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1 Introduction value functions

The goal of probability model may be to compute expected values of some
random variable. Financial and engineering control strategies are chosen based
on expectation values of performance measures. A performance measure is a
function of the random path that quantifies goodness or badness of the path,
from the a specific point of view. In financial applications, this often takes the
form of maximizing expected utility. In engineering, cost measures may include
expected costs such as fuel or damage. If you are interested in the probability
that something bad happens, you can consider the performance measure to be
the characteristic function (also called indicator function) of the bad event. The
performance measure is equal to one (say) if the event happens and zero if it
does not.

The value function approach to expectation values it to consider also con-
ditional expectations of the same or related quantities. The value function is
the conditional expectation, as a function of what you’re conditioning on. The
conditional expectations may be related to each other by a partial differen-
tial equations (PDEs) called backward equations. There are different backward
equations for different diffusion processes and different performance measures.
Solving the PDE, which means finding all the conditional expectations, is a way
to evaluate the expectation you were originally interested in. Moreover, as is
explained in Week 5, backward equations may be used to design strategies that
optimize performance measures. This is the dynamic programming (also called
Hamilton Jacobi Bellman) approach to optimal stochastic control.

There is a two way relation between diffusion processes and partial differen-
tial equations. In one direction, we learn about diffusion processes by solving
some associated partial differential equations called diffusion equations. In the
other direction, we find solutions of diffusion equations by expressing the solu-
tion as the expected value of some quantity related to a diffusion process. The
solution of the differential may be found by simulating a random process.

This class explores the relation between backward equations and diffusion
process connection when the diffusion process is Brownian motion, and the
PDE is a variant of the backward heat equation. The Week 4 class explains
that these ideas apply to general diffusion processes (processes described by
their infinitesimal mean and variance, or, equivalently, by an SDE) and general
backward diffusion equations. In some sense, this week is just motivation for
next week.
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Notation. In this class, Xt will be Brownian motion. The CDF (cumulative
distribution function) of a random variable with PDF u(·) is

F (x) = Pr(X < x) =

∫ x

−∞
u(y) dy .

The standard normal random variable Z has PDF u(z) = 1√
2π
e−

1
2 z

2

. Its CDF

is called the cumulative normal distribution function, and is given b

N(x) = Pr(Z < x) , Z ∼ N (0, 1)

=
1√
2π

∫ x

−∞
e−

z2

2 dz . (1)

This has the values

N(x)→ 0 as x→ −∞
N(x)→ 1 as x→ +∞

N(0) =
1

2
.

This is closely related to the error function

erf(x) =
2√
π

∫ x

0

e−z
2

dz .

These are related by the scaling formula N(x) = 1
2 (1 + erf(2x)). If X is a

general one component normal X ∼ N (µ, σ2), then its CDF is

F (x) = N

(
x− µ
σ

)
.

This is “the” cumulative normal (1), with the mean subtracted and scaled by
the standard deviation.

2 A value function and its backward equation

Let Xt be Brownian motion. A simple value function is

f(x, t) = E[V (XT ) | Xt = x] . (2)

You might be interested in the expected value of X2
T (V (x) = x2), or the prob-

ability that XT > 1 (in clumsy indicator function notation: V (x) = 1x>1(x)),
or the exponential (V (x) = eax, needed to study geometric Brownian motion).
The value function measures progress toward the final value. Suppose you start
at t = 0 and know (or specify) that Xt = x at some time before T (t < T ).
What, then, is the expected value? It is given by the conditional expectation
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(2). This is defined for any t ≤ T and for any x. We will see that this value
function satisfies a PDE called the backward heat equation

∂tf +
1

2
∂2
xf = 0 . (3)

Warning: The conditional expectation (2) makes sense if t < T or if t > T , but
f satisfies the backward equation (3) only if t < T .

The backward equation, by itself, does not determine f(x, t), even for t < T .
For that, you also need final conditions

f(x, T ) = V (x) . (4)

The PDE (3) may not be obvious, but the final conditions are obvious. If you
put t = T in the value function definition (2), you find yourself asking what is
the expected value of V (XT ) conditional on XT = x.

Once the final condition is given, the backward heat equation determines
f(x, t) for t < T . Roughly speaking, the PDE says that f(x, t −∆t) is a local
average of f(·, t) near the point x. In this way, the function f(·, t) determines
the function at a slightly earlier time f(·, t −∆t). We can start with the final
condition f(·, T ) = V (·) and work backwards in time using local averages to
find f(·, t) for any t < T . The relation between ∂xx(x, t) and local averages may
be/should be mysterious now. Hopefully, Section (??) and the more in-depth
discussion in Week 4 will make this more clear. Section 10 presents a computing
algorithm based on the ∆t and local average point of view.

The conditional expectation (2) may be expressed as an integral involving
the conditional probability density G(·, x, T − t). This G is the conditional
density of XT , conditional on Xt = x. We use y to represent the value of XT ,
and get

f(x, t) =

∫
V (y)G(y, x, T − t) dt . (5)

Note that the distribution of XT depends on Xt = x and the amount of time
between t and T , which is T − t. That’s why G depends on T − t and not on
T and t separately. The term Green’s function comes from the way it appears
in the solution formula (5). Functions that express the solution of a PDE in
terms of the “data” (final condition in this case) are called “Green’s functions”
(“Green’s theorem” is named for the same Brit). They are called fundamental
solution because they satisfy the PDE (the backward equation in this case)
with specific “data”. A function that appears as G does in an integral like (5)
is called an integral kernel. The integral kernel that occurs in the solution of
the heat equation (forward or backward) is called the heat kernel. Lastly, as a
function of y, G(·, x, T −t) is the probability density for transitions from Xt = x
to XT = y, hence the name transition density.

We can derive the backward equation (3) from the integral representation of
f (5) because there is an explicit formula for G. Representations like Gf exist for
general dynamic stochastic models, but there usually isn’t an explicit formula
for the transition density. The difference here, XT − Xt, is an increment of

3



Brownian motion. Such increments are Gaussian, with mean zero and variance
equal to the time difference – T − t. If you specify that Xt = x, then XT

becomes (in the conditional distribution) Gaussian with mean x and variance
T − t:

XT ∼ N (x, T − t) =⇒ G(y, x, T − t) =
1√

2π(T − t)
e−

(y−x)2

2(T−t) . (6)

This puts the abstract solution formula (5) in the explicit form

f(x, t) =

∫ ∞
−∞

V (y)
1√

2π(T − t)
e−

(y−x)2

2(T−t) dy . (7)

This leads to a derivation of the backward equation, as stated above. It also
allows us to learn some things about the value function f that might not be
directly obvious from the definition (2) or the backward equation.

We verify the PDE (3) by calculating the t and x derivatives of the integral
on the right of (7). The integration domain does not depend on x or t, so the
derivatives act “under the integral sign” directly on the integrand. The V (y) in
the integrand does not depend on x of t, which is why any value function for
any V satisfies the same PDE. Thus,

∂tf(x, t) = ∂t

∫
V (y)G(y, x, T − t) dy =

∫
V (y)[ ∂tG(y, x, T − t)] dy ,

and

∂2
xf(x, t) =

∫
V (y)

[
∂2
xG(y, x, T − t)

]
dy ,

We add these together and get

∂tf +
1

2
∂2
xf =

∫
V (y)

[
∂tG(y, x, T − t) +

1

2
∂2
xG(y, x, T − t)

]
dy . (8)

This shows that f satisfies the backward heat equation if G does.
We can calculate the combination of derivatives in [· · · ] of (8) by differenti-

ating the formula (6). Here is the time derivative calculation. You have to do
this slowly and carefully to get the signs and the powers of (T − t) right. The
first line is the product rule of differentiation. The next line is the chain rule
applied to each of the terms.

∂t

[
(2π(T − t))−

1
2 e−

(y−x)2

2(T−t)

]
=

[
1√
2π
∂t(T − t)−

1
2

]
e−

(y−x)2

2(T−t) +
1√

2π(T − t)

[
∂te
− (y−x)2

2(T−t)

]
=

1

2

1√
2π

(T − t)− 3
2 e−

(y−x)2

2(T−t) − 1√
2π(T − t)

(y − x)2

2(T − t)2
e−

(y−x)2

2(T−t)

=
1

2

1√
2π

[
1

(T − t) 3
3

− (y − x)2

(T − t) 5
2

]
e−

(y−x)2

2(T−t) .
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We have to do two ∂x calculations, but they are not as tricky. First

∂xG(y, x, T − t) =
1√

2π(T − t)
y − x
T − t

e−
(y−x)2

2(T−t)

=
1√
2π

y − x
(T − t) 3

2

e−
(y−x)2

2(T−t) .

Then

∂2
xG(y, x, T − t) =

1√
2π

[
−1

(T − t) 3
2

e−
(y−x)2

2(T−t) +
(y − x)2

(T − t) 5
2

e−
(y−x)2

2(T−t)

]
.

Now, compare the two results and you see that the (T − t)− 3
2 terms and the

(y − x)2(T − t)− 5
2 terms cancel in ∂tG+ 1

2∂
2
xG. The calculation

∂tG(y, x, T − t) +
1

2
∂2
xG(y, x, T − t) = 0 (9)

implies that the value function satisfies the backward equation (3). It also shows
that the transition density itself satisfies a PDE. It is called the fundamental
solution because any other solution may be expressed in terms of this one

3 Examples

Here are a few examples of solutions to the backward equation. In some sense,
they don’t show off the PDE as a way to evaluate expected values. In each ex-
ample, the solution may be found directly from the expected value definition of
f , though the PDE might be a simpler route to the solution in some cases. The
point of the SDE/PDE connection isn’t really finding formulas for expectation
values. More important uses are: (1) finding ways to solve a PDE using simula-
tion, and (2) using finite differences (or other PDE methods) to find expectation
values.

If you want to use the conditional expectation formula directly, it can help
to denote the Brownian motion increment between t and T by some other letter,
say, Z. Then, with the condition Xt = x, we have XT = x+Z, and Z is normal
with mean zero and variance T − t.

For example, suppose the payout function is linear: V (x) = ax+ b, then

f(x, t) = E[ a(x+ Z) + b] = ax+ b .

If the payout is linear, then the value function is the same linear function for
all t. You can verify that f(x, t) = ax+ b satisfies the backward equation: both
∂tf and ∂2

xf are zero.
Next, suppose the payout is quadratic. For simplicity, take V (x) = x2, then
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calculate, using the fact that x is not random:

f(x, t) = E
[

(x+ Z)2
]

= E
[
x2 + 2xZ + Z2

]
= x2 + 2xE[Z] + E

[
Z2
]

= x2 + (T − t) .

This satisfies the final condition (4) because T−t = 0 when t = T . It satisfies the
backward equation (3) because ∂tf = −1 and 1

2∂
2
xf = 1. Note: this calculation

is a special case of the fact that if U is any random variable, then

E
[
U2
]

= E[U ]
2

+ var(U) .

A more complicated example, just to illustrate the process, is payout V (x) =
x4. In this case we have to take the expectation of

(x+ Z)4 = x4 + 4x3Z + 6x2Z2 + 4xZ3 + Z4 .

The terms with Z and Z3 have zero expected value because Z has zero mean
and the Gaussian has a symmetric PDF. The Z4 term satisfies the Gaussian
expected value formula

E
[
Z4
]

= 3E
[
Z2
]2

= 3
(
σ2
Z

)2
= 3(T − t)2.

The final solution formula is

f(x, t) = x4 + 6x2(T − t) + 3(T − t)2 .

This satisfies the final condition f(x, T ) = x4. It satisfies the PDE because

x4 + 6x2(T − t) + 3(T − t)2 ∂t−→ −6x2 − 6(T − t) ,

and

x4 + 6x2(T − t) + 3(T − t)2
1
2∂x−→ 2x3 + 6x(T − t) ∂x−→ 6x2 + 6(T − t) .

A final example is the “payout” is a sinusoidal oscillation with wave number
k, which is V (x) = sin(kx). This may not happen in finance, but the example
comes up in other fields, and it says a lot about Brownian motion. You can find
the answer by working the integral

f(x, t) =
1√

2π(T − t)

∫ ∞
−∞

sin(kx+ kz)e−
z2

2(T−t) dz .

It would be a long exercise in integral calculus, but one that you could do. You
can find the answer using the ansatz “method” of Section 7 (guess the answer,
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check that it works). The ansatz is f(x, t) = A(t) sin(kx). The solution, using
the method of Section 7, is

f(x, t) = e−
1
2k

2(T−t) sin(kx) .

Notice that this function goes to zero exponentially as T−t increases. If t is long
before the payout time T , then the value function expected value is tiny. The
exponential decay rate has a factor of the wave number k2. Faster oscillation
makes the expectation go to zero faster, a lot faster. You can understand this
in a qualitative way by thinking of the Gaussian distribution of Z as a “bell
shaped curve” with width proportional to

√
T − t. If this width is large enough

to include several cycles of the sin function, then the positive and negative parts
roughly cancel. The cancellation is never completely perfect, because f(x, t) is
not exactly zero for any t, but is is extremely accurate when the Gaussian
“bump” is wide.

4 Derivation via Ito’s lemma and martingales

We can use Ito’s lemma (Wt last week is Xt here) to see that certain processes
are martingales. A process Yt is a martingale if, for t < T ,

E[YT | path up to time t] = Yt .

Suppose we have a function h(x, t) and define the process Yt in terms of h and
the Brownian motion path Xt as Yt = h(Xt, t). Ito’s lemma implies that Y is a
martingale if the dt part of the Ito differential is equal to zero:

∂th(x, t) + 1
2∂

2
xh(Xt, t) = 0 =⇒ Yt is a martingale. (10)

Here is the explanation.
Ito’s lemma is a chain rule formula involving h(x, t):

dh(Xt, t) = ∂xh(Xt, t) dXt +
[
∂th(Xt, t) + 1

2∂
2
xh(Xt, t)

]
dt . (11)

The dX term on the right determines the infinitesimal variance of Yt while the
dt term determines the infinitesimal mean. A diffusion process is a martingale
if the infinitesimal mean is zero. That’s a way to understand the implication
(10).

You can say sort of the same thing using the integral version of Ito’s lemma
is (here t ≤ T )

h(XT , t) = h(Xt, t) +

∫ T

t

∂xh(Xs, t) dXs +

∫ T

t

[
∂th(Xs, s) + 1

2∂
2
xh(Xs, s)

]
ds .

The Ito integral on the right is not zero, but its expected value is zero. More
precisely, the increment dXs has mean value zero and is independent of anything
before time s. In particular, the expected value of dXs is zero conditioned on
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Xt = x. As explained in Week 2, this implies that the conditional expectation
of the Ito integral is zero:

E

[∫ T

t

∂xh(Xs, t) dXs

∣∣∣Xt = x

]
= 0 .

Suppose the integrand in the ds integral is zero, which is

∂th(Xs, s) + 1
2∂

2
xh(Xs, s) = 0 .

Take the conditional expectation (with condition Xt = x) of both sides and you
get

E[h(XT ) | xt = x] = h(x, t) .

That is, Yt is a martingale.
Now, suppose f(x, t) satisfies the backward equation (3), for t < T , and

has the final values (4). Then Yt = f(Xt, t) is a martingale. This implies
that it satisfies the conditional expectation formula (2). This would verify that
the conditional expectation (2) satisfies the backward equation (3), except that
the logic is exactly backwards. What’s missing is existence and uniqueness.
The backward equation with given final condition has a solution, existence,
and it has only one solution, uniqueness. If you show that a solution of the
backward equation, a solution having the right final condition, satisfies the
conditional expectation formula (2), then the function defined by the conditional
expectation formula must be that unique solution of the backward equation.

5 Derivation via the tower property

This derivation to me seems the most natural and fundamental. It explicitly
asks how the conditional expectation changes over a short interval of time. The
key fact is the tower property, which is that the expectation of the conditional
expectation is the expectation. In this case, suppose t < s < T . Use z for the
value of Xs. We can find the expected value at time t by integrating over all
possible values of Xs and using their conditional probabilities

f(x, t) =

∫
E[V (XT ) | Xs = z] Pr(Xs = z|Xt = x) dz .

This formula depends on the fact that Brownian motion has the Markov prop-
erty. The expectation on the right does not depend on the value of Xt − x
because t < s. If Xs = z, then the Brownian motion path after s evolves in the
same way regardless of the earlier value Xt − x. This expectation is (and this
is the main point) f(z, s). The probability density on the right is the transition
density from time t to time s. Therefore, we may write

f(x, t) =

∫
f(z, s)G(z, x, s− t)dz . (12)
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This formula may be understood as an instance of the law of total probability,
which pretty much the same thing as the tower property.

The backward equation is derived from the tower property formula (12) by
taking s = t + ∆t, then expanding in Taylor series to the proper order, then
letting ∆t go to zero. When s = t+Deltat, then Xs = z is approximately equal
to Xt = x. Therefore, we expand in Taylor series. In these calculations, we
write f for f(x, t), and fx for ∂xf(x, t), etc.

f(x+ Z, t+ ∆t) ≈ f(x, t) + fxZ +
1

2
fxxZ

2 + ft∆t

+ terms that don’t matter as ∆t→ 0 .

Of course, E[Z] = 0 and E[Z2] = ∆t. These facts may be assembled to give

f(x, t) = f(x, t) +
1

2
fxx∆t+ ft∆t+ · · · .

We cancel f(x, t) from both sides, then divide what’s left by ∆t, then check
that the · · · terms still go to zero when ∆t → 0. The result is the backward
equation (3).

6 Digital options, smoothing

A digital option is one that pays all or nothing depending on some criterion. A
digital payout would be

V (x) =

{
1 if x > x0

0 if x ≤ x0
.

Corresponding to this is the value function (2). In this case, the value function
may be written as a probabability

f(x, t) = Pr(XT > x0 | Xt = x) .

In fact, the expected value of any 0, 1 function (a function that takes values
V = 0 or V = 1 only) is the probability that the value is 1.

The value function may be expressed in terms of the cumulative normal dis-
tribution function. One way to derive the formula uses the fact that, conditional
on Xt = x, the final position is XT ∼ N (x, T − t). You can represent such a
random variable Y ∼ N (x, T − t) in terms of the standard normal Z ∼ N (0, 1)
as

Y = x+
√
T − t Z .

This is Gaussian with mean x and variance T − t. The condition XT > x0 has
the same probability as Y > x0 (because XT and Y have the same distribution).

9



Therefore

f(x, t) = Pr(Y > x0)

= Pr
(
x+
√
T − t Z > x0

)
= Pr

(
Z >

x0 − x√
T − t

)
= 1− Pr

(
Z <

x0 − x√
T − t

)
f(x, t) = 1−N

(
x0 − x√
T − t

)
. (13)

This has the feature than f(x, t) → 0 as x → −∞ and f(x, t) → 1 as x → ∞.
This is clear from the definition of f , and you can see it in the solution formula.
Write

z =
x0 − x√
T − t

.

Then f(x, t) = 1 = N(z). For example, we see that z → −∞ as x → ∞, so
1 − N(z) → 1 − 1 = 0. The solution formula (13) implies that for a fixed t, f
makes a transition from 0 to 1 as x goes from −∞ to ∞.

The specific formula (13) tells us that the transition from f ≈ 0 to f ≈ 1
happens quickly with t is close to T . The “length scale” of the transition
is
√
T − t. This means that when x goes from x0 −

√
T − t to x0 +

√
T − t,

the value function f(x, t) goes from a value close to zero to a value close to
1. We say that the solution of the backward equation is “smoothing”. The
sharp discontinuity is the final condition is smoothed into a rapid but smooth
transition.

7 Quadratic exponential and the ansatz method

Suppose the payout function is a quadratic exponential

V (x) = e−rx
2

.

This is called “quadratic exponential” rather than “Gaussian” because it is not
a probability density. Still, everything related to Brownian motion seems to
turn Gaussians into Gaussians. Therefore, we guess that the value function has
the form

f(x, t) = A(t)e−s(t)x
2

. (14)

A mathematical guess like this is called an ansatz (German word that means
this). You guess the form and then see whether you can find formulas for A(t)
and s(t) so that the ansatz (14) satisfies the backward equation (3) and the final
condition. The ansatz “method” is to make an ansatz like (14) and then show it
works. It’s hard to call it a method because it’s really just a guess. Experienced
people may be led to specific guesses in specific ways, but even for them it’s
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guessing. The final condition is easy, it gives final conditions for A and s, which
are

A(T ) = 1 , s(T ) = r . (15)

The ansatz method requires you to put the ansatz (14) into the backward
equation (3) and see what this says about A and s. We use a dot for time
derivatives, so q̇(t) = d

dtq(t).

∂tf = Ȧ(t)e−s(t)x
2

− ṡx2A(t)e−s(t)x
2

.

Then
∂xf = −2s(t)xA(t)e−s(t)x

2

,

and
∂2
xf = −2s(t)Ae−s(t)x

2

+ 4s(t)2A(t)x2e−s(t)x
2

.

You put this into the backward equation and find

Ȧ(t)e−s(t)x
2

−ṡx2A(t)e−s(t)x
2

+
1

2

[
−2s(t)Ae−s(t)x

2

+ 4s(t)2A(t)x2e−s(t)x
2
]

= 0 .

The exponential factor e−s(t)x
2

appears in every term and may be cancelled.
The rest may be re-arranged to the form

x2
[
−ṡ(t)A+ 2s(t)2A

]
+
[
Ȧ(t)− s(t)A(t)

]
= 0 .

The quantities in square brackets are functions of t alone. Therefore, the ex-
pression on the left is a quadratic function of x for each fixed t. A polynomial
that is equal to zero, as this one is, must have all coefficients equal to zero. This
gives two equations

ṡ(t) = 2s(t)2 (16)

Ȧ(t) = s(t)A(t) . (17)

It is “easy” to solve these differential equations with the final conditions given.
Exercise 1 asks you to do the algebra and interpret the results.

The ansatz method is used in quantitative finance in several places. There
are affine interest rate models in which the exponent is a linear function of the
x variable with a time dependent coefficient and pre-factor.

8 Hitting probabilities and boundary conditions

A hitting time is the first time a stochastic process Xt “hits” a specific value
or satisfies a given condition. There are hitting time problems in finance that
come from contracts with conditions that depend on stochastic market prices.
Among these are knock-out options, that pay nothing if the price ever exceeds
a specified knock-out price.
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Suppose Xt is a Brownian motion with X0 = x0 in the range a ≤ x0 ≤ b.
Suppose you get a payout V (XT ) if a ≤ Xt ≤ b for all t in the range 0 ≤ t ≤
T . Otherwise, you get zero. The value function for this payout satisfies the
backward equation (3) if a < x < b, but clearly f = 0 if x = a or x = b. These
are absorbing boundary conditions (because the Brownian motion is “absorbed”
and stopped if it ever touches a boundary point). They are also called Dirichlet
boundary conditions.

9 Running payouts

A running payout is a payout that you get continuously in time rather than just
at the final time. A running payout might take the form

Y =

∫ T

0

V (Xt) dt .

A value function approach to this uses a value function that only “sees” the
coming reward after time t, not the reward that has arrived (accrued, in financial
language) so far. That is

f(x, t) = E

[∫ T

t

V (Xs) ds | Xt = x

]
. (18)

An Ito’s lemma derivation of a backward equation uses the observation that
when time goes from t to t+ dt, the integral decreases by V (x)dt. Therefore

E[ df(Xt, t)] = −V (Xt)dt .

The Ito calculation from before (look at the quantity in square braces) implies
that

∂tf(x, t) +
1

2
∂2
xf(x, t) = −V (x) . (19)

Of course, the final condition is f(x, T ) = 0 because the payout stops at the
final time T .

10 Finite difference methods

Finite difference methods are numerical algorithms for solving (approximately)
PDEs. They apply to a vast range of PDEs of all types and from all fields.
This section describes some finite difference methods for solving the backward
equation. The derivation uses the convergence of random walk to Brownian
motion (Week 1). The finite difference approximation is the backward equation
that the random walk satisfies. There are ways to derive these and other finite
difference methods that do not rely on probability.

Consider the value function that satisfies the simple backward equation (3).
We often call x the space variable and t time variable. We consider a random
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walk approximation to Brownian motion. There is a space step ∆x and space
grid points xj = j∆x. There is a time step ∆t and discrete times tk = k∆t.
The random walk (notation from Week 1) has X∆t

tk
= xj for some integer j. In

one step, the walk can go left, or not move, or move right. The probabilities to
move left, right, or not move are a, c, and b respectively.

X∆t
tk+1

=


X∆t
tk
−∆x with probability a

X∆t
tk

with probability b

X∆t
tk

+ ∆x with probability c

(20)

The discrete value function will be called F . [Be careful when writing by hand
to make the continuous value function f look different than the discrete value
function F .] Assume that the final time T is one of the discrete times. There is
an n with T = tn. We may have to adjust ∆t to make this happen. The values
of F are

Fkj = E
[
V
(
X∆t
tn

)
| X∆t

tk
= xj

]
. (21)

This is like the definition of the continuous value function (2), but applied to
the random walk X∆t instead of the Brownian motion X.

We have to relate the probabilities a, b, and c to the space step ∆x and
the time step ∆t. The relationship comes from the fact that the random walk
increment in one time step should have the mean and variance of the Brownian
motion increment over a time ∆t, which is ∆t. The expected value of the
discrete increment should be zero:

E
[
X∆t
tk
−X∆t

tk−1

]
= 0 .

The possible values of the increment are ±∆x and 0, so we get

0 = a (−∆x) + b (0) + c (∆x) .

This gives
a = c .

The random walk is symmetric. The variance calculation is similar

∆t = a (∆x2) + b(0) + c(∆x2) = 2a∆x2 .

This leads to the CFL ratio formula

a =
1

2

∆t

∆x2
. (22)

CFL is for the mathematicians Richard Courant (founder of the Courant In-
stitute), Kurt Friedrichs (one of its first faculty) and Hans Lewy. Their 1928
paper laid the foundations for finite difference solution of PDEs. The fraction
is the CFL ratio

λ =
∆t

∆x2
. (23)
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The coefficients have to add up to one because they are probabilities. This leads
to a formula for b

a+ b+ c = 1

1

2
λ+ b+

1

2
λ = 1

b = 1− λ = 1− ∆t

∆x2
. (24)

The fact that b ≥ 0 implies that

1− ∆t

∆x2
≥ 0 .

This may be written as

λ =
∆t

∆x2
≤ 1 . (25)

This is the famous CFL stability limit. People usually want a large CFL number
λ so that fewer time steps are required. The formulas (26) with (22) and (24)
make sense even if λ > 1. But the code will “blow up” if you do.

The code FiniteDifference.py uses these formulas. The number of grid
points in space, n, is specified, along with the length of the interval, L. This
determines the space step ∆x. The CFL ratio λ is used to find ∆t. This time
step is then adjusted down slightly so that T is an integer number of time steps
from t = 0, which is T = nt∆t. Most of the work of the code is the time step
calculation (26).

The discrete value function satisfies a discrete recursion relation relation.
The expected values Fk−1,j may be computed from the values Fkj using the
fact that if X∆t

tk−1
= xj , then X∆t

tk
is one of the values xj −∆t = xj−1 or xj or

xj + ∆t = xj+1, and the probabilities are a, b, and c. The calculations we’re
about to do simplify because X∆t is a Markov process (definition in Week 1).
This implies that, for example, that if X∆t steps from xj−1 to xj , then the
expected value going forward from xj doesn’t depend on the fact that it came
from xj−1. In formulas, this is

E
[
V
(
X∆t
tn

)
| X∆t

tk−1
= xj and X∆t

tk
= xj−1

]
= E

[
V
(
X∆t
tn

)
| X∆t

tk
= xj

]
The conditional expectation calculation using these ideas is

Fk−1,j = E
[
V
(
X∆t
tn

)
| X∆t

tk−1
= xj

]
= aE

[
V
(
X∆t
tn

)
| X∆t

tk−1
= xj−1

]
+ bE

[
V
(
X∆t
tn

)
| X∆t

tk−1
= xj

]
+ cE

[
V
(
X∆t
tn

)
| X∆t

tk−1
= xj+1

]
Fk−1,j = aFk,j−1 + b Fk,j + c Fk,j+1 . (26)
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This calculation starts with given final values Fnt,j = V (xj). Then it loops
over k doing time steps going backwards from nt. Each time step is a loop over
j. The boundary conditions in the code are that f(0, t) = f(L, t) = 0. This
translates into Fk,0 = 0 and Fk,n+1 = 0. That leaves n “interior” grid points
x1, · · · , xn, which are separated by ∆x. Therefore,

∆x =
L

n+ 1
.

The calculations (26) are done for j = 1, · · · , n. In principle you don’t have
to store the boundary values because they are known and don’t have to be
computed. Storing them makes the code simpler. You can do the formula (26)
for every j value without writing special code for the end cases j = 1 and j = n.
Values used in this way are ghost values.

11 Exercises

1. Carry out the ansatz analysis of Section 7

(a) Solve the differential equation (16). Hint. It may be written

ds

s2
= 2dt .

The integral of the left side is − 1
s +C. The integral of the right side

is 2t+C. The constant is determined by the final condition s(T ) = r.
If you want the Wikipedia solution, it might help to know this is an
example of a Riccati equation.

(b) Solve the differential equation (17) and use the final condition to find
a formula for the prefactor A(t).

(c) Is s(t) an increasing or decreasing function of t? What does this say
about the “width” of the payout and the width of the value function?
Intuitively, why should one be wider than the other?

(d) Is A(t) increasing or decreasing? Why should the maximum of f(x, t)
for t < T be larger/smaller (you pick) than the maximum of V ?

(e) Show that
d

dt

∫ ∞
−∞

f(x, t) dx = 0 .

Are your formulas for s and A consistent with this? Could you derive
the formula for A from this identity and the formula for s?

2. Suppose x > 0 and t < T . Define the survival probability starting from x
between times t and T to be

f(x, t, T ) = Pr(Xs > 0 for all s ∈ [t, T ]) .
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This is the probability that the Brownian motion does not hit x = 0 at any
time between t and T . We put in the dependence on the final time T to
enable the calculations below. Consider the seemingly different problem
with payout V (x) = 1 if x > 0 and V (x) = −1 if x ≤ 0. The corresponding
value function is

g(x, t, T ) = E[V (XT ) | Xt = x] .

This is defined for any x and t ≤ T .

(a) Show that g(−x, t, T ) = g(x, t, T ) for all x and t < T . Show that this
implies that g(0, t) = 0 if t < T .

(b) Show that g(x, T, T ) = f(x, T, T ) if x > 0. Assuming that the so-
lution to the problem f satisfies is unique, show that g(x, t, T ) =
f(x, t, T ) if x > 0. (The finite difference approximation suggests that
the solution is unique because it gives an algorithm for computing it.
A course on PDE typically has a real mathematical proof.

(c) Define the hitting time to be the first time the Brownian motion
touches the boundary, x = 0:

τ = min { s | Xs = 0} .

Let u(s) be the PDF of τ . Show that, conditional on Xt = x,

u(T ) = −∂T f(x, t, T ) .

(d) Find a formula for g in terms of the cumulative normal. This is
similar to the formula in Section 6.

(e) Find a formula for u(T ). We used this formula in Exercise 6 of Week
1. This exercise fulfills the promise made there.

3. Download and run the posted code FiniteDifference.py. Check that
the resulting plot matches the posted plot. Modify the code to compute
the expected running payout function (18) with payout V (x) = e−r(x−

L
2 )2 .

Choose L = 10, r = 1, and T = 2. Plot a series of computations in the
same figure, as FiniteDifference.py does, to see how many grid points
are needed to get an accurate solution. Explore the grid spacing needed
for accurate solution when r is larger – in a qualitative way (larger r
needs more/fewer/a lot more/a lot fewer points. Part of this exercise is
to derive a finite difference method for the backward equation (19). You
can do this by making a random walk approximation to the process and
a corresponding finite sum approximation to the running payout.

4. Consider the digital option of Section 6. This exercise asks you to replicate
the option payout using a given initial endowment (amount of money) and
a trading strategy on Brownian motion. The trading strategy is a function
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a(x, t). The initial endowment is a number g. The Brownian motion starts
at X0 = 0.

UT = g +

∫ T

0

a(Xt, t)dXt .

This random variable replicates the payout if UT = V (XT ). Find a way
to replicate the digital payout in this way. Hint. Use Ito’s lemma, the
value function from Section 6, and the formula

∂xN(x) =
1√
2π
e−

1
2x

2

.

5. Write a simulation code to verify the trading strategy of Exercise 4. Much
of the code can be taken from Week 2. Choose a time step ∆t and make
the proper Ito approximation to the Ito integral of Exercise 4. Estimate
the mean square replication error, which is

E
[

(UT − V (XT ))
2
]
.

This should decrease to zero as ∆t → 0. You need to make many paths
to estimate the expected value accurately.
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