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Assignment 4

Correction. Exercise 2 of part 2 has been corrected to say q is N (s, 1). Amaz-
ingly, this is a small change from the garble in the original version. Same
exercise, “(in s” corrected to “(in s)”.

Part 1, Maximum likelihood.

This exercise illustrates a use of the fact that AB = BA if the matrices are
compatible for multiplication both ways. This is the calculation showing that
the empirical covariance matrix is the maximum likelihood estimate of the true
covariance matrix. Suppose p(x, θ) is a probability density function as a func-
tion of x with parameters θ (both x and θ may have more than one component).
Suppose Xk for k = 1, · · · , N are independent samples Xk ∼ p(·, θ∗). The max-
imum likelihood estimator is a way to use the samples to estimate the unknown
parameters, which are the components of θ. The method is to find θ̂ that maxi-
mizes the probability in θ to get the samples Xk. Since the Xk are independent,
the joint PDF for the whole dataset is

P (x1, · · · , xN , θ) =

N∏
k=1

p(xk, θ) .

This function is called likelihood when thinking of it as a function of the param-
eters θ. The maximum likelihood estimator is

θ̂ = arg max
θ
P (X1, · · · , XN , θ) .

The “arg max” refers to the value of θ that gives the largest value of P . It can
be helpful to maximize the likelihood by using directional derivatives instead
of gradients. For any function F (θ) this means that you look for θ̂ using the
condition that if θ̇ is any “perturbation direction”, then

d

dε
F (θ̂ + εθ̇)

∣∣∣
ε=0

= 0 .

This condition is the same as ∇θ(F (θ̂) = 0, because of the general directional
derivative relation:

F (θ̂ + εθ̇)
∣∣∣
ε=0

= θ̇T∇θF (θ̂) .

If θ has several “pieces”, you can optimize over all of θ by optimizing over the
pieces separately.

The multivariate normal density in d dimensions with mean µ and covariance
matrix C is

p(x, µ,C) = (2π)
− d

2 det(C)−
1
2 e−

1
2 (x−µ)

TC−1(x−µ) .
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It may be convenient to express this in terms of the precision matrix1 H = C−1.

p(x, µ,H) = (2π)
− d

2 det(H)
1
2 e−

1
2 (x−µ)

TH(x−µ) .

If you maximize over H and take Ĉ = Ĥ−1, you get the same answer when
you maximize over C directly. This exercise is about finding µ̂ and Ĉ from N
samples. In the abstract theory, θ = (µ,C) or, equivalently, θ = (µ,H). It is
necessary that H and C are positive definite.

1. Show that ∇θP (x1, · · · , xN , θ) = 0 is equivalent to

N∑
k=1

∇θ log(p(xk, θ)) .

Hint. ∇(uv) =
(∇u
u + ∇v

v

)
uv (why?).

2. Show that the maximum likelihood estimate of the mean is the empirical
mean of the data:

µ̂ =
1

N

N∑
k=1

Xk .

Explain why we may take µ = µ̂ when maximizing over C or H to find
Ĉ. Hint. To show this minimizes the likelihood, you need to use the fact
that H is positive definite.

3. Show that

det(H + εḢ) = det(H)
(

1 + εTr
(
H−1Ḣ

)
+O(ε2)

)
.

Hint. You can see that det( I + εK) = 1 + εTr(K) + O(ε2) directly from
the definition of the determinant as a sum over permutations of products.
If K is diagonalizable, you can use the formula for determinant in terms
of eigenvalues.

4. The empirical covariance matrix is

Ce =
1

N

N∑
k=1

(Xk − µ̂) (Xk − µ̂)
T
.

Show that
N∑
k=1

(Xk − µ̂)TH(Xk − µ̂) = NTr(HCe) .

5. Show that Ĉ = Ce. It may be helpful to first show Ĥ = C−1e considering
directional derivatives in all possible “directions” Ḣ.

1Precision can be thought of as the inverse of variance in that a random variable has high
precision if it has low variance.
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Part 2, Importance sampling.

Simulation is often used to estimate the expected value of some random quantity.
Suppose X is a random “object” (maybe just a number or maybe a multi-
component path). Suppose V (X) is some function of this random object and
we want

A = E[V (X)] .

The direct simulation estimate of A involves n independent “samples” Xk that
are simulated to be from the distribution of X. The estimate is the sample
mean using the samples generated:

Â =
1

n

n∑
k=1

V (Xk) .

The empirical variance from the samples is

σ̂2
V =

1

n

n∑
k=1

(
V (Xk)− Â

)2
.

This would be the maximum likelihood estimate of var(V (X)) if it were Gaus-

sian, which it is unlikely to be. The variance of Â is

var
(
Â
)

=
1

n
var(V (X)) =

1

n
σ2
V .

The estimate of σ2
V gives an estimate for the standard deviation of the simulation

based estimator, which is

σÂ ≈ σ̂Â =

(
1

n
σ̂2
V

) 1
2

.

The quantity on the left is the one standard deviation error bar2 for the estima-
tor Â. The relative accuracy of an estimate (of anything) is the ratio of the error
in the estimate to the actual value. It is the “percentage” of error. When you
are doing simulation based estimation, you can estimate the relative accuracy
by

rel err size ≈
σ̂Â

Â
. (1)

To be clear, the relative error size (??) is positive while the actual error can be
positive or negative. The actual relative error can be bigger than this, but it is
unlikely to be more than twice as large.

2The term “error bar” comes from the practice of drawing the estimated value Â as a point
in a graph with a bar extending up and down from Â of length σ

Â
to indicate the uncertainty

in the estimate. In general, experimental measurements are often put in graphs with error
bars.
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Importance sampling is a way to estimate A by sampling from a different
probability density and then compensating by putting a likelihood ratio factor.
If X ∼ p(·), then

A =

∫
V (X)p(x) dx .

If q is another PDF, the likelihood ratio is

L(x) =
p(x)

q(x)
.

The importance sampling estimator of A with sampling distribution q is

A = Ep[V (X)] = Eq[V (X)L(X)] . (2)

The notation Ep refers to the expected value when X ∼ p. Importance sam-
pling means using samples Xk ∼ q instead of Xk ∼ p and using the second
part of (??). A well chosen distribution q can reduce the simulation estimate
substantially. For this reason, importance sampling is routine in many or most
serious uses of simulation for estimation.

1. Derive the second equality of (??). It is necessary to assume that L is
never infinite, which means that p(x) = 0 whenever q(x) = 0.

2. Suppose Z ∼ N (0, 1) and we want to estimate A = Pr(Z > s). Let q
be the distribution N (s, 1). Calculate L(z) in this case. Let V (z) be the
indicator function V (z) = 1 if z > s and V (z) = 0 otherwise. Show that
if s is large, then the variance of the q importance sampling estimator of
A is exponentially (in s) more accurate than the direct p estimator. Hint.
What is the variance of each estimator?

3. Suppose X = X[0,T ] is an approximate Brownian motion path starting
from X0 = x0, generated using the Euler Maruyama approximation with
time step ∆t = T/M (taking M steps to go from t = 0 to t = T ). Let
p(x) be the joint PDF of the numbers Xk ≈ Xtk , for k = 1, · · · ,M . Write
a formula for p(x).

4. Now, let X = X[0,T ] satisfy the SDE dX = −rdt+dWt and let q(x) be the
joint density of Xk for the Euler Maruyama approximation of this process
with the same x0 and ∆t. Find a formula for the likelihood ratio L(x).
Note. This exercise is just (complicated) algebra. The result is related
to Girsanov’s formula, but that formula involves the limit ∆t → 0 and
things we haven’t discussed in class yet. If you look up and interpret that
formula (which I do not necessarily recommend), you may recognize that
your answer is consistent with it.

5. Use Euler Maruyama simulation of Brownian motion starting from x0 to
estimate A = Pr[τ ≤ T ] with T = 1. Choose x0 so that the probability is
around a half (between, say, 35% and 70%, and x0 so that the probability
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is much smaller. Most of the code can come from a similar simulation
from an earlier assignment. Implement the formula (??) to estimate the
number of sample paths needed to get the answer to within 5% relative
error. Compare the work needed for this accuracy for likely and unlikely
hitting events.

6. Implement the importance sampling strategy from Exercise 4 to estimate
the same probability using Brownian motion with a constant negative
drift. Experiment to see how much computer time you can save using a
good drift rate. How does this depend on x0 and the probability that
τ < T? You do not need to record precise computer times. The runs
should take long enough that you will experience the time they take.

5


