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1 SDE models, diffusions

This is the most important of the seven classes. It describes how stochastic
differential equations, SDEs, are used to create models of random processes in
continuous time with continuous paths. The class starts with some terminology
and the philosophy related to SDE models. This and the next section are all
definitions and theory. The applications come in Sections 3 and 4, and in the
exercises. There is less motivation here because the motivation is similar to
Week 2 (for Ite’s lemma) and Week 3 (for backward equations).

The fundamental theorem of ordinary calculus says that a function that can
be written as an indefinite integral is differentiable. Written in the language of
stochastic calculus, this ordinary fact is

Yt =

∫ t

0

as ds =⇒ dYt = at .

In stochastic calculus, a function that can be represented as an indefinite integral
is called an Ito process:

Xt =

∫ t

0

as ds+

∫ t

0

bsdWs . (1)

An Ito process is a sum of two indefinite integrals, an “ordinary” one and an Ito
integral. The Ito integral makes Xt random, but more randomness is allowed:
the integrands at and bt may be random. As always, the integrand in the Ito
integral must be non-anticipating (adapted). For example, we could have

Xt =

∫ t

0

s ds+

∫ t

0

W s
2
dWs

The Ito integrand in this example is adapted in that it is a function of the path
W[0,t], but it is not a function of Wt alone. An Ito process is a process that has
an Ito differential, which is

dXt = atdt+ btdWt . (2)

The integrands as and bs on the right side of the Ito process formula (1)
determine the infinitesimal mean and infinitesimal variance of Xt. Suppose
dt > 0 is an infinitesimal but non-zero increment of time (a more mathematical
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version is coming) and dX = Xt+dt −Xt is the corresponding increment of X.
The infinitesimal mean is at means

at dt = E
[
dXt |W[0,t]

]
. (3)

The conditional expectation on the right is the conditional expectation given
that you know everything relevant that happened up to time t. This supposes
that the Brownian motion path is the only source of randomness that is relevant
to the process Xt. In more general situations, you might bet on one Brownian
motion using input from an independent Brownian motion. We discuss this
issue more below.

It might be more familiar to math-trained people to take a small but not
infinitesimal increment ∆t > 0. The corresponding increment of X is ∆X =
Xt+∆t −Xt. The infinitesimal mean formula is

at ∆t = E
[

∆X |W[0,t]

]
+ o(∆t) . (4)

I think of the informal version (3) as a shorthand way to write this. I believe
(personal belief, others disagree) that more formal statements like (4) do not
make people who use them more likely to reason correctly. I see plenty of finance
and economics papers written in terms of the fanciest mathematical formalism
that make elementary reasoning mistakes that would be less likely using simpler
and more intuitive reasoning such as (3).

The infinitesimal variance is

b2t dt = var
(
dX |W[0,t]

)
. (5)

This is the same as the expected square of the increment

b2t dt = E
[

(dX)
2 |W[0,t]

]
. (6)

The difference is whether or not the mean is subtracted. Subtracting the mean
doesn’t change the infinitesimal variance formula, because

var( dX | · ) = E
[

(dX)
2 | ·

]
− (E[ dX | · ])2

= E
[

(dX)
2 | ·

]
− a2

t dt
2 .

In the language of Week 2, the dt2 term on the right is tiny and can be ignored.
In the ∆t language, (5) would be

b2t∆t = var
(

∆X |W[0,t]

)
+ o(∆t) . (7)

This is equivalent to an expected square formula

b2t∆t = E
[

(∆X)
2 |W[0,t]

]
+ o(∆t) . (8)
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The derivation is almost the same. If you’re not used to “big Oh” and “little
oh” reasoning, you can use the less formal version with differentials given above,
or you can look it up in Wikipedia.

var( ∆X | · ) = E
[

(∆X)
2 | ·

]
− (E[ dX | · ])2

+ o(∆t)

= E
[

(∆X)
2 | ·

]
−
(
a2
t ∆t+ o(∆t)

)2
+ o(∆t)

var( ∆X | · ) = E
[

(∆X)
2 | ·

]
+ o(∆t) . (9)

The infinitesimal mean and infinitesimal variance formulas come from the
Ito process representation and properties of integrals and continuous functions.
For example,

E
[

∆X |W[0,t]

]
= E

[∫ t+∆t

t

as ds |W[0,t]

]
The expectation of the Ito integral part is zero. If as is a continuous function
of s, then ∫ t+∆t

t

as ds = at∆t+ o(∆t) .

For the infinitesimal variance, which is the same as the infinitesimal square, let
Yt be the Brownian motion integral

Yt =

∫ t

0

bs dWs .

The increment of this is

∆Y =

∫ t+∆t

t

bs dWs

The Ito isometry formula from Week 2 gives

E

(∫ t+∆t

t

bs dWs

)2

| ·

 =

∫ t+∆t

t

E
[
b2s | ·

]
ds .

The conditioning is the Brownian motion path up to time t. This means that
in the conditional expectation bt is known and bs ≈ bt if s ≈ t (because bs is a
continuous function of s). Therefore∫ t+∆t

t

E
[
b2s | ·

]
ds = b2t∆t+ o(∆t) .

You can check, as we checked (9), that the ds integral in (1) changes this by
a “tiny” amount, which means o(∆t). This shows that the Ito process (1) has
infinitesimal mean (4) and infinitesimal variance (7) if at and bt are continuous
functions of t. What I call “infinitesimal variance” is more commonly called
quadratic variation. The infinitesimal mean is drift.
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This reasoning is used to write integral expressions for stochastic processes
that satisfy specified drift and quadratic variation conditions. Suppose you
have a stochastic process Xt and some reasoning suggests that the drift is at
and the quadratic variation is µt. You pick any square root b2t = µt. Then the
integral (1) has the desired properties. From this we learn that an Ito process
is completely determined by its infinitesimal mean and variance. You might of
this as Gaussian-like. Gaussian random variables are determined by their mean
and variance. But Ito processes do not have to be Gaussian.

Do not confuse the terms Ito process and diffusion process. An Ito process is
any process with an Ito differential. A diffusion process is a stochastic model of
some system. By “stochastic model”, we mean that the statistics of dXt (mean
and variance) are determined by Xt and not by Xs for s < t. Technically, an
Ito process is a diffusion process if it also is a Markov process. The Markov
property is that the distribution of the future, conditional on the past, is the
same as the distribution of the future conditional on the present. For an Ito
process, this means that the Ito coefficients at and bt are determined by Xt and
t in a deterministic way: at = a(Xt, t), and bt = b(Xt, t). This turns the Ito
differential expression (2) into

dXt = a(Xt, t) dt+ b(Xt, t) dWt . (10)

The Ito differential (2) is a stochastic differential equation (SDE) if the differ-
ential coefficients are functions of Xt and t only, as in (10).

Week 1 defined diffusion process in a seemingly different way. Then, it just
was a process with continuous “sample paths” whose infinitesimal mean and
variance were specified functions of Xt. Now, we would add nuance by saying
that these infinitesimal means and variances are conditional on the path X[0,t].
At that time there was no mention of Brownian motion in the definition of dif-
fusion process. Normally, a modeler would create a diffusion process stochastic
model of a system by reasoning about infinitesimal mean and variance, rather
than by a relation to Brownian motion.

The version here, with its connection to Brownian motion, is useful for
technical manipulations. This version has the feature than the noise level is
specified by the standard deviation, which is b(x, t), not the variance, which is
µ(x, t) = b(x, t)2. A function X(t,W[0,t]) that satisfies (10) is called a strong
solution of the SDE. A probability distribution on path space that has the right
infinitesimal mean and variance is called a weak solution. This technical dis-
tinction is unimportant in moat practical modeling applications of stochastic
calculus.

2 Ito’s lemma for diffusion processes

Let Xt be an Ito process specified by either (1) or (2) For a general Ito process,
as opposed to a diffusion process, the coefficients at and bt are any random but
non-anticipating functions. Suppose f(x, t) is some function. The corresponding
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“Ito’s lemma” is

df(Xt, t) = ∂xf(Xt, t) dXt +

[
∂tf(Xt, t) +

1

2
b2t ∂

2
xf(Xt, t)

]
dt . (11)

You can derive this in two steps. First you expand df to second order in dX
and first order in dt. This gives

df = ∂xf(Xt, t) dX +
1

2
∂2
xf(Xt, t) (dX)2 + ∂tf(Xt, t) dt .

Then you apply the “Ito rule”, which is to replace (dX)2 with its conditional
expected value

E
[

(dX)2 | X[0,t]

]
= b2t dt .

This gives the Ito’s lemma formula (11).
It may seem surprising that you can replace (dX)2 with its expected value.

You get the “right answer” doing this, but not because the error is small. On
the contrary, (dX)2 is on the order of dt, and the difference between this and
its expected value is also on the order of dt:

(dX)2 − b2t dt is on the order of dt .

You can see this in the variance, which is the expected value of the square of
the difference to the mean value. If the difference is O(dt) then the variance of
(dX)2 should be on the order of (dt)2. That variance formula is true already
for Brownian motion. Here is the calculation, done carefully for finite ∆t. The
independent increments property of Brownian motion implies that you the an-
swer is the same whether or not you condition on W[0,t]. This calculation has
been used a few times already in this course:

var
(

(∆W )2
)

= 2∆t2 .

This implies that the difference between (∆W )2 and it’s expected value (which
is ∆t) is typically on the order of ∆t.

You can replace (dX)2 with its expected value because the error in this
approximation not only has mean zero, but is nearly uncorrelated from one
time interval to the next. These errors quickly cancel in the mean. That is
(usual notation, tk = k∆t, and ∆Wk = Wtk+1

−Wtk),∑
tk<T

[
(∆Wk)

2 −∆t
]
→ 0 , as ∆t→ 0 (in probability or almost surely).

Going further, the quadratic variation of an Ito process is

[X]T = lim
∆t→0

∑
tk<T

(
Xtk+1

−Xtk

)2
.

This limit is

[X]T =

∫ T

0

b2s ds . (12)
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This course is too short for a full proof of this formula, but I hope the expla-
nations here give you some confidence and understanding of it. The differential
form of the quadratic variation formula (12) is

d [X]t = b2t dt .

The informal “Ito rule” is to replace (dXt)
2 with d[X]t. That’s how we get the

Ito lemma formula (11).
There is a version of Ito’s lemma (11) that uses the increment of Brownian

motion instead of the increment dX. This is derived from (11) using the Ito
differential (2). The effect is:

∂xf(Xt, t) dXt = ∂xf(Xt, t) (atdt+ btdWt) .

The dW form of Ito’s lemma for the Ito process Xt is seen to be

df = bt∂xf dWt +

[
∂tf + at∂xf +

1

2
b2t ∂

2
xf

]
dt . (13)

I write f and ∂xf for f(Xt, t) and ∂xf(Xt, t) (etc.) to make the formulas easier
to write and to read. The dW form (13) shows that the process Yt = f(Xt, t)
is a martingale if the coefficient of dt is zero. Therefore:

f(Xt, t) is a martingale ⇐⇒ ∂tf + at∂xf +
1

2
b2t ∂

2
x = 0 . (14)

This allows us to derive backward equations for general diffusions using the
second derivation of the backward equation for Brownian motion from Week 3.

Suppose Xt is a diffusion process that satisfies the SDE (10). Consider a
value function for a final time payout

f(x, t) = E[V (XT ) | Xt = x] . (15)

We might have conditioned on the whole pathX[0,t]. ButXt is a Markov process,
so conditioning on the whole path up to time t is the same as conditioning on
the location of the path at Xt. The backward equation for this value function
is

∂tf + a(x, t)∂xf +
1

2
b2(x, t)∂2

xf = 0 . (16)

This is consistent with the backward equation from Week 3 for Brownian motion,
because Brownian motion has a = 0 and b = 1.

The backward equation follows, as it did in Week 3, from the martingale
property, and uniqueness of the solution of the backward equation with final
conditions. If f satisfies the PDE (16) and has the final values f(x, T ) = V (x),
then, because it’s a martingale,

E
[
f(XT , T ) | X[0,t]

]
= f(Xt, t) .

The left side is the conditional expectation of V (Xt) (because of the final condi-
tion). The right side, conditioned on Xt = x, is f(x, t). This shows that “the”
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solution to the backward equation with the right final condition is the value
function. But there is only one solution and one value function, so they must
be the same.

Here is another, better (in some cases) derivation of the backward equation.
It is based on the tower property, which is that the expectation of a conditional
expectation is the overall expectation. Consider a “running sum” functional∫ T

0

V (Xs) ds .

The value function for this is

f(x, t) = E

[∫ T

t

V (Xs) ds | Xt = x

]
. (17)

Consider an intermediate time t1 with t < t1 < T . The integral from t to T
may separated into the parts before and after t1:∫ T

t

V (Xs) =

∫ t1

t

V (Xs) ds+

∫ T

t1

V (Xs) ds .

The part after t1 is included in the value function defined at t1. Therefore

f(x, t) = E

[ ∫ t1

t

V (Xs) ds | Xt = x

]
+ E[ f(Xt1 , t1) | Xt = x] .

We now take t1 = t+ ∆t and write Xt1 = x+ ∆X. For the first integral on the
right, we approximate∫ t+∆t

t

V (Xs) ds = ∆tV (x) + o(∆t) .

For the second expectation on the right, we approximate (standard notation, f
means f(x, t), and fx is the partial derivative, etc.)

f(x+ ∆X, t+ ∆t) = f + fx∆X +
1

2
fxx∆X2 + ft∆t+ smaller terms.

Exercise 3 asks you to look at these “smaller terms”. We put this approximation
into the expectation:

E[ f(x+ ∆X, t+ ∆t) | Xt = x]

= f + fxE[ ∆X | Xt = x] +
1

2
fxxE

[
∆X2 | Xt = x

]
+ ft∆t+ smaller

= f + fxa(x)∆t+
1

2
fxxb(x)2∆t+ ft∆t+ smaller .
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These results may be assembled to

f = ∆tV (x) + f + ∆ta(x)fx + b2(x)
1

2
fxx∆t+ ft∆t+ smaller .

We cancel f from both sides, divide by ∆t, let ∆t go to zero, and the result is

0 = a(x)fx +
b2(x)

2
fxx + ft + V (x) . (18)

3 Ornstein Uhlenbeck

The Ornstein Uhlenbeck process, or OU process, is a diffusion process that
satisfies the SDE

dXt = −aXt dt+ σdWt . (19)

The infinitesimal mean is −aXtdt. If a > 0 (the usual case), this moves X closer
to x = 0. The coefficient a is sometimes called the mean reversion coefficient or
mean reversion rate, with the understanding that reverting to the mean means
reverting to zero. The infinitesimal variance is σ2dt. The noise level is uniform,
independent of X. Without noise Xt would “revert” to zero exponentially fast.
The noise takes X away from zero. The long time behavior of OU paths is a
balance between noise and mean reversion.

The OU model was used by Einstein to model the random velocity of a
tiny particle in a fluid. In this model, Xt is the velocity of the particle, a is a
friction coefficient that represents the fact that the fluid slows the particle if it
is moving. The noise represents the effect of individual fluid molecules hitting
the particle and getting it to move. If the particle is much bigger than a fluid
molecule, each individual collision has a small effect. The term σ∆Wt represents
the cumulative effect of many such collisions in a time ∆t. The central limit
theorem suggests that the effect of many collisions is approximately Gaussian,
as is ∆W in the model.

The OU model is useful as a model for physical and economic/financial
systems, and also because it is an example that may be solved in closed form.
The solution suggests things that other diffusion processes may or may not
do. One approach to the solution uses the method of integrating factors. This
method may be familiar from a first course on differential equations, but it
is given here in the notation of stochastic calculus. The method applies to
differential equations in which the endogenous terms (the ones involving model
variables) are linear in the model variable. In this case, −aXtdt would be called
endogenous and σdWt exogenous (given from the outside) We write the equation
with the endogenous terms on the left and exogenous on the right:

dXt + aXtdt = σdWt .

The integrating factor allows us to combine the endogenous terms into a single
“total differential”.
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We multiply both sides by the integrating factor eat. On the left, you have

eatdXt + eataXtdt .

In ordinary calculus, this might expressed in terms of derivatives (rather than
differentials) as

eat
dX

dt
+ eataX =

d

dt

(
eatX

)
.

Ito’s lemma is the mechanism for doing such calculations in stochastic calculus.
We apply the differential version (2) to the function f(x, t) = eatx. The following
calculation uses the differential formula (2). We express partial derivatives of f
using subscripts, so ∂xf = fx, ∂2

xf = fxx, and ∂tf = ft. At the same time, Xt

is just the value of X at time t.

f(x, t) = eatx

fx = eat

fxx = 0

ft = aeatx

df(Xt, t) = fx dXt +
1

2
fxx (dXt)

2 + ft dt

= eatdXt + aeatXtdt .

The result is
eat dXt + aeatXtdt = d

(
eatXt

)
.

This shows that the SDE (19) is equivalent to

d
(
eatXt

)
= eatσdWt .

The next step is to integrate both sides with respect to t. On the left side we
have ∫ t

0

d (easXs) = eatXt −X0 .

The right side is an Ito integral with integrand eas. The result is

eatXt −X0 =

∫ t

0

easdWs .

Finally, you multiply by e−at to arrive at a formula for Xt

Xt = e−atX0 + σ

∫ t

0

e−a(t−s) dWs . (20)

This solution formula reveals important facts about the OU process. One
is that the OU process “forgets” its initial state, X0. As t → ∞, the influence
of the initial state, which is e−atX0 disappears exponentially. This is natural
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in Einstein’s fluid friction model. The relevance of the initial velocity fades
exponentially because of friction.

The solution formula (20) also shows that the distribution of Xt converges
as t→∞, and it converges to a mean zero Gaussian. The “innovation” part of
Xt is the Ito integral on the right of (20). This integral is “obviously” Gaussian
(explanation below), as is any Ito integral with respect to Brownian motion
where the integrand is not random.

Here is an explanation of the fact that the distribution of the Ito integral
is Gaussian. Any Ito integral with a fixed deterministic integrand is Gaussian.
Such an integral defines a random variable Z:

Z =

∫ t

0

ctdWs . (21)

We choose a small ∆t > 0 and approximate Z by

Z∆t =
∑
tk<t

ctk
(
Wtk+1

−Wtk

)
.

This is Gaussian because every term on the right is Gaussian, the sum of in-
dependent Gaussians is Gaussian, and the coefficients ctk are just fixed num-
bers (not random). By contrast, the example

∫
Ws dWs has approximations

with terms Wtk

(
Wtk+1

−Wtk

)
. These are not Gaussian because the product of

Gaussians typically is not Gaussian. The expected value of Z∆t is zero (all zero
expectations on the right) and the variance is (because the terms on the right
are independent)

var
(
Z∆t

)
=
∑
tk<t

c2tk∆t .

Thus, Z is the limit of Gaussians Z∆t whose mean is zero and whose variances
converge to

var(Z) =

∫ t

0

c2s ds .

The variance of Z∆t is a Riemann sum that converges to this integral.
We just showed that Z is Gaussian and gave a formula for the variance. The

variance formula is a special case of the Ito isometry formula

var

(∫ t

0

bs dWs

)
=

∫ t

0

E
[
b2s
]
ds .

This variance formula applies whether or not the integral is Gaussian. But,
when the integrand cs is not random, there is no need for the expectation on
the right. For our OU process, the variance is

var(Xt) = σ2

∫ t

0

(
e−a(t−s)

)2

ds = σ2

∫ t

0

e−2as ds =
σ2

2a

(
1− e−2t

)
. (22)

In the limit t → ∞ this is just σ2

2a . To check that this makes sense, note that
it increases as σ increases (more noise means more variance). It decreases as
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a increases, because stronger mean reversion (stronger friction) keeps Xt closer
to zero, on average.

The OU model (19) is an example of an equilibrium model. This means that
the distribution of Xt has a limit as t → ∞. If u(x, t) denotes the PDF of Xt

(notation that was used earlier), then the following limit exists

u(x) = lim
t→∞

u(x, t) . (23)

It is a fact that if sample paths are unlikely to “run off to infinity”, then the
limit (23) exists. The mean reversion term −aXtdt in the OU process is strong
enough to keep paths from wandering to infinity. In this case there is a formula

for the limiting PDF u(·). It is Gaussian with mean zero and variance σ2

2a (see
(22) for the limiting variance), so

u(x) =

√
a

πσ2
e−

ax2

σ2 .

The limiting distribution is called the steady state distribution. It is rare to
have a formula for it.

The steady state is for the probability distribution, not the path Xt. An
OU path does not settle down to a specific value as t→∞. In fact, it Xt = x,
then the distribution at time T > t quickly “forgets” x. The path is constantly
changing. Only the probability density has a limit as t→∞. It is a statistical
steady state, not a steady state for paths.

You can find some of the OU formulas using the trick of putting a differential
inside the expectation. If Xt is an Ito process, then

dE[f(Xt, t)] = E[ df(Xt, t)] . (24)

The point is that you can apply Ito’s lemma to calculate df and then take
the expectation. As a first example, let Xt by an OU process whose mean is
m(t) = E[Xt]. Then

dm(t) = dE[Xt]

= E[dXt]

= E[−aXtdt+ σdWt]

= −aE[Xt] dt+ 0

= −am(t) dt .

This may be written in terms of derivatives as

d

dt
m(t) = −am(t) .

If X0 is deterministic, then m(0) = X0 and m(t) = e−atX0, which we already
knew. This derivation might seem more straightforward. In a statistical steady
state, d

dtm(t) = 0. This is part of the definition of “steady state”, the probability
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distribution does not change with time. In particular, dm = 0, which implies
that m = 0. The steady state has mean zero.

For a second example, the second moment is

s(t) = E
[
X2
t

]
.

We calculate its dynamics using the same idea, but more of the Ito calculus,
including the fact that dWt is independent of Xt (because dWt is in the future
of t).

d s(t) = dE
[
X2
t

]
= E

[
dX2

t

]
= E

[
2XtdXt + (dXt)

2
]

= E
[

2Xt(−aXt dt+ σdWt) + σ2 dt
]

= −2aE
[
X2
t

]
dt+ σ2 dt

d s(t) = −2as(t) dt + σ2 dt .

In statistical steady state, ds(t) = 0. This allows us to solve for s(t) in steady
state. The result is

E
[
X2 steady state

]
= s(steady state) =

σ2

2a
.

Since the mean in steady state is zero, the expected square is also the steady
state variance. The formula is what we had before. You can, if you want,
combine our formula for the expected first and second moments to verify that
the previous formula (22) satisfies the differential equation derived in this way.

4 Geometric Brownian motion

A geometric Brownian motion is a diffusion process that satisfies the SDE

dSt = µStdt+ σStdWt . (25)

The parameter µ is the expected rate of return (or just expected return). The
parameter σ is the volatility. This is a simple model of the price of a traded
asset (a stock). The change in S, in both the mean and the noise terms, is
proportional to St. This means that the probability of S = 100 → S = 102 is
the same as the probability 300→ 309. Both are 2% increases.

As with the OU model, this may be solved using tricks from a course on
differential equations, brought to the stochastic world using Ito’s lemma. The
differential equations method is separation of variables. This means putting S
and dS on one side of the equation, dt on the other, then integrating both sides.
In the stochastic world, we have to be careful to differentiate correctly (Ito’s
lemma) and to take care of the Brownian motion noise term. We start with

1

St
dSt = µdt+ σdWt . (26)
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The indefinite integral of the right side is∫ t

0

µds+

∫ t

0

σdWs = µt+ σWt .

In ordinary calculus, you would look at the left side and recognize 1
s
ds
dt =

d
dt log(s). The corresponding calculation for the diffusion process requires Ito’s
lemma:

f(s) = log(s)

fs =
1

s

fss = − 1

s2

ft = 0

(dSt)
2 = σ2S2

t dt .

Ito’s lemma (11) then gives

d log(St) =
1

St
dSt −

1

2
σ2S2

t

1

S2
t

dt .

We re-write this for our calculation in the form

1

St
dSt = d log(St) +

σ2

2
dt .

This puts (26) into the form

d log(St) =

(
µ− σ2

2

)
dt+ σdWt .

We integrate both sides from s = 0 to s = t to find

log(St)− log(S0) =

(
µ− σ2

2

)
t+ σWt .

With a little more algebra, this is the solution formula

St = S0e
σWt+

(
µ−σ22

)
t
. (27)

We can check that this is correct using an Ito calculation for the right side of
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(27),

St = f(Wt, t)

f(w, t) = S0e
σw+

(
µ−σ22

)
t

fw = σf

fww = σ2f

ft =

(
µ− σ2

2

)
f

(dWt)
2 = dt

df(Wt, t) = fw dWt + ft dt+
1

2
fww(dW )2

= σfdWt +

(
µ− σ2

2

)
f dt+

σ2

2
f dt

= µfdt+ σfdWt

dSt = µStdt+ σStdWt .

Exercise 2 looks at this solution from different points of view.
The solution formula (27) allows you to find the PDF of St. The distribution

is called log-normal because log(St) is normal. Exercise 5 asks you to calculate
and plot this density. Other than plotting, I don’t know much use for it. If I
want to calculate expectations of functions of St, I use the Gaussian distribution
of Wt instead. We will see this in Week 5, when we derive the Black Scholes
formula. The formula (27) shows that St > 0. You will see in Exercise 5 that
computations using the Euler Maruyama method (29) might fail to give positive
results if the time step is too large.

The formula (27) has the striking feature that the typical growth rate of St,

what you typically see for large t, is µ− σ2

2 rather than µ. This is because the

term
(
µ− σ2

2

)
t is much larger than (“dominates”) σWt. The typical size of

Wt is the square root of the variance, which is
√
t and much smaller than t for

large t. For example, if µ = 0 the St is a martingale (no dt term in dSt). In that
case, the expected value of St does not change, and is equal to S0. However,
the − 1

2σ
2t in the exponent dominates σWt in the exponent, which makes St go

to zero almost surely. This GBM converges to zero in distribution. You will see
this in the plots of Exercise 5. The expectation

E[ST ] = S0

is achieved by having rare paths much larger than S0 while typical paths are
much smaller. This is an example of a strongly skewed distribution with a PDF
that is not symmetric around the mean.

Here is a simple “intuitive explanation” of the the fact that St goes to zero
almost sure when it’s a martingale. Suppose, in discrete time, there are equal
probabilities of going up or down by 50%. If S goes up 50%, we multiply by

14



1.5. If it goes down 50%, we multiply by .5. If it goes up and then down, we
multiply by both factors:

S −→ 1

2

(
3

2
S

)
=

3

4
S < S .

The expected value after two steps is still S (the martingale value) because the
expected value is

Pr(down down) · 1

4
+ Pr(down up) · 3

4
+ Pr(up down) · 3

4
+ Pr(up up) · 9

4

=
1

4
· 1

4
+

1

2

3

4
+

1

4

9

4

=
1 + 6 + 6

16
= 1 .

However, S goes down by at least 25% in three out of four of the outcomes.

5 Computational methods

This section discusses two computational problems. One is generating sample
paths for a diffusion process from the SDE. The other is finite difference meth-
ods for solving the backward equation. Most modeling projects involve first
formulating a stochastic model such as an SDE and then doing computer work
of some kind to explore the behavior of the model. The material here should
seem natural, given similar methods for simpler problems we have already done.
These methods do not produce the exact solution, neither for sample paths nor
for backward equations. They have parameters ∆t and/or ∆x. As these pa-
rameters go the zero, the computed solution converges to the actual (model)
solution. The trick in practice is to choose ∆t or ∆x small enough to get the
accuracy you need. The computer time increases as ∆t and ∆x decrease, so you
don’t want to take these parameters smaller than necessary.

Consider the SDE (10). Choose a ∆t and approximation times tk = k∆t.
Denote the values of the approximate sample path by

X∆t
k ≈ Xtk .

An optimistic approximation to the SDE for non-zero ∆t would be

X∆t
k+1 = a(X∆t

k ) ∆t+ b(X∆t
k ) ∆Wk . (28)

Everything here is known, except possibly ∆Wk. We take this to be the incre-
ment of Brownian motion over the time increment ∆t. These increments (as we
have seen since Week 1) are Gaussian with mean zero and variance ∆t. You can
ask the Gaussian random number generator to give you random variables with
that distribution (see the code StockSim.py), or you can ask for Zk ∼ N (0, 1)
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and take ∆Wk =
√

∆tZk. In this case, the computer program would implement
the formula

X∆t
k+1 = a(X∆t

k ) ∆t+ b(X∆t
k )
√

∆t Zk , Zk ∼ N (0, 1) . (29)

This is the Euler Maruyama method, which is how diffusion processes are usually
simulated.

This may seem odd, particularly if you have experience with numerical meth-
ods for ordinary or partial differential equations. For those problems there
are families of sophisticated and extremely accurate methods, including Runge
Kutta methods, finite element methods, and so on. There are whole gradu-
ate courses devoted to such methods. The simplest method, which is Euler’s
method, is explained in the first class. The rest of the course explains better
methods. Yet, for SDE, there do not seem to be methods that are much better
than the simple Euler Maruyama method (28).

6 Exercises

1. Let Xt be an OU process with a deterministic starting point X0 = x0.
Let u(x, t) be the PDF for Xt.

(a) Use the solution formula (20) to show that u = N (µt, vt) and find
formulas for the mean µt and variance vt. This is basically done in
the text, so summarize and write a formula for u(x, t)

(b) Suppose Xt satisfies the SDE (10) and u(x, t) is the PDF of Xt. The
forward equation is

∂tu = −∂x ( a(x)u(x, t)) +
1

2
∂2
x

(
b(x)2u(x, t)

)
.

Check by explicit calculation that the solution formula from part (a)
satisfies the forward equation for (19).

(c) Show that if Xt ∼ N (0, σ
2

2a ), then XT has the same distribution for
any T > t. Hint, show that this satisfies the forward equation. This

is a slightly different way of saying that N (0, σ
2

2a ) is the statistical
steady state distribution.

(d) Use your formulas for the mean and variance of Xt to find the value
function for an OU process (19) and final time payout V (x) = x2 at
time T . Show that your formula satisfies the backward equation for
OU and appropriate final condition. Interpret the fact that the value
function becomes increasingly flat as T − t becomes large. Find a
formula for this “flat” value using the steady state probability distri-
bution and check that it agrees with the rest of this exercise.

2. The geometric Brownian motion SDE 25 may be solved using the log
variable transformation. There are several equivalent ways to derive the
transformation.
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(a) Set Xt = log(St). Use Ito’s lemma to find the SDE that Xt satisfies.
Show that Xt = a+ bt+ cWt is a solution. The process Xt is Brow-
nian motion with drift. This is the derivation given above, explained
slightly differently.

(b) Write the backward equation for St. Consider the log change of
variables f(s, t) = g(log(s), t). Show that this g satisfies

∂tg + α∂xg + β∂2
xg = 0 .

Find the relation between α and β here to a, b, and c from part (a).
What diffusion process has this PDF as its backward equation?

3. Assume that the higher moments of the diffusion process are of the size
they would be for Brownian motion, which is

E
[
|∆X|3

]
≤ C∆t

3
2

E
[
|∆X|4

]
≤ C∆t2

Suppose f(x, t) has partial derivatives up to order 4 in both variables.
Define ∆f = f(Xt+∆t, t+ ∆t)− f(x, t) Show that

E[ ∆f | Xt = x] =

[
∂tf(x, t) + a(x)∂xf(x, t) +

1

2
b(x)2∂2

xf(x, t)

]
∆t+o(∆t) .

Show that

E
[

(∆f)2 | Xt = x
]

= [b(x)∂xf(x, t)]
2

∆t+ o(∆t) .

This is a weak version of Ito’s lemma.

4. Consider the Ornstein Uhlenbeck process (19) and running payout∫ T

t

X2
s ds .

Evaluate the value function explicitly using variance formulas for the OU
process. Verify that this function satisfies the backward equation (18).

5. The code StockSim.py does the Euler Maruyama method to compute a
geometric Brownian motion governed by the SDE (26).

(a) Run with a larger T and ∆t and see that it is common to produce
negative approximate prices. For this, you do not need so many paths
and the plots will not look good. This is OK because the results are
not good either.

(b) Find a formula for u(s, t), which is the PDF of ST . You can use the
solution formula (27) for this. Add the exact PDF to the plot and
see what ∆t you need to get a good match.
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(c) The problem gets harder for larger T . Do a calculation with larger
T to see that the PDF of ST is not at all symmetric.

(d) A volatility surface model makes σ a function of s. A volatility skew
adds a slope, which is σ(s) = σ0+σ1(s−S0). A volatility smile adds a
positive quadratic term. Experiment with volatility skew, both posi-
tive and negative and see how this impacts the PDF. Add two curves
to the plot, one with positive and one with negative skew. Choose
the slopes s1 so that the PDF is noticeably different but not com-
pletely different. At this point, your plot will have four curves. Make
sure the vol surface curve legend labels have the corresponding skew
values. Volatility skew and smile are used to explain the observed
fact that market option prices for put options that are unlikely to be
“in the money” are much higher than the Black Scholes theory says
they should be.
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