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1 About this Stochastic Calculus course

This short course is about building and understanding models of random pro-
cesses. The models are stochastic differential equations (usually called SDEs),
which are a random process analogue of ordinary differential equations (ODEs).
Both ODE and SDE models involve a state variable Xt that describes the state
of the “system” (what is being modelled) at time t. Both describe the increment
dXt = Xt+dt −Xt, which depends on Xt in some way. In an SDE model, dXt

also depends on some random “noise” that “arrives” in the interval [t, t + dt].
In an SDE model, dt must be positive. We often think of dt as positive in an
ODE model, but that is not necessary. An ODE model takes the form

dXt = a(Xt) dt . (1)

An SDE model takes dXt to be a random variable and specifies its mean and
variance

E[ dXt] = a(Xt) dt (2)

var( dXt) = µ(Xt) dt . (3)

This course is about creating models like this and working with them. Be aware
that these formulas are written in a simplified and somewhat incorrect form.
More correct versions are (??) and (??) below.

The above paragraph illustrates the mathematical level of the course. We
will often use informal or heuristic reasoning, as is done by most people using
stochastic calculus or any other part of applied mathematics. Sometimes we
will examine the concepts more carefully. You can think of the definition of the
Riemann integral (area defined by boxes with side ∆x in the limit ∆x → 0)
as is done in typical calculus classes, but with complete mathematical proofs.
The full mathematical framework for stochastic calculus starts with abstract
probability measure theory.

Stochastic calculus is a mathematical framework for SDEs, just as ordinary
calculus is a framework for ODEs. There is a stochastic integral, the Ito integral
for integrating noise. This is a complement to the “ordinary” integral

∫
· · · dt.

There is a stochastic chain rule, called Ito’s lemma, which is used to differentiate
functions of the random path Xt.

In stochastic calculus, we call the function Xt (a function of t), a path.
Since the path is random, stochastic calculus has elements of probability theory
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that have no analogue in ordinary differential equations (1). The location of the
random path at time t is a random variable that has a probability density p(x, t).
This density satisfies a partial differential equation, called the forward equation
(also Fokker Planck equation) that describes how the probability density changes
as t increases.

Conditional probability and conditional expectation are central to stochastic
calculus. A common situation involves a random path on a time interval 0 ≤
t ≤ T and an intermediate time t1 > 0, t1 < T . You can look at a “sub path”
X[0,t1] (this is all values Xt for 0 ≤ t ≤ T ) and ask about the path in the future
of t1, which is X[t1,T ]. An example in this direction is the value function defined
by the conditional expectation

f(x, t1) = E[V (XT ) | Xt1 = x] . (4)

In an application in financial economics, Xt could represent the “market” at
time t and V (x) some measure of value of X, such as V (x) = x (if X represents
a price) or V (x) = x2 if we like larger values of x even more. Then the value
function is the expectation of this time T value, given information up to some
earlier time t1 < T . This value function also satisfies a partial differential equa-
tion (PDE) called the backward equation (or Kolmogorov backward equation,
or Chapman Kolmogorov equation). The PDE/SDE connection is used both
ways. The PDE provides a way learn about SDE models. SDE models provide
a way to find solutions to certain PDEs using simulations of the stochastic pro-
cess. Both directions are often (and often incorrectly) called the Feynman Kac
formula.

Change of measure formulas are another part of SDE theory that has no
analogue in ODE. These formulas, often called Girsanov formulas, relate the
probability distributions determined by different SDEs. Change of measure
is a central concept in the theory of stock options – Black Scholes theory and
developments from that. The “real world measure“ and the risk neutral measure
(two SDE “worlds”) are related using Girsanov’s theorem. Change of measure
has more practical uses too. It allows you to learn about solutions of one SDE
by simulating paths from a different SDE, and then re-weighting to compensate
for changing the SDE.

These are the important topics for this course. Hopefully you can re-read
this section to review for the final exam and it will all make sense.

2 Probability theory for SDE

The first theoretical issues in probability theory are: How do you describe a
random object, and how do you specify its probability distribution? In unive-
riate probability, the random object is a number. Its distribution is described
using a probability density function (PDF) or its cumulative distribution func-
tion (CDF). In discrete probability, there is a finite or infinite list of possible
objects (random integer, random graph, etc.) and you give the probability of
each object. In multi-variate probability with n components, the random object
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is n numbers, the components, and a probability density function describes their
joint distribution. Notations for these situations are given below.

The probability theory of SDEs cannot be described in any of these ways.
The random object is a function of the continuous time variable t. The value of
this function at time t is Xt. This is given for some range of t, often 0 ≤ t ≤ T ,
but other ranges are possible. The function is called a path. For SDE, the paths
usually are continuous functions of t. Thus, the random object is a continuous
path defined on some time interval. The probability distribution is given by a
probability measure. As already stated, this short course of applied aspects of
SDEs will not describe probability measures completely.

In principle the probability distribution of a random path is completely de-
termined by the distribution of its starting point, typically X0, and the dy-
namical relations (2) (the drift or infinitesimal mean) and (3) (the quadratic
variation or infinitesimal variance). This is the SDE analogue of the fact that
an ordinary differential equation path is determined by its initial condition X0

(typically not random) and the dynamical relation (1). We try to learn about
random paths directly from the dynamics without writing expressions for the
probability measure. For example, the forward and backward partial differential
equations mentioned above are found in this way.

Operations in calculus may be defined using a small time interval ∆t, which
goes to zero. Stochastic calculus takes this one step further and uses a limit
∆t → 0 to describe the probability distribution of a random path. To put
this in a systematic notation, suppose the time interval of the path is [0, T ],
choose a number of time steps n and a time interval ∆t = T/n. We will use the
following clumsy notation (feel free to suggest or use a less clumsy one) in which
X∆t ∈ Rn is the discrete time path consisting of observations of the continuous
time path at times tk = k∆t. The discrete time observations are

X∆t
k = Xtk , tk = ∆t .

These form the components of the vector X∆t

X∆t =


X∆t

X2∆t

...
XT

 =


Xt1

Xt2
...

Xtn

 ∈ Rn .

The dimension of the space of observation vectors, which is n, goes to infinity as
∆t→ 0. In this sense the space of paths – path space – is infinite dimensional.

The dimension of the observation vector space is finite, though large. There-
fore, there may be a joint probability density for the observation components.
The probability density will be written

p∆t(x1, x2, · · · , xn) .

This sequence of probability densities defines the probability distribution of the
path. It is possible to write formulas for p∆t in some simple cases. The formula
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for Brownian motion is easy but lengthy to write, but part of it is in Exercise 1.
In harder cases there are approximate formulas for p∆t. In ordinary calculus,
we try to avoid going all the way back to ∆t → 0. Instead we use theorems
like the chain rule. In stochastic calculus, we try to reason about path space
probabilities without going to p∆t. Instead, we build up tools such as Ito’s
lemma and backward equations. Of course, these depend on ∆t→ 0 limits.

SDE models (2)(3) determine probability distributions in path space that
have the Markov property. This is the property that the future of time t, the
probability distribution of the path Xs for s > t, depends on Xt only. For
example, (2) says that the expected change in X just after time t depends on
Xt only. To say this properly, we give corrected versions of (2) and (3) that use
conditional expectations.

The conditional expectations and probabilities we need depend on pieces of
the path X. We write X[s0,s1] to denote the path from t = s0 to t = s1. In
particular, we need the path up to a time s1, which is X[0,s1]. Naturally, this
assumes 0 ≤ s0 ≤ s1. We write X∆t

[0,s1] for the set of discrete time observations
that happen up to time s1. The components are the numbers Xtk for all k with
tk ≤ s1. The dimension of the space of vectors X∆t

[0,s1] depends on ∆t and s1

and is given by ⌊ s1

∆t

⌋
= greatest integer ≤ s1

∆t
.

Here, bxc, the “floor” of x, is what you get by rounding down to the nearest
integer. The past of a time t is determined by the partial observation paths
X∆t

[0,s1], in the limit ∆t→ 0.
The conditional probabilities we need are distributions of Xs2 conditioned

on knowing the path up to time s1. If ∆t > 0 then this can be expressed in
the language of simple conditional probability. We seek the distribution of Xs2

conditioned on values of the discrete time observations before time s1. Denote
these values by x1, x2, etc. The conditional density is

Xs2 ∼ p( · | X∆t = x1, Xt2 = x2, · · · , Xtk = xk) . (5)

Here, k = bs1/∆tc is the number of observation times up to s1. The conditional
probability is defined in the usual finite dimensional way. If Y and Z are random
variables with some joint PDF, and if z is a possible value of Z, then the
conditional probability density is

p( y | Z = z) =
p(y, z)∫
p(y′, z) dy′

.

The conditional density of (5) is this, with Y given by Xs2 and Z being the
observation values Xt1 , · · · , Xtk . The point here is not to write a lot of formulas,
but to make it clear what these conditional probabilities and densities are.

In this notation, the Markov property is the property that p(·| · · · ) of (5)
depends only on xk and not on earlier values:

p( · | X∆t = x1, Xt2 = x2, · · · , Xtk = xk) = p( · | Xtk = xk) . (6)
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The limit ∆t → 0 defines a conditional probability conditional on the path
X[0,s1]. These probabilities conditional on the whole partial path (the whole of
X[0,s1]) require measure theory to define completely, but an informal statement
of the Markov property is that the PDF of Xs2 conditional on the whole path
X[0,s1] is the same as the probability conditional on the las value, Xs1 .

p( · | X[0,s1]) = p( · | Xs1) (7)

A future class will discuss a modern form of conditional probability.
The correction to (2) and (3) is only to say that Xt has the Markov property

the infinitesimal mean and variances as conditional

E[ dX | Xt = x] = a(x) dt , (8)

var[ dX | Xt = x] = µ(x) dt . (9)

We write ∆t and ∆x = Xt+∆t−Xt instead of dt and dX to describe changes that
are small but not infinitely small. It is important to keep in mind the constraint
∆t > 0. In the informal language of differentials, we write dt > 0, but pure
literal minded mathematicians ask how it’s possible to be both infinitely small
and positive.

E[ ∆X | Xt = x] = a(x) ∆t+O(∆t2) , (10)

var[ ∆X | Xt = x] = µ(x) ∆t+O(∆t2) . (11)

You can look up the “big Oh” notation O(∆t2) in Wikipedia if you’re not
familiar with it. There will be more material on it in future classes.

3 Brownian motion

Stochastic calculus uses Brownian motion in several ways. A diffusion process,
or a diffusion is a random process described by a stochastic differential equa-
tion. Brownian motion is the simplest diffusion process. Other diffusions are
described by what they have in common with Brownian motion and the differ-
ences between them. Moreover, Brownian motion is used as a model of noise
for other diffusions. Therefore, we use Xt to denote Brownian motion if it is
the only process being discussed, but Wt if Brownian motion is being used as a
noise source. This will start here with the Xt notation then switch to Wt when
Xt becomes a different process.

A “standard” Brownian motion starts with X0 = 0. The path is a continuous
function of t. The increments Xs2 − Xs1 are Gaussian with mean zero and
variance equal to the size of the interval:

E[Xs2 −Xs1 ] = 0 (12)

var[Xs2 −Xs1 ] = s2 − s1 . (13)

Moreover, the increments over disjoint time intervals are independent. If s1 <
s2 < · · · < sk, then the random increments Xsj+1

− Xsj are all independent.
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Brownian motion has the Markov property because nothing in one time interval
has any influence on what happens in a different interval. The distribution
of Xs2 , conditional on the path X[0,s1], is Xs1 +N (0, s2 − s1). The expression
N (µ, σ2) refers to a Gaussian random variable with mean µ and variance σ2. Ihe
random variable N (µ, σ2) is implicitly understood to be independent of other
random variables in the same discussion. In this case, it is independent of Xs1 .

Brownian motion may be “derived” as a large scale, or coarse grained model
for the steady arrival of random “information”. The random information con-
sists of an i.i.d. sequence of random variables Ui with mean zero and variance
σ2. The central limit theorem concerns the distribution of

SM =
1√
M

M∑
i=1

Ui .

It says that SM is approximately Gaussian with mean zero and variance σ2, if M
is large. This applies to any M “samples” from the sequence Ui, not necessarily
the first M elements of the sequence. In particular, the next M samples give
an independent random sum with the same distribution

S
(1)
M =

1√
M

M∑
i=1

Ui

S
(2)
M =

1√
M

2M∑
i=M+1

Ui

etc.

The sums S
(1)
M and S

(2)
M are both approximately normal for large M , and they are

exactly independent. Therefore, their joint distribution is approximately a two
component Gaussian with independent Gaussian components. The individual
random numbers Ui are sometimes called shocks, particularly in finance and
economics. This terminology seems funny to me, as you would imagine that
economists would eventually stop being “shocked” by new information as each
new Ui arrives.

These sums may be normalized, or scaled, or re-scaled by a scaling parameter
C. “Clearly”,

YM =
C√
M

M∑
i=1

Ui

is approximately Gaussian with mean 0 and variance C2σ2.
By coarse-graining, we mean describing changes in the running sum

∑
Ui,

in an approximate but useful way, when there are many terms in any increment
of time. For example, a stock price can “tick” (change) up or down by one cent
at a time, which is not Gaussian because a tick has only two possible values.
However, we may model the change over an hour as approximately Gaussian
because there are so many independent ticks in an hour. There are fine-grained
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models that describe individual or short sequences of ticks, called market micro-
structure models. The coarse-grained model is simpler.

In technical notation, choose T and ∆t = T/n. Suppose the running sum
is coarse-grained so that there are M “shocks” in any time interval [tk, tk+1].
Overall there are nM shocks. The time between shocks is T/nM . Shock i
arrives at time i/nM (so shock with i = nM arrives at time T ). The overall
sum is

nM∑
i=1

Ui .

We start by “scaling”, or “normalizing”, which means choosing a scaling factor
C so that the variance of the overall sum is the variance of XT , which is T . The
result (you easily check) is

C =

√
T√

nMσ2
.

The scaled running sum is (get the largest i in the sum by rounding t/nM down
to the nearest integer)

Yt =

√
T√

nMσ2

b t
nM c∑
i=1

Ui .

This Y is a scaled running sum process that is approximately described by
Brownian motion.

The increment of Y over the time interval [tk, tk+1] is determined by the M
shocks that in that time interval

∆Yk = Ytk+1
− Ytk =

√
T√

nMσ2

(k+1)M∑
i=1+kM

Ui . (14)

The mean is zero and the variance is (after some calculation)

var( ∆Yk) =
T

nMσ2
Mσ2 = ∆t .

Furthermore, the increments ∆Yk are approximately Gaussian when M is large.
Distinct increments always are independent. In the limit M →∞, we get paths
whose increments are independent and exactly Gaussian with the right mean
and variance. Brownian motion paths satisfy an SDE model with infinitesimal
mean a = 0 and infinitesimal variance µ = 1.

The Donsker invariance principle is the theorem that the distribution Yt
converges to the distribution of Brownian motion (described above) in the limit
M →∞. It is named for Professor Monroe (Monie) Donsker, who was a Courant
Institute faculty member for several decades. Keep in mind that the numbers
Yt do not converge to numbers Xt as M →∞. Only the distribution converges.
In fact, if M is replaced by 2M (for example) all of the sums (except k = 0)
in (14) change “completely”, in that they sums for 2M are independent of the
sums for M .
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4 Geometric Brownian motion

Geometric Brownian motion is a diffusion process in which dX is proportional
to X. This may be appropriate for modeling a population where dX specified
as percentages of the population. It may be used to model a population where
the number of birth and death rate is proportional to the population. It is
used to model the random changes in the price of a “stock” (financial asset).
Here too, prices go up and down in percentages. The infinitesimal mean being
proportional to x means

a(x) = rx . (15)

The parameter r is the expected growth rate (for populations) or the expected
rate of return (for prices). The infinitesimal standard deviation of dX also
should be proportional to x. This implies that the infinitesimal variance is
proportional to x2. The coefficient is written as σ2 (it’s positive) where σ is the
volatility.

µ(x) = σ2x2 . (16)

The standard deviation of the increment is the square root of the variance. Here,
this implies over an interval of length ∆t

std dev (∆Xt | Xt = x) ≈ σ
√

∆t .

We think of
√

∆t as being much larger than ∆t. For example, if ∆t = 1/256
(256 = 28 being the approximate number of trading days in a year) then

√
∆t =

1/16 = 2−4, which is larger by a factor of 16.
The term geometric comes from the fact that the “log process” Yt = log(Xt)

is closely related to ordinary Brownian motion. After Week 2, you will be able
to verify that it has constant infinitesimal variance of the log process is µ = σ2

and constant infinitesimal mean

a = r − 1

2
σ2 . (17)

The 1
2σ

2 is the “Ito term” that we will find in Week 2 using Ito’s lemma. Let Wt

be a Brownian motion as above with infinitesimal mean a = 0 and infinitesimal
variance µ = 1. Then Yt may be written

Yt = y0 + σWt + (r − 1

2
σ2)t . (18)

You can check this, since var(dY ) = σ2var(dW ) = σ2dt, and E[dY ] = E[dW ](r−
1
2σ

2)dt. A geometric series is the exponential of an arithmetic series. If we think
of Wt as “arithmetic” Brownian motion, then geometric Brownian motion is a
fitting way to describe the process

Xt = X0e
σWt+(r− 1

2σ
2)t . (19)

This formula expresses a diffusion process Xt in terms of a Brownian motion.
The classes of weeks 3 and 4 describe the stochastic differential equation ap-
proach to stochastic modeling that relates any diffusion to a corresponding
Brownian motion.
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5 Exercises

1. (formulas and properties of Brownian motion)

(a) Use the reasoning of Section 3 to show that if 0 ≤ t0 ≤ · · · ≤ tk then
the increments ∆Yk = Ytk+1

−Ytk converge to independent Gaussians
with mean zero and variance tk+1 − tk. For the rest of this exercise,
assume that Xt has this distribution.

(b) Suppose that Xt is Brownian motion as defined in Section 3. Suppose
t1 < t2 < t3 and consider the increments Z1 = Xt2 − Xt1 , Z2 =
Xt3 −Xt2 , and Z3 = Xt3 −Xt1 . Show that the distribution of Z3 as
an increment of Brownian motion (a Gaussian with mean zero and
variance t3 − t1) agrees with the distribution of Z3 as the sum of Z1

and Z2 and depending on the joint distribution of Z1 and Z2.

(c) Suppose t1 < t < t2. This means that t may be written as a convex
combination of t1 and t2 as

t = λt1 + (1− λ)t2 , 0 ≤ λ ≤ 1 .

(t is a weighted average of t1 and t2 with t1 getting weight λ.) Use
notation (U, V,W ) = (Xt1 , Xt2 , Xt3). Write a formula for the joint
PDF: (U, V,W ) ∼ p(u, v, w). Get this from the distribution of U and
then the conditional distribution of V given U , then the conditional
distribution of W given U and V . Why does the latter depend only
on V ?

(d) Use the result of part (c) to find the conditional distribution of the
interior value V , conditional on knowing the endpoint values U = u
and W = w. Find the conditional mean and variance of V in terms
of u, w, λ, and t3− t1. In particular, show that the conditional mean
is given by interpolation and the conditional variance is less than the
conditional variance of V given only U = u. Why?

2. A linear combination of Gaussians is Gaussian if the terms in the sum
are jointly Gaussian. Suppose Xt is Brownian motion and consider the
integral

Z =

∫ T

0

Xt dt .

Show that Z is Gaussian and find its mean and variance. For this, make
a Riemann sum approximation to the integral and use the properties of
the numbers Xtk .

3. (Brownian motion has “rough paths”)

(a) Suppost Z ∼ N (0, σ2). Find a formula for E[ |Z| ].
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(b) Suppose we add the sizes of the increments of Brownian motion,
giving the rectified sum

R =

n∑
k=1

|∆Xk| .

For this formula, take ∆Xk = Xtk+1
− Xtk , with tk = k∆t and

∆t = T/n. Find E[R] and show E[R]→∞ as ∆t→ 0. The average
speed, if it could be defined, would be

average speed = lim
∆t→0

1

T

n∑
k=1

|∆Xk| .

Show that the average speed of a Brownian motion path is infinite.
(Note: this is one question being asked several ways for emphasis.)

4. Let p(x, t) be the PDF of Brownian motion, Xt. Use the properties of
Brownian motion to write a formula for p. Show by direct calculation
that this satisfies the forward equation

∂tp(x, t) =
1

2
∂2
xp(x, t) .

5. The exponential random variable is a positive random number with PDF
u(t) = λe−λt if t > 0 and u(t) = 0 if t < 0. Call this distribution Exp(λ).
Download and run the code ExponentialSampler.py. This is Python 3.
It uses Numpy version 18 or later. If you get an error message because
of the random number generator, you may need to update your Numpy.
I strongly advise using Python 3 in command line mode rather than in
an IDE. That’s what most serious developers do. You should get some
output at the terminal, a plot should pop up, and it should write a plotfile
ExponentialHistogram.pdf. You have to close the popup file manually
each time you run the code.

(a) Show that E[T ] = 1
λ .

(b) Show that if U is a standard uniform (U ∈ [0, 1] uniformly dis-
tributed), then T = − 1

λ log(U) has T ∼ Exp(λ). The random
number generator rg.random() returns a standard uniform. This
explains line 32 in ExponentialSampler.py.

(c) Consider the conditional distribution of T ∼ Exp(λ) conditional on
T > ts. Show that this conditional distribution is ts + Exp(λ). This
means that conditional on T > Ts, the extra time T − ts is also expo-
nential with the same rate. The exponential distribution is used to
model how long it takes a new lightbulb (or any device) to break. Ex-
plain that in the exponential model, a lightbulb that has not broken
yet is as good as new.

10



(d) Explain why the procedure sim(..) produces T that with the con-
ditional distribution of part (c).

(e) Let Tk be an independent sequence Tk ∼ Exp(λ). LetN = min {k|Tk > ts}.
Calculate E[N ] as a function of λ and ts. Show that the number pro-
duced by the code ExponentialSampler.py agrees with this.

6. Modify the code from Exercise 5 to study the hitting time related to
exponential random variables. Define

Rn =

n∑
k=1

Tk , Tk ∼ Exp(λ) i.i.d.

From Exercise 5 part (a), we know E[Rn] = n
λ . Consider a positive “gap”

g, and consider

N = min
{
n | Rn >

n

λ
+ g

}
.

Consider the random variables Yk = Tk − 1
λ and Sn = Rn − n

λ . let Xt

be a standard Brownian motion with X0 = 0 and var(Xt) = t. The first
hitting time (also called first passage time) at M > 0 is

T = min {t | Xt ≥M} .

We will see (Week 3) that T has PDF

u(t) =
M√
2πt3

e−
M2

2t .

Use this density and the Brownian motion scaling of the random walk
Sn to estimate the distribution of N when g is large, with λ fixed. You
may assume that the hitting time N of the random walk, properly scaled,
is approximately related to the corresponding hitting time for Brownian
motion.

Modify ExponentialSampler.py from Exercise 5 to test this theoretical
prediction. Modify the function sim to simulate a first hitting time for
the random walk. Make a histogram of the random times N . Make bins
of width L, so that the bin counts are Bj = # {k | jL ≤ Nk < (j + 1)L}.
Make a plot showing the empirical bin counts and the theoretical predic-
tion. Make a table of this information. The Brownian motion approxima-
tion is valid when g is large, because that forces a large number of steps
before Rn ≥ 1

λ +g. The histogram will be too noisy to be useful if L is too
small. If the bins are too large, then there will not be enough bins to be
an interesting test of the theory. Once your code is running, experiment
with parameters to get as good a agreement with theory as you can.

Your code must follow style rules followed by ExponentialSampler.py.
These include: all floating point number output must be formatted. Never
use [str(x) if x is a floating point number in the code you upload. You
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are free to do that while debugging. Comment a lot. Make the comments
useful. Use white space to make things line up vertically as much as pos-
sible to make the code easy to read, Use a docstring for any function. Put
your name and contact information at the top, along with when and why
you wrote the code. Put relevant numbers in the plot title and legends.
Do not “hard wire” code parameters. Every code parameter should have
a variable name and an assignment statement with a comment. Tabular
output should be aligned under table headings.
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