Stochastic Calculus, Courant Institute, Fall 2022 http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2022/index.html

Assignment 3

Correction. Exercise (1b) has been corrected to make p(x,T) a differentiable function of x for all x. In this version, $\partial_x p(\pm \pi, T) = 0$ and p(x,T) is given by a simple formula for all other values of x. The notation of Exercise (1c) has been clarified. Exercise 3 has been clarified to say that you should use parameters and initial conditions that lead to a steady state probability density.

- 1. In each case, explain why there is no PDF $p_0(x)$ so that if X_t is Brownian motion with $X_0 \sim p_0$ then $X_T \sim p(\cdot, T)$. You may use the forward uniqueness theorem that if $p_0(x) \neq q_0(x)$ then $p(\cdot, t) \neq q(\cdot, t)$ for t > 0 (here, q is the solution of the PDE with initial data q_0).
 - (a) T = 2, and $p(x, T) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$. *Hint.* variance.
 - (b) T = .5 and

$$p(x,T) = \frac{1}{2\pi} \begin{cases} 1 + \cos(x) & \text{if } |x| \le \pi \\ 0 & \text{if } |x| > \pi \end{cases}$$

The $\frac{1}{2\pi}$ factor makes $p(\cdot, T)$ a proper PDF. *Hint.* smoothness.

- (c) T = .5 and $p(x,T) = \frac{11}{10}\mathcal{N}(0,100) \frac{1}{10}\mathcal{N}(0,1)$. The notation $\mathcal{N}(\mu,\sigma^2)$ refers to a function of x given by $q(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. This is the Gaussian density with mean μ and variance σ^2 Hint. sign.
- 2. A reflecting boundary is a boundary that does not allow a particle to pass through and does not absorb the particle. The forward equation for a reflecting process is the same as the forward equation with no constraints. The difference is the *boundary condition* that is applied at the reflecting boundary. In one dimension, that boundary condition is that the probability flux is zero at the reflecting boundary.
 - (a) Suppose the process is Brownian motion starting from a point $x_0 > 0$ and the reflecting boundary is at x = 0. Use the method of images to write a formula for p(x,t), the PDF of X_t , with t > 0 and $x \ge 0$. *Hint.* Show that the boundary condition automatically satisfied if pis extended to x < 0 by making it an even function of x: p(-x,t) = p(x,t).
 - (b) Find an approximate formula for $m_t = E[X_t]$ for this reflecting Brownian motion process that is valid for large t. The answer should take the form

 $m_t \approx$ something that goes to ∞ as $t \to \infty$.

This "something" should have a definite power of t and constant. The constant involves $\frac{1}{\sqrt{\pi}}$. It would be best (but not absolutely required) to show that $|m_t -$ "something" | is bounded as $t \to \infty$. *Hint*. The distribution of X_t does not change much if you replace x_0 with 0. Why not (give a mathematical explanation that uses the formula for p(x,t) when t is large.)?

- (c) Consider reflecting Brownian motion with a constant drift rate a < 0. What is the zero probability flux boundary condition? Find a time independent function $p_{\infty}(x)$ that satisfies the forward equation with $\partial_t p_{|infty}(x) = 0$ and the reflecting boundary condition. This is an steady state or equilibrium probability distribution in the sense that if $X_0 \sim p_{\infty}$ then $X_t \sim p_{\infty}$ sloo for t > 0.
- (d) Give an intuitive explanation why you do not expect a steady state probability distribution to exist if a = 0 or a > 0.
- 3. Write a code to simulate reflecting Brownian motion. Enforce the reflecting boundary condition by $X_{t_{n+1}} = |X_n + \sqrt{\Delta t} \cdots|$. Make histograms of $p(\cdot, t)$ for various t values. Choose $x_0 > 0$ and a < 0. Choose the t values to demonstrate the following qualitative features
 - For small t, when X_t does not yet "feel" the boundary, $p(\cdot, t)$ is approximately Gaussian. Plot that Gaussian over the histogram to demonstrate quantitative agreement.
 - For intermediate t, when X_t has encountered the boundary but has not reached equilibrium, p(x,t) is not Gaussian but has not yet achieved the equilibrium distribution.
 - $p(\cdot, t) \to p_{\infty}(\cdot)$ as $t \to \infty$. Plot p_{∞} and the histogram in the same frame to demonstrate quantitative agreement.
- 4. Do a simulation of the reflecting Brownian motion with drift using the same x_0 and a that you used in Exercise 3. For this exercise, use only one simulation but run it for a very long time. Make a histogram of the values of X_{t_n} , for values t_n starting at a time (known from Exercise 3) when the distribution is close to equilibrium. This illustrates a fundamental property of random processes that have steady state distributions: a single path samples the steady state distribution if the path is long enough. This is often called *ergodic* behavior. You will see that it takes a very long path to get a clean histogram because the numbers X_{t_n} are not independent.
- 5. Define f(x,t) to be the value function

$$f(x,t) = \mathbb{E}[V(X_T) \mid X_t = x]$$

In each case, calculate f(x, t) directly using a Gaussian expectation of V with the appropriate Gaussian, then check that the f you get satisfies the backward equation with the final condition f(x, T) = V(x).

- (a) Take X_t to be standard Brownian motion with no drift and $V(x) = x^2$.
- (b) Take X_t to be standard Brownian motion with no drift and $V(x) = x^4$),
- (c) Take X_t to be Brownian motion $dX = adt + \sigma dW_t$ and $V(x) = x^2$.