Stochastic Calculus, Courant Institute, Fall 2022 http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2022/index.html

Assignment 6

- 1. Consider the change of variable $x = \log(s)$.
 - (a) Show that if $X_t = \log(S_t)$, and S_t is a geometric Brownian motion, then X_t is an ordinary Brownian motion with constant drift.
 - (b) Show directly using the partial differential equations that the log change of variable changes the backward equation for geometric Brownian motion into the backward equation for Brownian motion with drift.
- 2. Let S_t be a geometric Brownian motion with zero expected return $dS_t = \sigma S_t dW_t$. Show that S_t is a martingale (clearly) but $S_t \to 0$ as $t \to \infty$. For the second part, show that S_t is expressed as an exponential of a sum of two terms, one of order \sqrt{t} and one of order t.
- 3. Suppose $dS_t = \mu S_t dt + \sigma S_t dW_t$. Suppose t is measured in years and define the *annualized* returns Define discrete times $t_k = k\Delta t$. Suppose t is measured in years. Define the *annualized* period k return as

$$R_k = \frac{S_{t_{k+1}} - S_{t_k}}{\Delta t \, S_{t_k}}$$

.

Use the Euler Maruyama approximate formula for $\Delta S_k = S_{t_{k+1}} - S_{t_k}$ to find the approximate distribution of R_k . The sample average estimator of μ over a period [0, T] is

$$\hat{\mu} = \frac{1}{n} \sum_{t_k < T} R_k , \quad n = \max\{k \mid t_k < T\} .$$

Find the limiting distribution $\hat{\mu}$ in the limit $\Delta t \to 0$. Show that for fixed T, the variance of $\hat{\mu}$ does not go to zero as $\Delta t \to 0$.

4. Suppose $X_{1,t}$ and $X_{2,t}$ are independent Brownian motions, and that

$$R_t = \sqrt{X_{1,t}^2 + X_{2,t}^2} \; .$$

Show that R_t is an Ito process and a Markov process, which means that R_t is a diffusion process. Find the infinitesimal mean and variance

$$a(r) = \frac{1}{\Delta t} \mathbf{E} [R_{\Delta t} - r \mid R_0 = r]$$

$$b^2(r) = \frac{1}{\Delta t} \mathbf{E} \Big[(R_{\Delta t} - r)^2 \mid R_0 = r \Big]$$

Write an SDE that R_t satisfies.

5. Let $S_{1,t}$ and $S_{2,t}$ be distinct but correlated geometric Brownian motion processes. A "weighted portfolio" of these assets is

$$P_t = w_1 S_{1,t} + w_2 S_{2,t} \; .$$

The portfolio weights w_1 and w_2 are fixed. Decide whether P_t is an Ito process, a Markov process and/or a diffusion process. Explain your answer.