if you know X[0,t], is

Ṽ (X[0,t]) =

∫ t

0

esdXs . (2)

You can understand this claim by writing the whole integral in two parts∫ t

0

esdXs +

∫ T

t

esdXs .

When you know X[0,t], the first integral is known. The independent increments
property says the second integral is independent of the first. Even conditional
on X[0,t], the expected value of dXs for s > t is zero. Thus, the conditional
expectation of the integral from t to T is zero.

As another example, consider a final time payout V (XT ). The conditional
expectation is given in terms of the value function

E[V (XT ) ] = f(Xt, t) . (3)

This is because of the Markov property of Xt. The probability distribution of
Xs for s > t depends only on Xt and not on values Xs for s < t. The conditional
expectation given Xt = x is the value function.

Conditional expectations like this are often expressed using σ−algebras and
filtrations. These are useful in rigorous mathematical discussions but seem to
get in the way in less rigorous discussions. Nevertheless, you will see this ter-
minology a lot if you practice stochastic calculus. A σ− algebra is a collection
of events. An event is a set of outcomes that is defined by some criterion or
limiting procedure. For example, there is the event A = {|Xt| < 2 for all t ≤ 5}.
An algebra, written F , of events represents a state of partial information. An
algebra of sets is a collection of events. Any event A either has A ∈ F or A /∈ F .
If A ∈ F , we say A is measurable with respect to F . We interpret this by saying
that A ∈ F if we know whether X ∈ A or not with the partial information in
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F . That is, F is the set of events determined by the partial information. In the
above example, suppose the partial information is X[0,t]. If t > 5, then we know
whether |Xt| < 2 for all t ≤ 5, that is, whether X ∈ A. If t < 5, the partial
information may not decide with certainty whether X ∈ A.

This partial information picture is not a mathematical definition. The defi-
nition, which is motivated by the partial information picture, is that an algebra
of sets is a family of events that satisfy the following axioms. Set terminology
is Ac is the complement of A, so X ∈ A if and only if X /∈ Ac. The intersection
of events A and B is X ∈ A ∩ B if X ∈ A and X ∈ B. The union of events is
A ∈ A ∪B if X ∈ A or X ∈ B or both. The whole probability space, the space
of all possible paths or whatever, is called Ω. The event with no elements is ∅.

• If A ∈ F then Ac ∈ F . If we know whether X ∈ A, then we know whether
X /∈ A.

• If A and B are measurable with respect to F , then A ∪B and A ∩B are
also measurable with respect to F .

• Ω ∈ F and ∅ ∈ F . We know whether X ∈ Ω (it is) and whether X ∈ ∅ (it
isn’t).

You can specify an algebra of sets by specifying some of the components or
values that define X. We are particularly interested in the case where X is a
path and the partial information is a beginning part of the path. The algebra
determined by knowing X[0,t] is written Ft. In the example above, A ∈ Ft
if t ≥ 5 and A /∈ Ft if t < 5. These algebras have the property you gain
information with time. That is, if t′ > t, then Ft ⊆ Ft′ . For example A ∈ F6,
which implies that A ∈ F7 because 6 < 7. An expanding family of algebras like
this is a filtration.

An algebra of events is a σ−algebra if you can take limits of sets within the
algebra. You can say this using unions or intersections or both. With unions,
we suppose that An ∈ F for all A. If A is a σ−algebra, then

∪∞n=1An ∈ F .

The infinite union is defined in a natural way. An outcome X is in the infinite
union if it is in any of the An. In technical proofs, it is usually necessary for
the algebra to be a σ−algebra. We’re not doing proofs here, but you will hear
people talk about σ−algebras and should be aware that it’s a technical kind of
algebra. If you’re not doing proofs, you don’t to have to know the technicality.

We say that a function of X is measurable with respect to F is the value of
V is determined by the information in F . That is, for any number a, we know
whether V (X) ≤ a.

{X | V (X) ≤ a} ∈ F .

It is common to write V ∈ F when V is measurable with respect to F . It is
clear that you can combine (add, multiply, etc.) measurable functions to get
other measurable functions.
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Here is the fancy definition of conditional expectation that uses all these
ideas. Let F be a σ−algebra and V be some function, not necessarily mea-
surable with respect to F . The conditional expectation is a function Ṽ that is
measurable with respect to F . We write this as

Ṽ = E[V (X) | F ] .

This is defined by either of two properties. One is that if W is any function
measurable with respect to F , then

E[ Ṽ (X)W (X)] = E[V (X)W (X)] .

The other is that Ṽ is the function measurable with respect to F that is the
best approximation to V in the least squares sense. Exercise 1 explains this in
an example.

Some definitions we have used before are often said in the language of con-
ditional expectation. One is the basic value function

E[V (XT ) | Ft] = f(Xt, t) .

The right side involves a variable Xt that is measurable in Ft. The right side
involves only Xt because of the Markov property. The tower property is the
statement that if you take conditional expectation of a conditional expectation,
you get the conditional expectation. If G has more information than F , then

E[ E[V (X) | G] | F ] = E[V (X) | F ] .

In particular, you apply this to the filtration Ft, and t2 > t1 (more information),
you get

E[ E[V (X) | Ft2 ] | Ft1 ] = E[V (X) | Ft1 ] .

You can apply this to value functions V (XT ) and get

E[ E[V (XT ) | Ft2 ] | Ft1 ] = E[V (XT ) | Ft1 ] .

In terms of value functions, this is

E[ f(Xt2 , tt) | Ft1 ] = f(Xt1 , t1) .

A random process at is progressively measurable with respect to the filtration
Ft if at is measurable with respect to Ft for all t. This is the hypothesis you
could use in the definition of the Ito integral∫ t

0

asdWs .

A random process Yt that is progressively measurable is a martingale if, when-
ever T > t,

Yt = E[YT | Ft] .
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2 Multi-component diffusions

Most dynamic models involve more than one model variable. If Xt is the state
of the “system” (whatever is being modeled) at time t, then Xt is likely to have
more than one component. We write this as

Xt =

X1,t

...
Xd,t

 .

For example, you could descriobe the random motion of a leaf floating on a pond
by modeling it’s two coordinates as functions of time. In financial markets, you
could model the movement of more than one asset price, or more then one
currency exchange rate.

The material in this section seems to defy linear ordering. You may have
to read it a few times for the different parts to make sense together. If you
don’t understand something on the first reading, just keep going. It’s not hard
but it might take some patience. Whenever I see something in vector or matrix
notation that I can’t understand, I try writing it using indices and sums. The
calculations with the multi-component Ito’s lemma, such as Exercise 4 may seem
complicated, but if you do them slowly it should make sense.

A multi-dimensional diffusion process may be described by giving its in-
finitesimal mean (drift) and infinitesimal covariance (quadratic variation). In
the language of Section 1, we could write these as

a(Xt, t) dt = E[ dXt | Ft] . (4)

and
µ(Xt) dt = cov( dXt | Ft) = E

[
dXt(dXt)

t | Ft
]
. (5)

The infinitesimal mean a(x, t) is a d−component vector. The infinitesimal co-
variance µ(x, t) is a d× d symmetric positive semi-definite matrix. Recall from
the one component case that the second and third expressions of (5) are the
same because the difference between them is “tiny”.

The formulas with differentials (4) and (5) can be expressed in equivalent
“little oh” terms. Let ∆t > 0 be a small increment of time and ∆X = Xt+∆t−Xt

the corresponding increment of the process. The infinitesimal mean formula (4)
is equivalent to

a(Xt, t)∆t = E[ ∆X | Ft] + o(∆t) . (6)

The infinitesimal covariance formula (5) is equivalent to

µ(Xt) ∆t = cov( ∆X | Ft) + o(∆t) = E
[

∆Xt(∆Xt)
t | Ft

]
+ o(∆t) . (7)

The last two expressions on the right of (7) are not equal but are related by

cov( ∆X | Ft) = E
[

∆Xt(∆Xt)
t | Ft

]
−∆X

(
∆X

)t
, ∆X = E[ ∆X | Ft] .
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From (6), we find that ∆X
(
∆X

)t
= O(∆t2). This is the same thing we said

when talking about infinitesimal variance of one component processes. A dif-
fusion process model of a random process would be giving a(x, t) and µ(x, t).
This is a stochastic process version of an ordinary differential equation model,
which would involve giving just a(x, t).

Diffusion models can be specified using stochastic differential equation sys-
tems. The expression looks the same as for a single component SDE, but the
objects are different

dXt = a(Xt) dt+ b(Xt) dWt . (8)

The drift coefficient a(x) is a d−component vector. The noise “coefficient” b(x)
is a d×m matrix. In components, the SDE is

dXi,t = ai(Xt) dt+
m∑
j=1

bij(Xt) dWj,t .

The number m is the number of sources of noise. There must be at least one
to make the differential equation stochastic, but there do not have to be as
many as there are components of X. Some common models have m = d and
others have m < d. The latter are called degenerate diffusions, but there is
nothing wrong with them. The relation between SDE noise coefficient matrix
b and infinitesimal covariance matrix µ is found by substituting the SDE (8)
into the definition (5). We neglect terms with dt2 or dWdt. We use the fact of
matrix and vector algebra, including the fact that transpose reverses the order
and matrix/vector multiplication is associative.

E
[
dX(dX)t | Ft

]
= E

[
(b(Xt)dWt) (b(Xt)dWt)

t
]

= E
[
b(Xt) dWt (dWt)

t
(b(Xt))

t
]

= E
[
b(Xt)

[
dWt (dWt)

t
]
b(Xt)

t
]

= b(Xt) E
[
dWt (dWt)

t
]
b(Xt)

t

= b(Xt) (Im×m dt) b
t(Xt)

µ(Xt) dt = b(Xt)b
t(Xt) dt

This shows that the relation between the infinitesimal covariance µ and the
noise coefficient b is

µ(x) = b(x) bt(x) . (9)

If you have a model in terms of µ(x), you have to find an appropriate b(x),
which is somewhat arbitrary, see Exercise 3.

The multi-component Ito’s lemma is like the one component Ito’s lemma.
You have f(Xt, t) and you want df . You expand in a Taylor series until all the
terms you have left off are “tiny”. Then you replace quadratic expressions like
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dXi,tdXj, t by their expected values. That is µij(Xt)dt. That’s it

df(Xt, t) =

d∑
i=1

∂xi
dXi + ∂tfdt+

1

2

d∑
i=1

d∑
j=1

∂xi
∂xj

fµij(Xt)dt . (10)

Comments: in the double sum on the right, if i 6= j there are terms (i, j) and
(j, i), which are the same. If you group them together, the 1

2 cancels. There is
a 1

2 only for the diagonal terms, which have i = j. If you have an SDE or some
other way to describe dX, you can substitute it on the right to get formulas in
terms of dW .

One market factor stock process

Let Si,t be the price of asset i at time t, and let d be the number of assets
considered. We suppose that each individual asset price is a geometric Brownian
motion with some expected rate of return and volatility. We seek a model of
correlation between asset prices. One is related to the one factor market model.
In this model, each asset is driven by its own idiosyncratic factor and by a
common market factor. Stock i has an idiosyncratic noise (a noise that applies
only to it), which we call Wi,t. The noise for the market factor is W0,t. This
means that there are d + 1 sources of noise for d components of our diffusion
process, which contradicts something above. Please be patient with that. The
model is, for i = 1, · · · , d,

dSi,t = µiSi,t dt+ σiSi,tdWi,t + βiSi,tdW0,t . (11)

Here is the model written out for d = 3.

d

S1,t

S2,t

S3,t

 =

µ1S1,t

µ2S2,t

µ3S3,t

 dt+

σ1S1,t 0 0 β1S1,t

0 σ2S2,t 0 β2S2,t

0 0 σ3,tS3,t β3S3,t



dW1,t

dW2,t

dW3,t

dW0,t

 .

The infinitesimal mean (drift) is given by

a(s) =

µ1s1

µ2s2

µ3s3

 .

The noise coefficient matrix is

b(s) =

σ1s1 0 0 β1s1

0 σ2s2 0 β2s2

0 0 σ3,ts3 β3s3


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The infinitesimal covariance is

µ(s) = b(s)bt(s)

=

σ1s1 0 0 β1s1

0 σ2s2 0 β2s2

0 0 σ3,ts3 β3s3



σ1s1 0 0

0 σ2s20
0 0 σ3s3

β1s1 β2s2 β3s3


µ(s) =


(
σ2

1 + β2
1

)
s2

1 β1β2s1s2 β1β3s1s3

β1β2s1S2

(
σ2

2 + β2
2

)
s2

2 β2β3s2s3

β1β3s1s3 β2β3s2s3

(
σ2

3 + β2
3

)
s2

3

 .

This matrix is the sum of a diagonal matrix corresponding to independent id-
iosyncratic factors and a rank one matrix corresponding to the single market
factor.

µ(s) =

σ
2
1s

2
1 0

0 σ2
2s

2
2

0 0 σ2
3s

2
3

+

β1s1

β2s2

β3s3

(β1s1 β2s2 β3s3

)
.

The last term on the right has the form uut, where u is a column vector. Any
symmetric rank one matrix has this form.

You can use the multi-dimensional form of Ito’s lemma to find a solution
formula for the SDE system eqrefofm. Here is a sort-of ansatz approach that
is based on our experience with simple geometric Brownian motion. There are
other ways to approach this that we will explore below. Suppose the solution
has the form

Si,t = Si,0e
σiWi,t+βiW0,tM(t) . (12)

We apply Ito’s lemma with

f(wi, w0, t) = Si,0e
σ1wi+βiw0M(t).

This has partial derivatives

∂wi
f = σif

∂w0
f = βif

∂tf = Si,0e
σ1wi+βiw0 Ṁ(t) =

Ṁ(t)

M(t)
f

∂2
wi
f = σ2

i f

∂2
w0
f = β2

0f

∂wi
∂w0

f = σiβif

In this calculation, we leave out the arguments of f and then use Si,t =
f(Wi,t,W0,t, t). We also use the “Ito rule” formulas (dWi,t)

2 = dt, (dW0,t)
2 =
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dt, and (dWi,tdW0,t) = 0.

df(Wi,t,W0,t, t) = ∂wi
fdWi,t + ∂w0

fdW0,t + ∂tfdt

+
1

2
∂2
wi
f(dWi,t)

2 +
1

2
∂2
w0
f(dW0,t)

2 + ∂wi∂w0f(dWi,tdW0,t)

= σiSi,tdWi,t + βiSi,tdW0,t +
Ṁ(t)

M(t)
Si,t dt

+
1

2
σ2
i Si,tdt+

1

2
βiSi,tdt

You can compare this to the SDE (11) and see that the dWi,t and dWi,0 terms
match. This leaves the dt terms. On the left side are the dt terms from the
SDE (11) and on the right are the dt terms from the Ito calculation

µiSi,tdt =
Ṁ(t)

M(t)
Si,t dt+

1

2
σ2
i Si,tdt+

1

2
βiSi,tdt .

This simplifies to
Ṁ(t)

M(t)
= µi −

1

2

(
σ2
i + β2

i

)
.

We need M(0) = 1 so that the ansatz (12) has Si,0 = Si,0. Therefore,

M(t) = e[µi− 1
2 (σ2

i +β2
i )]t .

The solution is

Si,t = Si,0e
σiWi,t+βiW0,t+[µi− 1

2 (σ2
i +β2

i )]t . (13)

A short rate money market model

Let Rt be a market interest rate for deposits (loans) with no default risk and for
a very short period. Let Mt be the money market account, which is an account
that gets the short rate Rt. This evolves Mt according to

dMt = RtMtdt .

Let us assume a linear mean-reverting equilibrium model for the short rate, as
we did before

dRt = −γ(Rt − r)dt+ σdWt .

The parameter γ is the mean reversion rate, r is the equilibrium interest rate,
and σ determines the amount by which Rt typically differs from r. This may
be written as a two component SDE

d

(
Mt

Rr

)
=

(
RtMt

−γ(Rt − r)

)
dt+

(
0
σ

)
dWt .

This model has d = 2 components and m = 1 sources of noise. The infinitesimal
covariance is

µ = bbt =

(
0
σ

)(
0 σ

)
=

(
0 0
0 σ2

)
.
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3 Exercises

These exercises are for study and learning only. Do them as you have
time. Do not hand them in. They will not be graded.

1. Suppose X is a one component random variable with probability den-
sity u(x). Show that the conditional expectation of V (X) is the num-
ber that best approximates V (X) in the least squares sense. That is if
a = E[V (X)], and b 6= a, then

E
[

[(V (X)− a)2
]
< E

[
[(V (X)− b)2

]
.

Hint. Put b = a+(b−a) on the right and expand the square. Now suppose
X = (X1, X2) and let F be the σ−algebra of events that “know X1”. Let
u(x1, x2) be the PDF of (X1, X2). Find a formula for

Ṽ (X1) = E[V (X1, X2) | F ]

Show that if W is measurable with respect to F then

E
[

(V (X1, X2)− Ṽ (X1))2
]
< E

[
(V (X1, X2)−W (X1))2

]
.

This shows that the conditional expectation is the function measurable in
F that best approximates V in the least squares sense.

2. Let Xt be one dimensional Brownian motion and V (x) = x4. Calculate
the value function f(x, t). Show by explicit calculation that if t2 > t1,
then

E[ f(Xt2 , t2) | Ft1 ] = f(Xt1 , t1) .

3. There can be different ways to “explain” correlations between multi-variate
Gaussians, or random variables with other distributions. Suppose X =
(X1, X2) is a two component random variable so that X1 = σ1Z1 and
X2 = ρX1 + σ2Z2. Here, Z1 and Z2 are independent standard normals.
These formulas explain the correlation between X1 and X2 by imagining
that X1 “drives” X2 with a coefficient ρ. Calculate the covariance matrix

C = cov(X) = E

[(
X1

X2

)(
X1 X2

)]
.

Find a different explanation for X in which X2 is defined first in terms
of a standard normal X2 = σ̃2Z2 and then X1 is driven by X2 with some
extra noise added: X1 = ρ̃X2 + σ̃1Z1. Find an upper-triangular matrix b
and a lower triangular matrix b̃ so that

C = bbt = b̃b̃t .

Conclude that the noise coefficient b in the SDE (8) is not determined by
the infinitesimal mean and covariance of the process Xt.
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4. The solution formula in the one factor multi-asset price model (13) has
the form

Si,t = S̃i,tUt ,

where the idiosyncratic part is a geometric Brownian motion involving the
idiosyncratic noise only

dS̃i,t = µiS̃i,tdt+ σiS̃i,tdWi,t , S̃i,0 = Si,0 ,

and the market part is a geometric Brownian motion with just the market
factor noise

dUi,t = βiUi,tdW0,t , Ui,0 = 1 .

Verify this product form directly using the multi-component Ito’s lemma.
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