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Assignment 2

Correction. Formula (4) in Exercise 3 is corrected to replace
√

2π with the
correct

√
2πt.

1. This exercise is a somewhat informal derivation of the Fick’s law or the
Fourier law for the probability flux for a diffusion process

dXt = a(Xt)dt+ b(Xt)dWt .

Suppose p(·, t) is the PDF of Xt and C(x, t) is the CDF (cumulative dis-
tribution function)

C(x, t) = Pr(Xt ≤ x) =

∫ x

−∞
p(y, t) dy .

The probability flux (also called probability current) is defined by

∂tC(x, t) = −F (x, t) .

This is explained more in the notes and will be covered in Class 3. The
Fourier/Fick law is

F (x, t) = a(x) p(x, t)− 1

2
∂x
[
b2(x) p(x, t)

]
. (1)

The derivation uses

∂tC(x, t) = lim
∆t ↓ 0

C(x, t+ ∆t)− C(x, t)

∆t

The “downarrow” symbol ↓ in the limit indicates that ∆t > 0 and goes
down to zero, while ∆t < 0 is not considered. There are two ways C(x, t)
can change as t increases. A particle from the right of x at time t can
cross to the left at time t + ∆t or a particle can cross from left to right.
The probabilities of these events are

PU = Pr (Xt < x and Xt+∆t ≥ x )

PD = Pr (Xt > x and Xt+∆t ≤ x ) .

We will use three approximations, which are intuitive and correct but not
proven in this Exercise. The first is

p(y, t) ≈ p(x, t) + [∂xp(x, t)](y − x) .

This should be accurate for the Xt = y values relevant for PU and PD
because a particle that crosses x in time ∆t must start close to x at time
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t. The second approximation is the Euler Maruyama time step approxi-
mation that uses the standard normal Z ∼ N (0, 1):

Xt+∆t ≈ Xt + a(Xt)∆t+
√

∆t b(Xt)Z . (2)

The third approximation is the “method of fractional steps”, which is the
fact (conjecture?) that (1) is true if it is true when a = 0 and also when
b = 0. This just turns one big calculation involving both a and b into two
simpler calculations.

The verification when b = 0 is simple. If a > 0 then PD = 0. The
verification when a = 0 is the main point. For this, it may help to use the
cumulative normal distribution function

N(x) = Pr(Z < x) =
1√
2π

∫ x

−∞
e−

z2

2 dz .

Both PU and PD can be expressed as integrals involving N , if we use
the Euler approximation (2). This expresses PU as a double integral.
Reversing the order of integration gives a formula involving ∂xp(x, t) and
var(Xt+∆t|Xt = y).

2. An Ornstein Uhlenbeck process is any diffusion process whose SDE is linear
in the drift and constant in the noise. In one dimension, that is

dXt = −γXt dt+ σdWt . (3)

Parts of this exercise require γ > 0, but γ < 0 come up in other appli-
cations. Assume that X0 has a PDF p(x, 0). To understand dynamics,
make the Euler approximation involving the standard normal Z:

Xt+∆t ≈ Xt − γXt∆t+ σ
√

∆t Z .

When computing a derivative, take the difference quotient with ∆t > 0,
use the Euler approximation, and take ∆t to zero.

(a) The mean at time t is

m(t) = E[Xt ] .

Show that
d

dt
m(t) = −γm(t) .

Show that m(t)→ 0 as t→∞ as long as |m(0)| <∞.

(b) The mean square and variance are

S(t) = E
[
X2
t

]
, V (t) = var[Xt ] .

Calculate d
dtS and d

dtV and use these to find

V∞ = lim
t→∞

var[Xt ] .
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Remark. The formula for d
dtV has a positive term that depends on σ

and represents the increase in uncertainty coming from noise. It also
has a negative term that depends on γ that represents the inward
“push” of the drift term. The formula for V∞ represents a balance
of these forces. It should show that V∞ increases when σ increases
and decreases when γ increases. Note. You do not need to solve the
differential equations that S and V satisfiy. Setting d

dtS = 0 and
using m∞ = 0 gives a simple algebraic equation for S∞. If S(t) has
a limit as t→∞, then the derivative goes to zero. [Not always, but
in this case].

(c) Find the differential equation and limiting value as t→∞ of

Q(t) = E
[
X4
t

]
.

Take m(t) = 0 in order to simplify the computations. Note. You do
not need to solve the differential equation that Q satisfies. Setting
d
dtQ = 0 gives a simple algebraic equation for Q∞.

(d) Assume that X0 = 0 so that p(x, 0) = δ(x) (the “delta function” is
described below). Assume that Xt is Gaussian and use the results
of parts (a) and (b) to find a formula for p(x, t). Verify by direct
calculation that this p(x, t) satisfies the forward equation for (3).
About the delta function. The delta function is an idealized function,
or improper function (also called distribution) that has δ(x) = 0 if
x 6= 0 but

∫
δ(x) dx = 1. This is a “unit mass” (or unit of area) all

at the point x = 0. A Gaussian with mean zero and variance ε has
density

pε(x) =
1√
2πε

e−
x2

2ε .

This converges to δ(x) as ε→ 0 in the sense that if f is any bounded
and continuous function, then∫ ∞

−∞
f(x) pε(x) dx → f(0) , as ε→ 0 .

If Y is a random variable with PDF q(y), then saying Y = a is the
same as saying q is a “point mass” or “delta mass” at y = a, which
is q(y) = δ(x− a).

(e) Show that if X ∼ N (0, σ2), then

E
[
X4
]

= 3σ4 .

Show that the quantities V∞ and Q∞ are consistent with this, us-
ing the fact that the Ornstein Uhlenbeck PDF is Gaussian. Hint.
Integrate by parts using∫ ∞

−∞
z4e−

z2

2 dz =

∫ ∞
−∞

z3
(
e−

z2

2 z
)
dz
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3. Let Xt be a “Brownian motion started at X0 = a”. We sometimes under-
stand “Brownian motion” to mean starting at W0 = 0, so you might be
reluctant to call Xt Brownian motion. If you want, take Xt = Wt + a, or
say X0 = a and dXt = dWt. The first hitting time at x = 0 is

τ = min { t | Xt = 0 } .

We say that τ = ∞ if Xt > 0 for all t. There are paths that do this, but
they might be unlikely. The PDF of τ <∞ is

qa(t) =
1√
2πt

2a

t
e−

a2

2t . (4)

This exercise asks you to verify this directly from simulations of hitting
times. You can simulate a hitting time using the usual Euler approxima-
tion X0 = a and

Xtn+1
= Xtn +

√
∆t Zn .

This Euler formula is exact for Brownian motion. You define

τ∆t = min
tn
{ tn | Xtn < 0 } .

You should stop the simulation at tn = tmax because otherwise the ex-
pected computer time is infinite (it, almost literally, takes forever). Exer-
cise 4(c) explains this. You estimate q(a) by doing many simulations and
making a histogram. Make a figure that plots this histogram for several
values of ∆t and also contains the curve (4). Use enough paths so that the
noise in histograms is hard or impossible to see in the plots. Choose the
histogram bins to that each bin contains an integer number of time steps.
This will constrain the values of ∆t you use. Normalize the histogram so
that it estimates the PDF, as was done in Assignment 1. Choose values of
∆t to show that the histogram for the largest ∆t is clearly visible in the
figure but the convergence as ∆t → 0 also is clear. Hand in one or more
figures (not more than 3), a printout of your code, and some comments
about the results and the running times.

4. This exercise gives some insight into the hitting time PDF (4).

(a) Let Z be a standard normal Z ∼ N (0, 1) and take T = a2

Z2 . Show
that the PDF of T is also given by (4).= Remark. It is easier to
simulate random hitting times using this trick than the method of
Exercise 3, but the trick here does not apply to general diffusion
processes.

(b) Show that τ <∞ with probability 1. An event with probability 1 is
said to happen almost surely. In other words, show that∫ ∞

0

qa(t) dt = 1 .

Hint. Use (a).

(c) Show that E[τ ] =∞. Hint. This can be done directly or using (a).
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