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1 Active strategies for diffusions

Dynamic stochastic models may be used to design active strategies for inter-
acting with or controlling them. An active trading or control strategy makes a
decision at time t based on information available at time t. This is sometimes
called decision making under uncertainty.

In a dynamic setting, there is a diffusion process Xt. We use ut to represent
a decision variable or control variable at time t. Often decision variable refers
to the case when ut does not influence X, as in Section 3. A control variable
would enter into the SDE governing X. The decision variable must be non-
anticipating, which means ut can be a function of X[0,t] but cannot use values
Xs for s > t. A function ut = U(X[0,t]) is a strategy. The thing (person or
algorithm) choosing u might be called an agent or a controller.

An optimal strategy or optimal control is one that optimizes (either minimizes
or maximizes) some measure of merit, or objective function. The actual outcome
is random, so the objective function should depend on expectations or proba-
bilities. Optimization is a systematic say to find good strategies or controls.
In many cases the objective function is a little arbitrary. The structure of the
objective function can influence the qualitative nature of the optimal strategy
in ways that may be unwanted. Section 2 argues for a specific kind of objective
function (expected utility) that makes sense from a philosophical point of view,
which is that the objective function should involve only “simple” expectations
(expected values of functions of the outcome) rather than more complex func-
tions of the probability distribution of the outcome. There are analytical and
computational approaches to optimizing such objective functions, including dy-
namic programming (an example in Section 3) and stochastic gradient descent
(Section 4).

2 Utility and choice theory

Utility theory is a philosophy of how people should make decisions under un-
certainty. It is an opinion about what people should optimize, if they use op-
timization for decision making. Specifically, it is the view you should optimize
the expected value a function of your wealth called the utility function.

In some groups, utility theory is so conventional that it is hardly questioned.
Most of micro-economics is based on it. But utility theory is still controversial.
For one thing, the utility function is somewhat arbitrary. The theorem below
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says you should use a utility function, but it does not tell you what function to
use. Also, many people (ordinary people and sophisticated data-driven financial
”rocket scientists”) use criteria that are not equivalent to expected utility. The
fields of behavioral economics and behavioral finance are dedicated to studying
how people make decisions inconsistent with utility theory. My opinion is that
showing that people do something in a bad way is not an argument for doing
it that way. For example, the fact that Americans eat unhealthy food is not an
argument for eating unhealthy food.

The von Neumann Morgenstern theorem is a strong argument for using ex-
pected utility. It starts with some natural axioms about choice under uncer-
tainty. The theorem states that any choice system that satisfies these axioms is
given by optimizing the expected value of utility function. If your optimization
objective function is not equivalent to an expected utility, then you are violating
axioms most people do not want to violate.

The theorem is about preference systems. The random outcome is modeled
as a single random variable X that is thought of as wealth. This is specified by
giving a probability density p(x), for a continuous random variable, or proba-
bilities Pi if X is equal to one of the discrete values xi. A preference system is
an ordering of random variables, which is modeled as an ordering of probability
distributions. We write X ≺ Y if the agent prefers Y to X, and X ∼ Y if the
agent is indifferent (does not prefer X over Y or Y over X). The axioms imply
that an agent will sometimes be indifferent. An agent who is always indifferent
satisfies the axioms in a trivial way. As was just said, a preference system really
is about probability distributions, p or P . We should write pX ≺ pY instead of
X ≺ Y .

Under the axioms, there is an objective function v(p) so that pX ≺ pY if and
only if v(pX) < v(pY ), and pX ∼ pY if and only if v(pX) = v(pX). This objective
function is not unique. Clearly ṽ(p) = 2v(p) and even ṽ = ev determine the
same preference system. The conclusion of von Neumann Morgenstern theory
is that any “rational” preference system has an objective function v(p) that is
determined by a utility function V (x) (properties given below), which means

v(p) = Ep[V (X)]

=

∫
V (x) p(x) dx , (continuous X)

=
∑
i

V (xi)Pi , (discrete X) .

This representation of of the objective function is linear in the probabilities p
or P . An objective function that is not (equivalent to) a linear function of the
probabilities must, therefore, violate the von Neumann Morgenstern axioms.

Including variance in the objective function is a common way to violate
the axioms and therefore be “irrational”. The variance seems natural in that
investments are often chosen to balance value against risk, measured by E[X]
and var(X) respectively. What’s wrong with v(p) = E[X] − var(X)? The
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variance is (discrete case, for simplicity)

var(X) =
∑
i

Xi −
∑
j

XjPj

2

Pi

This is a quadratic function of P , since it involves products PiPj . The variance
is a natural, but not a “rational” way to measure risk.

The von Neumann Morgenstern “rationality” axioms seem simple and nat-
ural, but they have surprisingly specific consequences. The first is transitivity.
If you prefer Y to Z and you prefer Z to Y , then you prefer Z to X. In the
language of probability distributions, this is

1. If pX ≺ pY and pY ≺ pZ , then pX ≺ pZ . If pX ≺ pY and pY ∼ pZ , then
pX ≺ pZ .

The monotonicity axiom is that “more is better”. If X ≤ Y and Pr(X <
Y ) > 0, then X ≺ Y . These conditions may be expressed as Y = X > W ,
where W is non-negative and has a non-zero probability of being positive. Such
a random W is an arbitrage. The monotonicity axiom says that an agent prefers
to include any arbitrate. The condition X < Y depends on the joint distribution
of X and Y , but the choice system should not depend on the joint distribution
– you have to choose one distribution only, not a joint distribution. Therefore
the informal X < Y should be replaced by conditions on X and Y separately.
The cumulative distribution function is

CX(a) = Pr(X ≤ a) =

∫ a

−∞
p(x) dx .

The condition X < Y “really means” that CX(a) ≥ CY (a) for any a, and
CX(a) > CY (a) for some a.

2. If CX(a) ≥ CY (a) for all a and CX(a) > CY (a) for some a, then pX ≺ pY .

The risk aversion axiom is that you prefer a definite x to a random variable
with expected value E[X] = x. An English country saying for this is: A bird in
the hand is worth two in the bush.1 For this axiom, let δx be the probability
distribution of the non-random variable x. In this statement, var(X) > 0 is just
a way of saying that X is truly random – Pr(X 6= x) > 0.

3. If x = E[X] and var(X) > 0, then pX ≺ δx.

The final interpolation axiom seems purely technical, but the theory collapses
without it. Informally, it says that if X ≺ Y ≺ Z, then there is some W that
“interpolates” between X and Z with W ∼ Y . That is, you cannot go in a

1This is about shooting birds to eat. A bird “in the hand” is one that you already have
shot and can take home to eat. A bird “in the bush” is one that you can see but might not
succeed in shooting. If your “hit rate” is 50%, then two birds in the bush have the same
expected value as one bird in the hand.
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continuous way from being worse than Y to being better than Y without being
equivalent to Y at some point between. The “interpolation” is in the sense
of probability distributions. For any q with 0 ≤ q ≤ 1, there is a probability
density (I apologize for the less-than-ideal notation.)

pq,X,Y (x) = q pX(x) + (1− q) pY (x) .

This is pX when q = 1 and pY when q = 0. It is a probability density (non-
negative, integral equals 1) as long as q ≥ 0 and q ≤ 1.

Interpolating the probability distributions may be interpreted as choosing
X with probability q and Y with probability 1 − q. The interpolated random
variable is

Wq =

{
X with probability q
Y with probability 1− q .

The interpolation axiom is

4. If pX ≺ pY ≺ pZ , then there is q ∈ (0, 1) so that pY ∼ q pX + (1− q) pZ .

This is like the intermediate value theorem of ordinary calculus. If f(q) repre-
sents the desirability of Wq, then it cannot go from less than the desirability
of Y to being above the desirability of Y without, at some q in between, be-
ing equal to the desirability of Y . Note that the distribution of Wq is not the
distribution of Y even though the agent is indifferent between them.

The von Neumann Morgenstern theorem is that a preference system that
satisfies these axioms is determined by a utility function V . A function V (x)
is a utility function if it is monotone increasing, V (y) ≥ V (x) if y > x, and
concave, V ′′(x) ≤ 0. A utility function determines a preference system if

X ≺ Y ⇐⇒
∫
V (x) pX(x) dx <

∫
V (x) pY (x) dx .

A probability distribution is optimal if it is better than any other available
distribution. Therefore, you optimize by finding the maximum of the expected
utility. Section refsec:sgd explains one reason this might be easier in practice
than optimizing an objective function that depends on pX in a non-linear way.

The properties of a utility function are related to the axioms of Von Neumann
Morgenstern theory. Informally, V (x) tells you how much “value” the money x
has for you. V ′(x), which is called marginal utility tells you how much happier
one dollar would make you. The condition V ′ > 0 is related to the “more
is better” monotonicity axiom. The second derivative V ′′ is supposed to be
negative. This says that the marginal utility decreases as x increases: d

dxV
′(x) <

0. If I have ten dollars, I might be very happy to have one more. But if I have
a million dollars, one more dollar would not make me much happier.

The concavity V ′′(x) < 0 is also related to risk aversion. The relationship is
from a mathematical fact called Jensen’s inequality. This says that if V is an
concave function and X is any random variable, then

E[V (X)] ≤ V (E[X]) .

Thus, a concave utility function satisfies the risk aversion axiom 3 of von Neu-
man Morgenstern theory.
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3 Optimal dynamic investment

Here is an example of a dynamic stochastic optimization problem. We would
call the decision variable a “policy” rather than a “control” because it does
not influence the stochastic market price in the the theory. This example illus-
trates the dynamic programming approach to dynamic stochastic policy/control
problems. It uses a value function that satisfies a partial differential equation
like the backward equations we saw in earlier classes. PDEs that arise through
stochastic optimization in this way are sometimes called Hamilton Jacobi Bell-
man equations, or HJB equations. Hamilton and Jacobi had nothing to do with
diffusion processes or optimization. Bellman found that the value function sat-
isfies a PDE with properties similar to the ones used by Hamilton and Jacobi
for other purposes. In this problem, the value function and the optimal policy
are determined together.

Note that the notation and terminology for this problem is different from
the general terminology for dynamic stochastic optimization in the introduction.
Any applied mathematician has to learn to “speak” different forms of notation
for the same thing to different people in different settings.

In this problem there is a wealth Zt at time t. At any time t, some of this is
invested in a risky asset St and the rest in a risk free asset Mt (for “money”, or
“money market account”). The goal is to buy and sell these assets to optimize
the outcome at time T . As we saw in Section 2, that there is a utility function
V (z) and we seek to maximize f = E[V (ZT )].

The decision variable is Xt, which is the amount invested in the risky asset.
The rest, which is Zt −Xt is invested in the risk free asset. The risky asset is
taken to be a geometric Brownian motion

dSt = µStdt+ σStdWt .

The risk free asset has a fixed and deterministic growth rate r (the risk-free
rate)

dMt = rMtdt .

The parameters µ (expected return of the risky asset), σ (volatility of the risky
asset), and r (risk-free rate of return) are assumed constant and known.

Investing Xt in the risky asset means owning nt = Xt/St “shares” of the
risky asset. If you don’t trade in a time interval dt > 0, then dn = 0 for that
interval. This means that

Xt+dt = ntSt+dt

= nt (µStdt+ σStdWt)

= µntStdt+ σntStdWt

= µXtdt+ σXtdWt .

Similarly, if you allocate Yt to the risk-free asset, then the value changes to

Yt+dt = rYtdt .
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Since Zt+dt is the sum of the risky and risk free parts, we have

Zt+dt = Zt + µXtdt+ σXtdWt + r(Zt −Xt)dt .

This may be written

dZt = rZtdt+ (µ− r)Xtdt+ σXtdWt . (1)

The quantity µ−r is the excess return. It is natural to think the excess return is
positive. Otherwise, investing in the risky asset would increase your risk while
decreasing your expected return.

There are many simplifying assumptions in the Merton analysis. Obviously
there is continuous time, but also continuous allocation (Xt can be any real
number) and continuous trading: nt, the number of shares, can be any con-
tinuous (adapted) function of t. More serious are the assumption of free and
frictionless trading without market impact. At any time you can buy or sell as
much of the risky asset as you want at the price St. The price is the same for
buying or selling. In real markets, there is a price for buying (the ask or offer
price) and a slightly lower price for selling (the bid price). Look at your favorite
stock on Yahoo Finance and you will see that these differ by a few cents – not a
huge number but enough to make certain trading strategies impraactical. Also,
there are a limited number of shares available at the bid price – typically a few
hundred. If you want more than that, you have to pay a little more. That means
your trade changes the market price. You have had market impact and you are
no longer a pure price taker. Finally, there are no constraints on the sign of Xt

or Yt = Zt−Xt. If Xt < 0, you “own” a negative amount of risky asset and have
more than Zt in cash (risk free asset). This corresponds to borrowing shares,
selling them, and putting the money into the risk free asset. If Xt > Zt, then
Yt (the cash position) is negative. You have borrowed money to buy more stock
than you can pay for with your wealth. The Merton theory says the interest
rate you pay for borrowing is the same as the interest rate you get for lending
(investing in the risk free asset is lending).

With dynamic trading, the investor chooses Xt and Yt at time t subject only
to the constraint Xt + Yt = Zt. Once this allocation is made, we “watch” the
markets for time dt. The result is (1). The agent knows S[0,t] and X[0,t], and
therefore knows Zt. The process is Markov, so the past does not influence the
future. If you know Zt, the rest of the information is irrelevant. This means
that the allocation decision Xt is a function of Zt alone.

The value function is the best expected utility an agent can achieve starting
at time t with wealth Zt = z. In order to achieve this best expected utility, the
agent must follow the optimal policy from time t to time T . The value function,
therefore, is

f(z, t) = max
policy

E[V (ZT ) | Zt = z] . (2)

The subscript policy means that the agent maximizes over all adapted policies.
The value function (2) satisfies a PDE called the Hamilton Jacobi Bellman

equation. This is based on the dynamic programming principle, which is the idea
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that you make a decision at time t assuming that all decisions after that will be
optimal. The derivation of the HJB equation starts like one of the derivations
of backward equations from earlier classes. The new thing here is that Xt is not
known. Instead, you choose the optimal Xt, which is the one that gives you the
largest expected utility at time t+ dt.

f(z, t) = max
Xt

E[ f(z + dZ, t+ dt)] . (3)

This formula represents the dynamic programming principle just stated: you
choose the best Xt at time t and then receive the expected utility of the optimal
path from Zt+dt = z + dZ starting at time t+ dt.

We calculate the expectation on the right side using Taylor series as before.
We use subscripts for partial derivatives and leave out arguments (z, t). The
conditional expectation assumes Zt = t, so f and its derivatives evaluated at
(z, t) come out of the expectation:

E[ f(z + dZ, t+ dt) | Zt = z]

= E

[
f + fzdZ +

1

2
fzz(dZ)2 + ftdt | Zt = z

]
= f + fzE[ dZ | Zt = z] +

1

2
fzzE

[
dZ2 | Zt = z

]
+ ftdt .

The expectations on the right are found from the stochastic dynamics (1):

E[ dZ | Zt = z] = rzdt+ (µ− r)Xtdt

E
[
dZ2 | Zt = z

]
= σ2X2

t dt .

Assembling these calculations to evaluate the right side of (3) gives

f = f + max
Xt

(rz + (µ− r)Xt)fzdt+
1

2
σ2X2

t fzzdt+ ftdt .

This simplifies to (taking out the parts that don’t depend on Xt)

0 = rzfz + ft + max
Xt

[
(µ− r)fzXt +

1

2
σ2X2

t fzz

]
.

Suppose the agent chooses to allocate x to the risky asset at this time. Then
at time t+ dt, the wealth would be given by (1)

Zt+dt = z + rZtdt+ (µ− r)Xtdt+ σXtdWt .

The optimal expected utility starting from t+ dt would be

f(z+ dZt, t+ dt) = f(z, t) + ∂zf(z, t)dZt +
1

2
∂2zf(z, t)(dZt)

2 + ∂tf(z, t) dt . (4)
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We do the maximization by differentiating with respect to Xt, setting the deriva-
tive to zero, and solving for Xt. That is

(µ− r)fz + σ2Xtfzz = 0

Xt = − (µ− r)fz
σ2fzz

. (5)

We substitute this optimal allocation into the HJB equation and get the result

0 = ∂tf(z, t) + rz∂zf(z, t)− (µ− r)2

2σ2

( ∂zf(z, t))
2

∂2zf(z, t)
. (6)

This is the non-linear backward equation for Merton’s optimal dynamic invest-
ment problem.

4 Stochastic Gradient Descent

Stochastic gradient descent is a general way to optimize an objective function
that that is the expected value of a random variable and control. It is a stochas-
tic version of ordinary gradient descent (reviewed below) that does not need
accurate estimates of the objective function or its gradient. What is presented
here should be called the Robbins Monro algorithm, or, as Robbins and Monro
called it, stochastic approximation. The term stochastic gradient descent is more
properly used for a closely related method machine learning people use to train
neural networks when there are many independent samples.

Ordinary gradient descent is a way to find the minimum of a function v(u).
If you want to maximize v, just minimize −v. The algorithm might then be
called “gradient ascent”, but people don’t use that term much. Suppose v is an
objective function whose gradient can be computed:

∇v(u) =


∂v
∂u1

...
∂v
∂un

 .

Gradient descent is the iteration

uk+1 = uk − sk∇v(uk) . (7)

The parameter sk is the learning rate. It should be positive. It either is taken
to be a fixed somewhat small number, or it goes to zero as k →∞.

The negative gradient direction in (7) is a descent direction. That means
that if ∇v(uk) 6= 0 and if sk is small enough, then

v(uk+1) < v(uk) .
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This is clear from the Taylor series calculation

v(uk+1) = v(uk − sk∇v(uk))

= v(uk) +∇v(uk)t (−sk∇v(uk)) +O(s2k)

= v(uk)− sk ‖∇v(uk)‖2 +O(s2k)

If ∇v(uk) 6= 0 and sk is small enough, then v(uk+1) < v(uk). In practical
gradient descent algorithms, it would be hard to know what sk is good. It is
common to do some kind of line search, which means decreasing sk if v(uk+1 >
v(uk) and increasing sk to see whether that lowers v(uk+1). A simple version
of this might use binary search, which means cutting sk in half if it’s too small
and doubling it to see whether u goes down more. Strategies like these are hard
to apply to stochastic gradient descent.

The Robbins Monro algorithm is for a version of the optimization problem
in which the objective function is the expected value of a random variable. It is
used in case there is no analytic formula for the expected value. One approach
would be to estimate the expected value many independent samples. Stochastic
gradient descent is a striking variation on this idea in that uses a small number
of samples, often just one, per iteration. The algorithm finds the optimal u
(almost surely) despite the fact that it uses inaccurate estimates of u and ∇u
at each iteration.

Here is a technical explanation. In the language of this class, suppose W is
a random variable and we have a way to generate samples of W – independent
random variables with the same distribution that W has. For example, W could
be a diffusion process described by an SDE. Another possibility is that W is the
noise driving an SDE where the components of u are parameters. Either way,
independent simulations would produce independent sample paths. In a simple
version of the Robbins Monro formalism, the objective function is the expected
value of a random variable we could think of as a utility function:

v(u) = E[V (W,u)] . (8)

We seek algorithms to optimize v(u) for situations where it is feasible to generate
independent samples Wn ∼W and evaluate V (W,u), but it is harder to evaluate
v(u) directly.

Gradient based algorithms use the stochastic gradient, which is

∇uV (W,u) .

The basic stochastic approximation algorithm uses independent Wn ∼ W and
uses them to create iterates uk using the stochastic gradient instead of the simple
gradient:

uk+1 = uk − sk∇uV (Wk, uk) . (9)

Here, there is no guarantee that v(uk+1) < v(uk) even if sk is very small. The
search direction, which is ∇u(Wk, uu) need not be a descent direction. It is a
descent direction if ∇v 6= 0 “in the mean”, because

E
[
∇v(uk)t∇uV (Wk, uk)

]
= ∇v(uk)t∇v(uk) = ‖∇v‖2 .
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But the actual random variable ∇v(uk)t∇uV (Wk, uk) does not have to be pos-
itive.

5 Option hedging in continuous time

A stock option it the right to buy or sell a specific stock at a specific price at
a specific time or until a specific time. The right to buy is a call option. The
right to sell is a put option. If the right exists only at time T , it is a European
style option. If the right exists at any time up to time T , it is an American style
option. Options are traded in public exchanges and their price is determined in
the market. However, the Black Scholes theory of option pricing says what the
option price should be, in an economic model. Market prices disagree with this
simple theory, but the theory nevertheless provides an important way to think
about buying and selling options.

The terminology of this section is that T is the expiration time of the option.
An option has a strike price, written K, that is the price at which the stock will
be bought or sold. An option is the right to buy or sell, but not a requirement.
Consider a European style option. Suppose you own a put option (option to
sell) at price K and the price is ST . If ST > K, then you can sell a share of
stock for ST on the market or for price K to the counterparty (the person who
sold you the option). If you have a share of stock, you get more by selling on
the market, so you don’t exercise the option. We say the option is out o the
money. If ST < K, then you can buy a share for ST and sell for K. This gives
you a profit of K − ST . For European options that are traded on exchanges,
the option is settled in cash, which means that the exchange gives you the cash
value of the option. For a put, this is

V (ST ) = max {K − ST , 0} = (K − ST )+ .

For a call, similar reasoning gives

V (ST ) = max {ST −K, 0} = (ST −K)+ .

American style options with the early exercise feature present the owner with a
dynamic optimization problem – finding the optimal strategy for exercising the
option.

The Black Scholes pricing theory was first developed by Fisher Black and
Miron Scholes using reasoning similar to that of Section 3. This section explains
the reasoning, as I have come to understand it. Later the binomial tree model
was invented as a way to explain option pricing to people who are not familiar
with stochastic calculus. This is explained in Section 6. The explanations
here may be a little quick, because the course Derivative Securities covers that
material more deeply.

The Black Scholes model of the trading world is this. There is a risk free
asset, cash, with rate of return r. There is a risky asset, the stock, whose price
is St that is a geometric Brownian motion with parameters µ (expected rate of
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return) and σ (volatility). The market is full of “agents” (traders) who can buy
or sell the option or the stock without market “frictions”. The amount of cash
or stock can be positive or negative. For cash, this is written as “borrowing =
lending”; the interest rate you get for your cash is the same as the interest you
pay if you borrow. It might seem surprising that this is approximately true for
big agents. Owning a negative amount of stock is called having a short position.
Selling stock you don’t own (to get a negative amount of stock) is short selling.
The Black Scholes theory allows all this, and with zero transaction cost. For
European style options, the theory assumes that if you own the option at time
T , then

You can get into the Black Scholes theory by asking about dynamic repli-
cation of an option without buying or selling the option itself. The time t, the
agent has a wealth Zt. The agent allocates Xt to the stock and the rest to cash.
The agent seeks a trading strategy so that ZT = V (ST ). We say the trading
strategy replicates the option. The strategy satisfies eqrefdZ, which means that
it is self financing. The trader starts with some wealth and then only takes that
wealth to the market. The equivalent of the value function is the wealth you
need at time t with stock price s to replicate the option:

f(s, t) = Zt so that ZT = V (ST ) . (10)

This f is the Black Scholes arbitrage price of the option. The idea is that
if the option price is different from the arbitrage price, then you can make a
guaranteed profit by replicating the option. For example, if the option price
is P > f(St, t), then the trader can sell one option and receive P . The trader
then uses f < P of the money to replicate the option and keeps the rest. At
time T , the trader has ZT = V (ST ), so he/she can satisfy the person he/she
sold the option to. The rest is risk free profit. Basic finance theory (economic
philosophy) is that arbitrage opportunities like this cannot exist. If they did
exist, smart traders would jump on them and they would quickly be sold out.

The technical argument of Black and Scholes is ingenious no matter how you
say it. In this version, the trading strategy will have the effect that

Zt = f(St, t) , for all t ≤ T .

This means that if you follow the strategy (details in the next paragraph) and
if you start with the right wealth at time t0, then at all later times up to time
T , you still have exactly the wealth to replicate the option.

For the calculation, we use the terminology of Black and Scholes by writing
the stock component of the portfolio as Xt = ∆tSt. That means that ∆t is
the number of shares of the stock that you own. As in the Merton theory,
this can be any real number. The cash position (amount of wealth in cash) is
Yt = Zt −∆tSt. We calculate dZ = f(St, t) using the market formula (1) and
using Ito’s lemma. The resulting equation gives a PDE for f , which is the Black
Scholes equation. First,

dZ = rYtdt+ ∆tdSt .

11



This is the “tricky” part of this approach to Black Scholes theory. You imaging
that you trade (choose ∆t and Yt), and then keep them for time dt while the
market moves. We used the same idea in the Merton theory. We then use the
“budget constraint” to eliminate Yt and write

dZt = r(Zt −∆tSt) + ∆tdSt .

The desired replication formula Zt = f(St, t) allows this to be written as

dZt = r(f(St, t)−∆tSt) + ∆tdSt .

We compare this to what you get from Ito’s lemma, which is (using the Ito rule,
(dS)2 = σS2

t dt)

dZt = df(St, t) = ∂sf(St, t)dSt + ∂tf(St, dt)dt+
1

2
∂2sf(St, t)σS

2
t dt .

We compare these expressions and see that we can eliminate the dS term (the
term with dW ) if we take

∆t = ∂tf(St, t) . (11)

Finally, we equate the remaining terms and drop the dt from both sides. We
get

r [ f(St, t)− St∂s(f(St, t)] = ∂tf(St, t) +
1

2
σ2S

2
t ∂

2
sf(St, t) .

Some algebra puts this into a more standard form

0 = ∂tf + rs∂sf +
1

2
σ2s2∂2sf − rf . (12)

This is the Black Scholes equation.

6 Hedging in discrete time

7 Black Scholes formula

The Black Scholes formula is a formula for the solution of the Black Scholes
equation with final condition f(s, T ) = V (s) = (s−K)+ or f(s, T ) = (K− s)+.
One way to find the Black Scholes formula is to use the fact that the Black
Scholes equation is a backward equation for a geometric Brownian motion

dSt = rStdt+ σStdWt . (13)

This is different from the geometric Brownian motion model used to derive the
PDE (12) in that the expected rate of return is r instead of µ. More precisely,
f is the value function

f(s, t) = E
[
V (ST )e−r(T−t) | St = s

]
. (14)
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To be clear, (14) with process (13) is a formula for the solution of (12), but
it is not the derivation. Nevertheless, (14) says that the option price is the
expected payout if S is the risk-free process (13). An investor is risk free or risk
neutral (as we said before) if he/she makes the price of a risky asset equal to its
discounted expected value. The conclusion of the Black Scholes theory may be
stated as giving the price as the discounted expected value using the risk free
process.

The Black Scholes formula may be derived using the “risk free representa-
tion” above. The solution of the SDE is

ST = S0e
σWT+(r−σ22 )T .

We can get the distribution of WT using
√
TZ, where Z ∼ N (0, 1). For a put,

we get

f(S0, 0) = e−rTE
[

(K − S0e
σ
√
TZ+(r−σ22 )T )+

]
.

As an integral, this is

f(S0, 0) =
1√
2π
e−rT

∫ z0

−∞

(
K − S0e

σ
√
TZ+(r−σ22 )T

)
e−

1
2 z

2

dz .

The endpoint of integration is the value of z that makes ST = K. The result is

z0 =
log(K/S0)−

(
r − σ2

2

)
σ
√
T

.

The part of this formula involving just K is

1√
2π
e−rTK

∫ z0

−∞
e−

1
2 z

2

dz = e−rTN(z0) .

8 Exercises

1. Give a proof of Jensen’s inequality. Hint: Show that if V is concave then

V (x) ≤ V (x) + V ′(x)(x− x) .

Integrate this inequality over x with PDF p(x) and use the fact that x is
the expected value of X.

2. Show that the mean-variance analysis fails in the following simple way.
Define v(p) = Ep[X] − c varp(X). Here, we allow any penalty parameter
c > 0 for the variance of X in the p probability distribution. Suppose
X > 0. The von Neumann Morgenstern axioms suggest that you should
prefer nX to X for any n > 1. That is, instead of one copy of X, we
prefer n copies (n shares) for any n > 1. Show that the monotonicity
axiom implies this. For that, you need to invent notation for the CDF of
nX, etc. Show that the variance penalty implies that there is an optimal
n, beyond which we do not want more X. This shows that variance
penalization is not “rational”.

13



3. The Markowitz mean variance allocation theory involves random variables
Rj , which represent the return (profit) from investing one unit of money
on asset j. These have expected returns

µj = E[Rj ] .

The covariance is
Cij = cov(Xi, Xj) .

Suppose you have a unit amount of money and invest wj of that in asset
j. Then your total return is

X =

n∑
j=1

wjRj = wtR .

The vector notation in the last version on the right is w ∈ Rn with com-
ponents wj and R ∈ Rn with components Rj . The expected return is

r = E[X] =

n∑
j=1

wjµj = wtµ . (15)

The covariance matrix C has entries Cjk. The variance of the return is

σ2 = wtCw . (16)

The budget constraint involves the vector 1 ∈ Rn with all components
equal to one:

n∑
j=1

wj = wt1 = 1 . (17)

An allocation (or portfolio) is w that satisfies the budget constraint. An
allocation is efficient if it maximizes r with a fixed σ2 and budget con-
straint (17). An allocation is inefficient if it is not efficient. Suppose

X = wtR is an efficient allocation and X̃ = w̃tR is an inefficient alloca-
tion with the same variance. Show that, if R is a multi-variate Gaussian,
then the expected utility of X is larger than the expected utility of X̃.
Hint. Just think of X and X̃ as two Gaussian random variables with
the same variance and different means. [We have emphasized that using
variance to guide investment can violate the von Neumann Morgenstern
axioms and lead to poor investment choices. This exercise shows that the
Markowitz mean-variance analysis is OK even though it uses variance, but
only because the returns are assumed to be Gaussian.]

According to von Neumann Morgenstern choice theory, any rational in-
vestor would prefer an efficient allocation to an inefficient allocation with
the same variance. Harder, attempt only after the rest is finished: Show
that this may not be true for non-Gaussian returns. Hint. If Y and
Z are Gaussian with the same variance, then you can think of Z as
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larger than Y in the sense of the arbitrage axiom if the mean of Z is
larger. However, there are non-Gaussian random variables Y and Z have
µY < µZ and σ2

Y = σ2Z but Z is not an arbitrage from Y in the sense
that Pr(Z < a) > Pr(Y < a) for some a. This can happen if Z has fatter
tails than Y . [My opinion. Mean variance analysis is popular even though
it can lead to “irrational” allocations. You might excuse this by saying it’s
only supposed to apply to Gaussian returns. Yet, nobody thinks returns
are anything like Gaussian.]

4. Suppose the utility is a power law V (z) = zγ .. Take the ansatz f(z, t) =
A(t)zγ .

(a) Show that a power law utility is increasing and concave if and only
if 0 < γ < 1.

(b) Substitute the ansatz into the Merton PDE (6) to show that the
ansatz works. Find the differential equation and then the formula
for A(t).

(c) Show that the optimal allocation has the form x∗ = mz and find a
formula for the Merton proportion as a function of the parameters γ,
σ, and r.

(d) An investor is risk neutral if they maximize expected wealth rather
than expected utility. How does the Merton strategy break down in
the risk neutral limit γ → 1?

(e) We saw that in geometric Brownian motion, it can happen that the
expected value grows exponentially but the median value goes to zero
exponentially. Can this happen for this Merton problem? Can the
expected utility grow exponentially while the median utility decays?
What does this say about how the utility function zγ captures risk
aversion?

5. (Extra credit, do only after everything else is done, and if you’re interested
in economics.) Here is the optimal policy problem that includes consump-
tion. The rate of consumption at time t will be Ct. You “consume” money,
so the wealth dynamics with consumption are

dZt = rZtdt+ (µ− r)Xtdt+ σXtdWt − Ctdt .

As with wealth, we use the utility of consumption rather than consumption
itself. The reasoning is similar. You might be very happy to consume two
cookies rather than one cookie, but you may not care as much for cookie
101 if you already have 100 of them. There is a discount rate, ρ, in addition
to the risk free rate. If you consume c at time t, the utility “today” (time
t = 0) is reduced by e−ρt. The agent chooses Xt and Ct at time t in a way
that seeks to maximize

H = E

[∫ T

0

e−ρtU(Ct) dt

]
.
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The constraint is ZT ≥ 0. Formulate a value function, the dynamic pro-
gramming principle, and the Hamilton Jacobi Bellman equation appropri-
ate for this problem. Describe the solution when the utility function has
the form U(c) = cγ .
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