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1 Introduction

A differential equation is an equation involving derivatives. A partial differential
equation, or PDE, is an equation involving partial derivatives of a function of
more than one variable. PDEs help us understand diffusion processes because
quantities related to diffusions may satisfy PDEs. For example, suppose X; is
a one component process that satisfies the SDE

For each t, the value X; is a one component random variable that has a prob-
ability density function, or PDF, which we write as p(x,t). This satisfies the
PDE

o = 302 (ba)?p) ~ 0 (alw)p) @)

We use operator notation for partial derivatives. The partial derivatives of

f(z,t) are

0 02 0?
ox ox? Oxot

The operator notation is consistent with thinking of partial derivatives as “op-

erating” on functions. These partial derivative operators have properties such

as

=0,0:f , etc.

0. (0, f) = 0%f , applying an operator 9, twice defines the square, 62

0.0 f = 040, f , derivatives with respect x and ¢ “commute” .

The p equation (2) determines the dynamics of the probability density. You
can think of p(-,t) as the “state” of the “evolving” probability distribution at
time ¢. This “state” is a function of x. We write p(-, t) to emphasize the function,
for fixed ¢, rather than the value at a specific point x. This function changes,
as ¢ increases, in a way that is determined by the PDE (2).

The dynamics alone do not determine p completely. You need more infor-
mation, such as how p started at an initial time. We often take t = 0 to be
the starting time. If you specify the distribution p(-,0), then the PDE (2) acts
as an evolution equation, and determines the distribution p(-,t) for ¢ > 0. The
theory of PDEs of this “type” gives information about what p(-,¢) can “look
like”, depending on p(-,0).



Partial differential equations that describe evolution can resemble ordinary
differential equations, ODFEs, that describe evolution. There is an important
difference, which is the “direction of time”. With an ODE, you can specify the
state at time 0 and determine the state at time ¢, and you can determine the
state at time 0 from the state at time ¢ by “running the ODE backwards. As we
will see, the PDE evolution equation (2) can be run forwards but not backwards.
You can specify almost any probability density p(-,0) and then there is a PDF
p(+,t) defined for any ¢ > 0 so that when you put in the x variable it satisfies the
PDE (2). But you cannot go the other way. You cannot specify an arbitrary
PDF p(:,T) for T > 0 and have have p(-,t) defined for ¢t < T in a way that the
PDE (2) is satisfied.

The PDE (2) is useful in practice partly because there are computational
methods for solving PDEs that can be applied. These lead to fast, accurate
approximations to p(-,t) for ¢ > 0 that do not require simulation, do not have
statistical noise, and do not require large numbers of simulations to create a
histogram (as was done in the first class). This “PDE solver” approach, unfor-
tunately, is limited to diffusions in low dimensions, mainly d = 1,2, 3,4, with
d = 3 being slow and d = 4 borderline infeasible. Simulation applies in any
dimension, but gives noisy and less accurate results.

Value functions are other quantities related to diffusion processes that satisfy
PDEs of evolution type. A walue function is an expectation conditional on
X; = x. There are different kinds of value function, depending on what the
conditional expectation is of. The final time payout is the case of the conditional
expectation of a “payout” at a “final time” T, with the payout depending on
Xr.

fla,t) = B[V (Xr) | X, = 1] . (3)

For example, if you want to know the probability that X > 2, you take V(z) =
0 for z < 2 and V() =1 for > 2. Then f(z,t) is the probability that X > 2
given that X; — z. Value functions defined as (3) satisfy the PDE

D,f = —%b(x)Q O2f — a(z) Oy f . (@)

This is an example of a backward equation. The name comes from the fact
that the evolution goes backward in time. It is “obvious” that f(z,T) = V(z).
The PDE (4) evolves f backwards in time to determine f(-,t) for ¢ < T. Like
the forward equation (2) for p, this evolution equation has a direction of time
constraint. This one goes only backwards while (2) goes only forwards.

One difference between the two PDEs is the sign of the term in involving
02, which is positive for the forward equation (2) and negative for the backward
equation (4). For PDEs like this (technical specifications omitted), the sign
of the 02 term determines the direction of time. Another difference is that the
backward equation has the “coefficients” b?(z) and a(z) “outside” the derivative,
while the coefficients are “inside” for the forward equation. You can guess that
the backward equation has coefficients outside the derivatives by realizing that
the constant function f(x,t) = C should be a solution. If V(z) = C for all



x, then your “payout” is C' no matter what X is. Therefore, any conditional
expectation also should be equal to C, including the one that defines the value
function (3). This should be true regardless of whether b and a are constants.
If b and a are not constant, then f(x,t) = C for all z,t satisfies the backward
equation (4) but only because no derivatives of b or a are involved.

Generator

The similarities and differences between the forward and backward equations
may be explained using the generator of the stochastic process (1). The gen-
erator is an operator that “acts on” functions of x, which may be called test
functions. Suppose g(z) is a smooth function.! We denote the generator by L.
It is defined by how it acts on functions,

Lg=h = h(x)limElg(Xt)_g(m‘Xoxl . (5)
t—0 t

The generator is an operator that “acts on” functions. If g is a function, then

h = Lg is another function. It is like a matrix acting on vectors. The partial

derivatives 0, and 92 are other examples of operators. The generator for the

diffusion process (1) is

1
Lg = 5b(x)* 99 + a() Oug - (6)
Both sides of this formula are functions of x. You can get the value of Lg at =
by putting in 92g(z) and 9,.g(z) on the right side. The value function evolution

equation (4) may be expressed in terms of the generator as
Of+Lf=0. (7)

This supposes f is a function of ¢ and z. The 0; is the simple partial derivative
of f with respect to t. The Lf acts on f only in the x variables, with ¢ treated
as a parameter.

There is a sense of adjoint of an operator, which is denoted by a *. The
adjoint of £ is £*. The adjoint of the generator (6) is

£rg= 502 (¥a) ~ 0. (aq) ®)

For £* it might be more confusing to leave out the x variable. To put it in, here
is the formula for (L*q) evaluated at a specific point x:

(£9) (2) = 332 (b(e)a(x)) — 0 (al)alx))

1 Smooth in this context means having enough derivatives for the calculations involved to
make sense. For diffusions, “smooth” often means “has two continuous derivatives” but it
might mean more. We say a function is “smooth” to avoid getting into a technical side-
conversation about exactly which derivatives need to have what properties.



The forward equation (2) for p may be written as
dp=L"p. (9)

We will use x and y for values X; might have, but you have to keep track of
which value is at time ¢ and which is at time t + s.

Transition density

The forward equation (2) and backward equation (4) have solutions that may be
expressed in terms of transition density for the corresponding stochastic process.
The transition density is G(x,y, s), which describes the evolution of the process
over a positive time increment s. The process is assumed to start at X; = y.
As a function of z, G is the PDF of X;,;.

The transition density determines the backward evolution of the value func-
tion because G is the probability density of X7, conditioned on X7_, =y. We
write the expectation in (3) using the PDF of Xr:

[y, T —s) = /V(x) G(z,y,s)dx .

The forward evolution for the probability density comes from G and prop-
erties of conditional and marginal probability. Informally, if (X,Y) is a pair
of random variables with joint probability distribution? P(x,y), there is Bayes’
rule, which gives P(x,y) = P(x|y)P(y). The joint distribution, P(z,y) is the
product of the conditional P(z|y) and the marginal P(y). The marginal P(x)
is the sum or integral of the joint distribution over y. More formally, and using
the probability densities and notation above,

p(x,t+s) = /G(axy, s)p(y,t) dy . (10)
The density of X is given by the

Markov property

A stochastic process X; is Markov (has the Markov property if the conditional
probability of the future, conditional on the past, is the same as the conditional
probability of the future, conditional on the present. The Markov property is
that the state variable X has enough components so that X; describes the state
of the system being modeled completely, at time ¢. The probability distribution
of X}; 77 depends on X, but otherwise not at all on X; for s <.

Informally, suppose there are times t; < ty < --- < t,,. The states at those
times are Xi,---,X,. The joint distributions are given by Bayes’ rule, as (we

2Many people in applied probability and statistics use P(---) for any probability distri-
bution. Here, for example, P(z) is the marginal distribution of X and P(y) is the marginal
distribution of Y, which are usually different. It seems strange to math people but it’s easy
to get used to.



use P for informal probabilities and p for probability densities associated to
diffusion processes)

P(l’l,xg) = P(wl)P(x2|x1)
P(SChl’Q,Ig) = P(SCl)P(SC2|I1)P(I3|I’2,I1)

P(z1,--+ ,xn) = P(x1)P(x2|x1)P(zs|ze, 21) - - - P(@n|Tpn_1, - ,21) .

Each new conditional probability depends on all the outcomes that have come
before. For example, an expert watching a game of bridge knows that the card
played next is random, but depends on the history of the game up to that point.
Cards that were played early on give clues as to what cards each player still has.

The Markov property simplifies the complex conditional probabilities to
probabilities depending only on the most recent outcome

P(In|$n—17' t 7:171) = P(gjn|1‘n—1) .

A Markov process is one that knows the present but does not remember the
past. If the process is Markov, then

P(.’L‘h.’lﬁg) = P(.Tl)P(.%'2|fL'1)
P(.’El,l'z,l'g) = P(.’El)P(.’E2|(E1)P((E3|1’2)

P(xy,--- ,xy) = P(x1)P(x2|z1)P(as|axs) - - - P(xp|Tn_1) -

The joint probability is still a product, but it is a product of simpler terms.

The SDE model (1) is Markov because the future evolution of X;, which is
given by dX;, depends only on X; through the noise and drift terms on the right,
b(X)t), and a(X;). The Markov property allows detailed probability densities
involving the path X|o 7} to be specified as products of transition probabilities.
As above, we take an increasing sequence of times 0 < ¢; < --- < T and denote
the corresponding states with the abbreviated notation X, = X;, . The joint
probability density for Xi,- -, X, at all these times is

p($1,"' 7l‘n7t1a"' atn) .

Because of the Markov property, this may be expressed in terms of the starting
density p(z1,t1) and the transition densities.

p(xla'” 7xnatla"' 7tn)
= p(Ihtl) G(332a-771at2 - tl) ce G(mnvxn—latn - tn—l) .

For example, the first G' factor on the right is the PDF of X;,, conditioned on
X, — x1. The time difference between ¢; and t9 is s = t9 — ;.



2 Brownian motion, heat equation

Review of Brownian motion: Gaussian increments, etc.

This section uses dimensional Brownian motion to illustrate the ideas and for-
mulas of Section 1. The variable X; represents the total “input” starting at time
0. The input, of innovation between times t and t + s > t is X5 — X;. The
input is “totally random” in that the mean of Xy s — X; is zero. “Totally ran-
dom” also means that innovations for distinct time intervals are independent.
fo<ty <o <t,and Yy = Xy, — Xo, ¥, = Xy, — Xi,_,, then the random
innovations Y} are a totally independent set.

Brownian motion is homogeneous in time, which means that the distribution
of the innovation Yy = X4 — X; depends only on s and not on ¢ (or on anything
that happens outside the interval [t,t+s]). Many properties of Brownian motion
rely on the fact that the innovation Ys; may be thought of as the sum of two
independent innovations (~ means that the random variables have the same
distribution)

y. ~ v + y®@
s 5 3
This is because
Yo = Xips — X
= (Xeyg = Xo) + (X — Xigg)
=vV4vy®.
2 2

The last line has innovations Yi(l) = Xiys — Xt and Yﬁ(z) = Xiys — Xits. The
innovations have the same distzribution because the dfstribution depends only
on the time increment 5. They are independent because the time intervals are
disjoint.

We can divide the interval into n pieces instead of two, which gives

Yo DY (11)
k=1

The central limit theorem suggests that Y is approximately normal. The normal
approximation gets better as n — oo. But the distribution of Y, does not depend
on n, which suggests that The distribution of Y is exactly normal. This is a
theorem of probability. A random variable that can be represented as a sum of
n ii.d. (independent and identically distributed) pieces, for any integer n > 0 is
called infinitely divisible. An infinitely divisible random variable that has finite
variance® is Gaussian. The variance of a sum of independent random variables
is the sum of the variances. This implies that

var(Ys) = nvar(Yi(»l)> .

n

3There are infinitely divisible distributions that have infinite variance and are not Gaussian.

One example is the Cauchy distribution, with PDF p(y) = Cﬁ.



If n is even, you can take half the terms on the right of (11) to get a represen-
tation of Ys. Therefore

n n

var(Yy) = Evar(Yél)) + §var(YS)) = 2var(Y%) .
If you think about this more, you will see that the variance of Y; must be
proportional to s. The standard Brownian motion has the variance equal to s.
To summarize, for standard Brownian motion

e Innovations for disjoint time intervals are independent, and have finite
variance

e The distribution of an innovation depends only on the length of the time
interval

e The distribution, therefore, is Gaussian

e The innovation for an interval of length s is Gaussian with mean zero and
variance s.

The generator

There are many ways to find the forward and backward equations related to
Brownian motion. Some are based on direct physical reasoning. The using
the generator is simple mathematically but doesn’t inspire as much physical
intuition.

The generator of the standard Brownian motion process is identified from
the generator definition (5) and Taylor series. This derivation also applies to
diffusion processes that satisfy stochastic differential equations. For small ¢,
which is the limit in (5), X% is likely to be close to . The value X; may be
written as X; = x + Y;, where Y; is the innovation. The innovation is Gaussian
with mean zero and variance t, which is small. A helpful mathematical trick is
to write

Y, =VtZ, Z~N(0,1).

A Gaussian with variance ¢ is a “standard” normal (mean zero, variance 1) scaled
by v/t. Therefore g(X;) may be replaced by g(x ++/t Z) in the expectation (5).
We want to divide by ¢ and take the limit ¢ — 0. For that reason, we expand
g(z + v/t Z) in Taylor series, keeping only terms that do not go to zero when
divided by t:

gz +Vt2Z) = g(x) + [0.9(x) |Vt Z Z + % [Q%g(x)} tZ% + % [~~-]t%Z3—|--~~

The last term on the right, when divided by ¢, still has t%, which goes to zero
in the limit ¢ — 0. Therefore we neglect it and all terms after it.



In the expectation of (5),  and ¢t are not random and therefore may be
taken outside the expectation. We use the Taylor expansion, dropping terms
beyond tZ2, to put the ratio of (5) into the form

9(Xt) — g(z)

—IO) i ug@)] 2+ 5 [020(0)] 22+ olt)

The “little oh” notation o(t) is a way of denoting any quantity that goes to zero
as t goes to zero. With expectations, we get

g(X:) —g(x 1 1
El:(t)t():| =t"2 [O9(x) B[ Z] + 5[é)ﬁg(:c)] E[Z%] +o(t) .
In this expression, E[ Z] = 0 (i.e., Z has mean zero) and E[ZQ] =1 (i.e., Z has
variance 1). The o(t) goes to zero in the ¢ — 0 limit. This leaves

1
Lg(z) = 507 9(x) (12)
This shows that, as an operator,
Lo
L= 581, . (13)

The generator for Brownian motion is simple.
The backward equation (7) for the final time payout value function (3), for
Brownian motion, is

6tf+%8§f:0. (14)

The adjoint of the generator, in this case with b =1, is
1
L= -0%.
2 x

In this case, £ is the same as £*. Operators with this property are called self
adjoint. Self adjoint operators are common in mathematics, but not common
as generators of diffusion processes. The forward equation (9) for Brownian
motion is

1

Op = 50 - (15)

This equation is sometimes called “the” diffusion equation or (often without the
%) the heat equation. The forward and backward equations involve 92, but with
opposite sign. It is traditional to write the backward equation in the form (14)
to avoid the minus sign you would get by putting it on the other side of the
equation.

Probability flux, probability current

There are ways to derive the forward equation (15) that make the equation itself
seem more natural and explain its structure. One approach involves probability



fluz, also called probability current. You think of probability as a substance
that moves around. If X, is likely to be close to zero, then the probability
for X, is concentrated near zero. If X, is likely to be further from zero, then
the probability for X, is less concentrated around zero. Between times ¢; and
to, some of the probability moved away from zero. The forward equation (15)
describes this movement of probability.

You can visualize probability by thinking of many independent Brownian
motion paths. We use notation in which there are n paths in all, written Xt(k)
for k =1,--- ,n. The number of paths in an interval [a,,b] at time ¢ is

Niay(t) = #{k’ |a < Xt(k) < b} _

It is written with a capitol letter IV instead of n because N is random. If Ax is
small, then its probability density p(z,t) does not change much in the interval,

SO
rz+Ax

Priz < X; <z + Az) = / p(a' t)dx’ ~ Axp(z,t) . (16)

Even if Az is small, we may take n so large that
N[Jc,x—i—Am] ~ nAxp(mv t) : (17)

This is the number of particles (paths) multiplied by the probability that any
given path is in [x,z + Az]. The point is that you can observe the flow of
probability by observing the flow of particles, if there are enough particles.

Brownian motion is a stochastic process that has no jumps. A Brownian
motion particle cannot go from z¢, < a to Xy, > 0 without crossing a at some
intermediate time t. That is, there is at least one t3 with ¢; < t3 < t5 so that
X:, = a. This motivates that probability moves from one place to another by
flowing but not by jumping. At any point a at any time ¢ there is a probability
flux or probability current F(a,t) that tells you how much probability flows from
z < a to x > a per unit time. This means, for example, that

a
g/ p(z,t)de = —F(a,t) . (18)
dt J_
In terms of particles, F' determines the net rate of particles “flowing” across
the point a at time ¢. The particle motions themselves are random. If there
are many particles near a, then many cross from x < a to z > a and many
others cross the other way. The flux is determined by the difference between
these numbers. If F(a,t) > 0, this means that more particles go from = < a
to £ > @ in a small time interval [¢,¢ + At]. That explains the minus sign in
the flux formula (18). If F(a,t) < 0, then the derivative on the left of (18) is
positive as the number of particles (or the probability) in < a is increasing.
The quantity F' is called current if you think of probability as something flowing,
like electrical current.

Brownian motion, and all other diffusion processes governed by SDEs, have
probability fluxes F(a,t) that are determined by the particle distribution near



a at time ¢t. Only particles near a at time ¢ have a significant probability of
crossing a in the time interval [t,t + At]. You might start by guessing that
F(a,t) is determined by p(a,t). This guess is wrong for Brownian motion (but
partly right for other diffusion processes), as you can see by asking what the flux
would be if p(z,t) were constant for x near our control point, a. If the particle
distribution is the same on both sides of a, no matter what that density is, then
the net flux should be zero. Brownian motion is symmetric. The probability of
a particle at a + Az at time ¢ having X1 a¢ < a is the same as the probability
of a particle X; = a — Az moving to X¢yar > a.

It seems natural to guess that the particle flux is proportional to the gradient
of the particle density at a. If d,p(a,t) > 0, then the particle density is higher
for x > a than for x < a. That suggests that more particles go from = > a
to x < a than cross the other way. This hypothesis is called Fick’s law or the
Fourier law. It says that there is a diffusion coefficient, called D, so that

F(a,t) = —D d;p(a,t) . (19)

The probability evolution equation (15) follows from the Fick’s law flux model
(19) combined with the local conservation of probability formula (18). If you
put the t derivative inside the integral in (18), you get

/ Op(x,t)de = —F(a,t) .
Next, differentiate both sides with respect to a to find*
Op(a,t) = —iF(a t)
tp\a, - d(l ) .

The derivative with respect to a on the right is the partial derivative of F with
respect to its first argument, so it can be written as the derivative of F' evaluated
at r = a:

op(a,t) = =0, F(a,t) .

The final step, and the step that uses “physics” (properties of the Brownian
motion diffusion process) is to differentiate Fick’s law with respect to x, which
leaves

0. F(a,t) = —D 0?p(a,t) .

The minus signs cancel when you put these together. The result is
6tp(a7t) = Dagp(avt) .

This is the forward equation (18), if the diffusion coefficient has the value D = 1.

4The fundamental theorem of calculus says that if w(x) is “any” integrand, then
%ffm u(z) dz = u(a).

10



Transition density, fundamental solution

Neither derivation of the forward equation (15) is completely convincing. The
first relied on unjustified assertions relating to the generator and is adjoint. The
second relied on “intuition” involving diffusion of Brownian motion particles
and probability. Here is a derivation that is based on basic principles and
calculations. It has the benefit of being clearly correct. The earlier incomplete
derivations/justifications fill in intuition.

The transition density for any process represents the probability to go from
y to x in time s. We write G(x,y, s) for the probability density of X;;s, at a
point z, conditional on X; = y. The integral formula (10) uses this definition
and what is often called the “law of total probability”. The probability density
to be at x at time t 4 s is the “sum” (the integral) of all the ways X; 4 could
get there, which is all the possible values X; could have.

We now put this into a form where we can differentiate with respect to ¢
and x and check directly that (15) is satisfied. Instead of starting with X =y
at time ¢ and moving forward to time ¢ + s, we start with X = y at time 0 and
move forward by a time ¢. The formula (10) becomes

p(z,t) = /jo G(z,y,t)p(y,0) dy . (20)

It is clear in this form that differentiating p(x,t) with respect to t of x results
in differentiating G(x,y,t) with respect to the same ¢t or . For this, we need a
concrete formula for G. Brownian motion increments are mean zero Gaussians.
Therefore, conditional on Xy = y. we know X; is Gaussian with mean y. The
variance of the increment is equal to the time interval, which is ¢ in this case.
Therefore X; is Gaussian with mean y and variance t. The density formula for
this is 1 2
z—y
2t
\/ﬁe . (21)
We turn the idea (10) into an integral formula for p(z,t).
The final check is “just” calculus. You have to be careful with signs to the
the t derivative right:

Q

(x,y,t) =

Oy |:1té€(z2ty)2 ] - L |:(6tt§ ) e*% +t*%e*(m;ty)2 (at _ M
V2T 27 2t
1 1, s @w 1 _ew? (z—y)?
= —— | —=t" 2 2t t 2 t
27 |: 2 © + ¢ 2t2
— 2 T—y
_ 1 lt’% (z —y) ]t )2
2 2 t
1 1 _@-w? 1 [ (z—y)?
O | —t" 2 2t =—|——-1|G t) . 22
|ttt = 5 | (@,9,1) (22)

11



For the x derivatives,

1 _e-w? 3, r—y 1 _@-w?
e 5 —

V2t t \2rt

e 2t — e 2t
2 \/2rt 2mt
1 w2 1] (z—y)? }
52 —em 2t = | — — 1| G(x,y,t 23
2 b= (2:3:1) (29

When you compare (22) to (23), you see that
1
WG (z,y,t) = iaiG(x,y,t) . (24)

As explained, this shows that p in the integral representation (20) satisfies the
forward equation (15).

People who solve PDEs call a function like G a Green’s function, or the
fundamental solution. The solution G is “fundamental” in that any other solu-
tion can be represented as an integral involving G. In probability, the Green’s
function has the interpretation as the transition density.

You can think of the integral (20) as an integral “operator” in that it “op-
erates” on the function p(-,0) and produces a new function p(-,t). The G in
the integral is the integral kernel. We have also seen differential operators, such
as 0, and the generator G. For Brownian motion, the kernel is the Gaussian
transition density.

Smoothing, loss of information

The integral representation of p(z, t) using the kernel (21) gives some information
about how p “evolves” over time. The integral representation (20) represents
p(-,t) as s sum (or superposition) of functions G(z,y,t) for various values of y
and “weights” p(y,0). The kernel (21) is a smooth function of z, for any y.
Therefore a weighted sum or integral of such functions also is a smooth function
of z. This is true even if the starting distribution p(y, 0) is not a smooth function
of y. Any non-smoothness (discontinuities, etc.) of the starting probability
distribution p(y,0) is lost at time ¢ > 0. In this sense, the forward equation
evolution loses information. It also suggests that p(z,t) is a relatively simple
function of = even if p(y,0) is a complicated function of y.

The direction of time

Smoothing, or loss of information, is an inevitable consequence of “running” the
forward equation forwards in time. Loss of information is the reason the forward
equation cannot be run backwards in time. If you specify the function p(y,0)
and ask what is p(x,t), you can find out using the forward equation dynamics —
running it forwards in time. But if you specify p(z,t), it is generally impossible
to “run the forwards equation backwards” to find a corresponding function

12



p(y,0). One way to see this is to specify that p(z,t) is discontinuous. We
know there is no corresponding starting probability p(y,0) because the solution
formula (20) gives a p(x,t) that is not discontinuous.

But suppose there was a p(y,0) which gave p(z,t) via evolution operator
(20). Even then it is generally impossible to reconstruct the starting distribution
from the distribution at time ¢. This is because the backward evolution problem
is ill posed® Arbitrarily small differences in the density p(x,t) can correspond
to arbitrarily large differences in the initial density p(y,0). You can have two
densities py(z,t) and po(x,t) that are within computer roundoff of each other
but that correspond to very different initial densities p;(y,0) and p2(y,0) You
know this because there are very different starting densities that give almost
the same density at time t. That’s the “loss of information”. If you try to go
backwards with the forward equation in the computer, things will go wrong for
you. An example of this is coming with the backward equation.

An ODE (or a system of ODESs) can represent the dynamical evolution of a
collection of n parameters. A PDE can represent the dynamical evolution of a
function such as a probability density. A fundamental difference between ODE
and PDE models is this — that a PDE model can have a distinguished direction
of time. An ODE model, if it can be run forward, can be run backward.

The initial value problem

An initial value problem, when discussing quantities like probability distribu-
tions that change with time, means giving the quantity at some time and using
the model to determine the quantity at later times. We are talking about the
changing probability density p(-,¢). The initial value problem is to compute
p(-,t + s) from p(-,t) when s > 0. This is to be done using the forward equa-
tion (9). The function p(z,t), as a function of x, is the initial condition or
initial value. The values of p(z,t) are the initial data, or initial values or initial
conditions for the initial value problem.

The integral representation (10) is one way to express the solution to the
initial value problem. It is convenient to think of the initial time ¢ as being
t = 0. That allows us to use t for the time variable in the forward equation.
In practice it is not common that the Green’s function (transition density) is
known but the solution to the initial value problem is unknown. Computer
methods such as finite difference methods are used to solve (approximately) the
forward equation, once the initial conditions are given.

From the PDE point of view, the data initial value problem consists of a
PDE such as the forward equation together with initial data and a starting
time. The problem of the initial value problem (“task” would be a better term)
is to find the solution for times.

5Here, “ill” means “bad” or “badly”. “Posed” means “presented” you might “pose” a
question or a problem to be solved. “Ill posed” means “badly presented”.
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The delta function, 6(z)

The delta function is an “improper function” that is used to denote the PDF of
a “random variable” that is not random. Specifically, if X is a one component
random variable whose value is X = 0, then the PDF of X is written d(x). The
probability for X # 0 is zero, so §(x) = 0 when = # 0. On the other hand ()

represents probability, so
o]
/ O(x)dx=1.
— 00

The range of integration can be limited to any interval [a, b] as long asa < 0 < b,
because §(z) = 0 except when z =0

b
/6(m)dx:11f a<0<b.

From a mathematical point of view, if d= were an actual function with 6(z) =
0 for z # 0, then, no matter what value §(0) has, the integral would be zero, not
one. The delta function is an “improper” or “idealized” function rather than a
function in the strict sense. There is a mathematical theory of distributions, not
to be confused with probability distributions, where the delta function finds a
mathematical definition. However, the theory of distributions is very technical.

Measure theory is a simpler setting for a mathematical definition of the delta
function. A measure is a way to assign numbers to sets of numbers. Specifically,
there are probability measures corresponding to random variables. If A is a set
of numbers, then the corresponding probability measure P is

P(A) = Pr(X € A) .

A measure is a function, like P(A), whose argument is a set, like A. The measure
corresponding to the delta function is called the point mass or the delta measure.
I will call it Py here, though it is written in many other ways. As a function,
the definition of the “point mass at zero” measure is

1 ifoeA,
PO(X)_{ 0 if0gA.

If we know that X = 0, then the probability of X € A is equal to zero if 0 ¢ A
and one if 0 € A.

The delta function is a convenient way to describe the point mass in integrals
without invoking measure theory. If f(x) is any function that is continuous at
x = 0, then

b
L/f@ﬁ@ﬂx:ﬂm,ﬁa<0<b

If the value of X is known to be some other value, such as X = a, then the PDF
of X is 6(x — a), which you might see written as d,(x). If f(x) is continuous at
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x = a, then the function f(x — a) is continuous at x = 0. Therefore, using a
change of variables in the integral,

/f(x)é(x—a)dx:/f(x—a)é(x—a)dx:f(a).

This corresponds to P,, which is the point mass probability measure with “mass
17 at x = a.

The delta function is convenient for expressions involving diffusions with a
known starting point, and for interpreting integral expressions such as the tran-
sition density representation integral (20). Suppose X; is a Brownian motion
starting from Xy = 0. We saw that the probability density for X, is

m‘a
b

1 a2
plx,t) = \/ﬁe .

When ¢ is small (but positive), this probability density its mass closely concen-
trated around x = 0. In the ¢ | 0 limit, this distribution converges to the delta
function, at least in the sense of integrals

£10

lim /jo f(@)p(x,t)de = f(0) = /:X’ f(z)o(z)dx . (25)

In this sense
1 2

e
V2rt

This convergence is not convergence of the values p(x,t) to é(x) as t — 0. The

number p(0,t) = \/%m do not converge to 6(z) as ¢ — 0. The numbers p(0, t)

N‘N
S

— o(z), ast—0.

do not converge at all and §(0) is not really defined. Nevertheless there is con-
vergence “in the sense of distributions” or in the sense of “weak convergence” of
probability measures. This means that the limit formula (25) is true whenever
f is a suitable “test function”. In probability, “suitable” often means “contin-
uous and bounded”. For convergence in distributions (the technical theory of
distributions), “suitable” is more technical. The delta function is often drawn
as a tall and narrow Gaussian.

The delta function is convenient for expressing initial conditions for the
initial value problem for p(z,t) if X¢ = a is known. We write p(z,0) = §(z —a).
What a mathematician means by this is (25). The transition density is a solution
to the initial value problem with delta function initial data.

3 Boundary conditions, hitting times

There are things about a diffusion process that you can want to know besides the
evolution of probability densities and value functions. A hitting time is the first
time X; touches some set. By convention, we say that hitting time is infinite if
the hitting event never happens. Hitting times are examples of path dependent
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functions of a process, which means functions of the process that depend on the
who path rather than the value at some specific time.

We will study the specific hitting time for Brownian motion. It is traditional
to use 7 for a hitting time, with a subscript to indicate the specifics. Suppose
Xo = a > 0. The first hitting time at zero is

T=min{t| X, =0} .

It is random. We will see that this specific hitting time has that 7 < oo almost
surely, and yet E[r] = co. The stopping time also defines the stopped process,

which is
v Xt lftST
Xt_{XT ift>r

The stopped process is the original process until the stopping time 7, after which
it doesn’t move. This may be written with “wedge” notation in which the wedge
of two times is the smaller one

s At =min(s,t) .

The stopped process is B
Xi = Xonr - (26)

The stopped process is natural, for example, if you're modeling the diffusion of
something that sticks when it touches a boundary.

Brownian motion has the property of being a martingale. This means that
if s < t, then the expected value at time ¢ is the known value at time s

E[X;| Xs=2]==.

This is another way to say that the increment of Brownian motion is independent
of the past and has mean zero. The stopped process (26) is also a martingale.
This is an example of the important fact called Doob’s theorem, which says that
any stopped martingale is a martingale.

We want to calculate the PDF of the Brownian motion stopped at = = 0.
This PDF has a concentration at £ = 0 that represents the probability that
7 < t. It also has a regular density p(z,t) defined for > 0 that describes
Brownian motion particles that have 7 > ¢. There are explicit formulas for all
these quantities, which we find using the diffusion equation (15) together with
a boundary condition for p that applies at the hitting boundary x = 0. The
PDE plus boundary condition problem can be solved using a special trick called
the method of images. The formulas confirm the probability flux picture. The
survival probability os

Pr(r >t) = /Ooop(x,t) dx .

We will see explicitly that the time derivative of the survival probability is given
by the probability flux at the boundary = = 0.
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You can argue that p(z,t), which is the PDF or stopped Brownian motion
with z > 0, satisfies the diffusion equation (15) by arguing that the representa-
tion formula (20) is approximately true if > 0 and ¢ is small enough. For any
fixed x, if ¢ is small enough there is very little chance to hit the x = 0 before
time ¢. The formula (20) should apply to Brownian motion paths that do not
hit the boundary before time ¢. It is possible to work this idea out in technical
detail, but that would not be in the spirit of this class.

More subtle is the boundary condition

p(z,t) >0, asx —0.

This is often written informally as a boundary condition that applies at the
x = 0 boundary.
p(0,t) =0. (27)

The boundary condition says that the probability density at x is small for =
close to the boundary. This is because of the wildness of Brownian motion
paths. If X; = x, then it is likely that there is s < ¢ with X, < ¢. Brownian
motion paths go back and forth, so the particles near the boundary, most of
them anyway, have touched the boundary at some earlier time. This argument
can be justified, but at the cost of time this course does not have. People often
give the argument that p(0,¢) is about survival probability at © = 0 at time ¢,
which is zero because you're talking about X; = 0. This argument sounds good,
but we will see that it’s wrong.

The method of images, reflection principle

The method of images is a clever way to find a formula for the density of surviving
Brownian motion particles just described. Suppose X; is a Brownian motion
starting at Xo = a with a > 0, that is “absorbed” the first time it touches
the boundary = = 0. This satisfies the following initial boundary value problem
involving a PDE, initial conditions, and boundary conditions. The PDE is the
forward equation for Brownian motion (15). The initial condition is p(z,0) =
0(x — a). The boundary condition is the absorbing boundary condition (27).
The PDF p(x,t) is defined for ¢ > 0 and > 0. The “interior” of the domain
where p is defined is z > 0 and ¢ > 0, and p is supposed to satisfy the PDE at
every interior (z,t).

The method of images is a trick for finding functions that satisfy the ab-
sorbing boundary condition “by symmetry”. The trick (the “method”) is to
“extend” the definition of p to points x < 0 “by symmetry” so that p becomes
odd (or skew symmetric or anti-symmetric) in the sense that

p(_xat) = —p(x,t) . (28)
This is done by extending the initial values p(z,t) to z < 0 by skew symmetry

p(z,0) =d(z —a) —d(r+a). (29)
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The first term on the right is the original initial condition, which is a point
mass at £ = a. The second term term on the right is a negative point mass at

x = —a. If you think of §(z — a) as a narrow gaussian with unit area centered
at © = a, then —d(x + a) is the negative of a unit area Gaussian centered at
x = —a. The negative mass at —a is the image mass, after the reflection.

We now define p(x,t) for all x and all t > 0 to be the solution of the pure
initial value problem for the forward equation (15) and initial condition (28).
The solution, like any other pure initial value solution, is given by the Green’s
function integral (20) with Gaussian Green’s function (21). The solution is

1 (z=a)? (z+a)?
pla,t) = ——|e 2 —e 2 30
(z,t) Jont (30)
The positive term in brackets [- - -] is from the original delta mass corresponding
to Xo = a. The negative term is from the negative “image” at x = —a.

You can check that the method of images solution formula (30) satisfies
all the requirements of the original initial boundary value problem, which are
supposed to be satisfied for x > 0 and ¢ > 0 only. It satisfies the initial condition
p(x,0) = 6(x — a) for x > 0 because the image §(x + a) is equal to zero when
x > 0. The image —a is outside the z domain = > 0. It satisfies the PDE (15)
for all « as long as ¢t > 0. It satisfies the absorbing boundary condition (27)
by symmetry. If p(—z,t) = —p(x, t), then p(—0,t) = —p(0,t), and a continuous
function can only do that if p(0,¢t) = 0. If you don’t believe that, you can put
x = 0 into the right side of (30) and see that you get zero.

In PDE, this trick is sometimes called the refiection principle. You take as
initial conditions the original conditions, minus the reflected conditions. Then
the solution will be odd, by reflection symmetry, and therefore satisfy the ab-
sorbing boundary conditions. In probability, the term reflection principle is
often used for a related fact .. ..

In probability, the reflection principle (or Kolmogorov reflection principle) is
the fact that

Pr(Xs <0 for some s <t)=2Pr(X; <0) . (31)

This has a natural interpretation related to the symmetry of the random Brow-
nian motion. If X, “touches” the absorbing boundary at some time s < ¢, then
7 < t, where 7 is the first hitting time described above. But Brownian motion is
a Markov process, so the probability distribution of X; with ¢t > 7 is symmetric
about x = 0. This means that half of the Brownian motion particles that touch
x = 0 before time ¢ have X; > 0 and the other half have X; < 0. In case this
seems too vague or unconvincing, you can check the reflection principle formula
(31) directly by integration. The probability on the left is

Pr(th)zl—/Ooop(x,t)dm.

On the other hand, we know that

o0 1 z—a)?
/ 76_(%) dr=1.
—oo V27t
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Therefore,

> 1 (z—a)? 0 1 (z—a)?
1—/ e_de:/ e 2z dx
o V2mt oo V21t

This is Pr(X; < 0. Tt is also equal to the contribution from the reflection part
of (30), which is

/ 1l ete? d
e v dx
0o V2ut
These identical integrals give the “2” on the right side of the reflection principle
formula (31).
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