
Stochastic Calculus, Courant Institute, Fall 2022

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2022/index.html

Stochastic Calculus

Backward Equation, duality
Jonathan Goodman, Fall, 2022

1 Introduction

2 Backward equation and generator

Suppose Xt is a diffusion process described by the SDE

dXt = a(Xt) dt+ b(Xt) dWt . (1)

Consider this to be a multi-component process with d components. This means
that the SDE may be written in component form as

dXj,t = aj(Xt) dt+

m∑
k=1

bjk(Xt) dWk,t , for j = 1, · · · , d . (2)

The Wk,t are independent standard Brownian motions. The coefficient bjk is
the influence of Brownian motion Wk on component Xj of the process. These
form the entries of the noise matrix b in the vector form (1). The number m is
the number of sources of noise. We have seen that a non-diagonal b can be used
to model correlations in the components dXj,t. In fact, a model might start
with an idea of single component infinitesimal variance and cross-component
correlation:

σ2
j,t dt = var(dXj,t) , ρjk,t = corr(dXj,t, dXk,t) .

The noise coefficient matrix b then is constructed to match these modeling
specifications.

A modeling example with correlations

It often happens that m = d, so b is a square matrix. If b is non-singular, we say
the diffusion is non-degenerate. Degenerate diffusion models with m < d also
are common. For example, suppose rt is the “short rate”, which is the interest
rate paid for loans that are repaid very soon (the next day, often) and have no
risk of not being repaid. A simple model of the fluctuations in the short rate
might be

drt = −γ(r − rt) dt+ σdWt . (3)
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This is an equilibrium model (because there is a steady state probability distri-
bution) built on the idea that there is a natural short rate r that the fluctuating
rate returns to with rate γ, while being taken away from r by a constant in-
finitesimal variance term σdWt. People used to criticize this model because it
is possible to have rt < 0. In the mean time, several European countries have
at some time experienced periods of a negative short rate. A money market
account is an amount of money whose value changes only because of interest at
the short rate. This is modeled by

dMt = rtMt dt . (4)

Together, the components rt and Mt form a two component degenerate diffusion
process that may be written in matrix/vector form as

d

(
rt
Mt

)
=

(
−γ(r − rt)

rt

)
dt+

(
σ
0

)
dWt .

The matrix b is 2× 1, with a single source of noise for a two component model.
This model could be enriched by adding a risky asset St that satisfies

dSt = µSt dt+ σSt dWt . (5)

Of course, the σ in the rt equation (short rate volatility) is different from the
σ in the risky asset equation (stock volatility). Moreover, we need to model
correlations between interest rate and stock price changes. A natural to do
this adapting the “one factor” market model that Markowitz used to model
prices of different stocks. In that model, there is a market factor, which will
be called dZ0,t, and there are idiosyncratic factors for each stochastic process,
which will be called dZr,t and dZS,t. These three factors are taken to be inde-
pendent. Correlations between market dS and dr are created by “weighting”
factors differently.

A “market factor” is a source of noise that effects all the financial instru-
ments in a market in some way. Here, there is just one market factor (a “one
factor” model), dZ0,t. The individual instrument prices have weightings β “to
the market”, so that the σdWt in the r equation has a contribution βrdZ0,t.
The σdW in the S equation has a contribution βSdZ0,t. The β factors are
different but the noise dZ0,t is the same. This term is responsible for correla-
tions between dr and dS. The instruments also have independent idiosyncratic
factors, σr and σS . These are sources of uncertainty that affect one instrument
and not the other. Idiosyncratic factors are responsible for the less than 100%
correlation between the noisy instrument values.

The SDEs that incorporate these modeling ideas are

drt = −γ(r − rt) dt+ βr dZ0,t + σr dZr,t , (6)

and
dSt = µSt dt+ St (βS dZ0,t + σS dZS,t) . (7)
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Using the independence of the three noise terms dZ0.t, dZr,t, and dZS,t, we find

var(drt) =
(
β2
r + σ2

r

)
dt (8)

var(dSt) = S2
t

(
β2
S + σ2

S

)
dt (9)

corr(drt, dSt) =
βrβS√

β2
r + σ2

r

√
β2
S + σ2

S

(10)

d

 rt
Mt

St

 =

−γ(r − rt)
rt
µSt

 dt+

 βr σr 0
0 0 0

StβS 0 StσS

dZ0,t

dZr,t

dZS,t

 . (11)

The first row of this matrix equation is equivalent to the r equation (6). The
second row is the noise-free M equation (4). The third row is the risky asset
equation (7). This is in the form of the general SDE (1) with the identifications

Xt =

 rt
Mt

St


a(Xt) = a(rt,Mt, St) =

−γ(r − rt)
rt
µSt


dWt =

dZ0,t

dZr,t

dZS,t


b(rt,Mt, St) =

 βr σr 0
0 0 0

StβS 0 StσS

 . (12)

The d = 3 component diffusion process (11) seems to have m = 3 sources
of noise, Z0, Zr, and ZS . But this is misleading, because the noise matrix (12)
does not have full rank. The process is a degenerate diffusion. In fact, the same
model can be re-written using just two independent noise sources.

Infinitesimal generator

The stochastic process Xt has the infinitesimal generator (usually just genera-
tor)

Lg(x) =
1

2

d∑
j=1

d∑
k=1

µjk(x) ∂xj
∂xk

g +

d∑
j=1

aj(x) ∂xj
g . (13)

Let f(x, t) be a value function of the form

f(x, t) = E[V (XT ) | Xt = x] .

Then f satisfies a backward equation

∂tf + Lf = 0 . (14)
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This has been stated before, but here is a derivation.
Before the derivation, some explanation of the notation (13) used to define

the generator. The numbers µjk form a d×d matrix µ(x). This is related to the
noise matrix b by

µ(x) = b(x) bT(x) . (15)

If you want to work in component form, the entries of µ are given by

µjk =

m∑
l=1

bjl bkl . (16)

The formulas (15) or (16) are just covariance formulas.
The double sum in the generator formula (13) may be written in matrix form

in several ways. These use notations for the matrix of second partial derivatives
of g. This is the hessian matrix of g, which may be denoted H, with entries

Hjk = ∂xj∂xk
.

The hessian matrix is also written as H = D2g. The double sum in (13) is the
trace of the matrix product µ and D2g

d∑
j=1

d∑
k=1

µjk(x) ∂xj
∂xk

g = Tr(µD2g) . (17)

If A is a square matrix, then the trace is the sum of the diagonal entries

Tr(A) =
∑

Ajj .

It may seem surprising that this seemingly arbitrary sum is so useful. One
explanation is the fact that the trace “commutes” even if the matrices do not.
If A is d×n and B is n×d, then AB is d×d and BA is n×n. If n 6= d, then
AB 6= BA, just because they are different size. Even in that case, the trace of
the n×n matrix is equal to the trace of the d×d matrix

Tr(AB) = Tr(BA) .

In particular, if A is diagonalizable with RAR−1 = Λ (here, Λ is the diagonal
matrix with eigenvalues on the diagonal), then

Tr(Λ) = Tr(RAR−1)

= Tr
[
R
(
AR−1

) ]
= Tr

[ (
AR−1

)
R
]

= Tr
[
A
(
R−1R

) ]
Tr(Λ) = Tr(A) .
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This shows that the trace of A is the trace of Λ, which is the sum of the
eigenvalues of A. If A and B are compatible for multiplication, then

(AB)jl =
∑
l

AjkBkl .

Thus,

Tr(AB) =
∑
j

(∑
k

AjkBkj

)
.

If B is symmetric, we can replace Bkj with Bjk. This justifies the trace formula
(17).

Another notation for the double sum in (17) is µ::D2g. You get the inner
product of two vectors by multiplying corresponding components and adding
the results. You can think of doing the same thing with two matrices. This is
written

A::B =
∑
jk

AjkBjk .

These are related by
A::B = Tr(ABT ) .

This is the same as AB if B is symmetric. Thus, the generator may be written
in matrix/vector form as

Lg(x) =
1

2
µ(x)::D2g + a(x) · ∇g(x) .

Here is a derivation of the generator formula (13) from the general definition
of generator

Lg(x) = lim
∆t↓0

E[ g(X∆t) | X0 = x ]− g(x)

∆t
.

For this, we use the Euler approximation

Xj,∆t = xj + aj(x) ∆t+
√

∆t
m∑

k=1

bjk(x) ξk , [ ξk ∼ N (0, 1) , i.i.d. ] .

For the upcoming calculations, we write this in the form

Xj,∆t = xj + ∆Xj , ∆Xj = aj(x) ∆t+
√

∆t

m∑
k=1

bjk(x) ξk , (18)

We expand g(X∆t) in a Taylor series around x. We simplify by leaving out the
argument x, writing g for g(x), ∂jg for ∂jg(x), etc. The result is

g(x+ ∆X) = g +

d∑
j=1

∂jg∆Xj +
1

2

d∑
j=1

d∑
k=1

∂xj
∂xk

g∆Xj∆Xk +O(‖∆X‖3) .
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The calculation is done to second order because ∆X is on the order of
√

∆t
so ∆X2 (the quadratic terms in the sum) are on the order of ∆t. We do not

calculate the ∆X3 terms because they are of order ∆t
3
2 and vanish in the limit

∆t→ 0 even when divided by ∆t.
We now find the expectation values needed to evaluate the generator. We

start with the simpler terms:

E[∆Xj ] = aj(x) ∆t+O(∆t
3
2 ) .

This is because the terms ξk have mean value zero. Thus

E[∂xjg∆Xj ] = ∂xjg aj(x) ∆t+O(∆t
3
2 ) .

Next, we look at the quadratic terms. For these, use the fact that ∆Xj∆Xk has
a contribution of order ∆t that involves products ξiξl, but that all other terms
in ∆Xj∆Xk have powers ∆t

3
2 or ∆t2, which do not contribute as ∆t → after

dividing by ∆t. Therefore, we calculate keeping only terms of order ∆t:

E[ ∆Xj∆Xk] = ∆t

m∑
i=1

m∑
l=1

bjibklE[ξiξl] +O(∆t
3
2 ) .

Now, use the fact that ξi and ξl are independent and mean zero if i 6= l, while
E[ξlξl] = 1. This leads to (using the relation µ = bbT )

E[ ∆Xj∆Xk] = ∆t

m∑
l=1

bjibkl +O(∆t
3
2 ) = ∆t µjk +O(∆t

3
2 ) .

This evaluates the hard part of the expectation

E

 1

2

∑
jk

∂xj
∂xk

g∆Xj∆Xk

 =
1

2

∑
jk

∂xj
∂xk

g µjk∆t+O(∆t
3
2 ) .

This is the derivation of the generator formula (13) from the definition of the
generator. It is one of the fundamental calculations of the subject of Stochastic
Calculus.

Backward equation, tower property

The backward equation can be derived in generator form but here is a slightly
different presentation that emphasizes the tower property. The tower property
is that the conditional expectation of the conditional expectation is the condi-
tional expectation. Specifically, suppose (U, V,W ) is a three component random
variable. Let F (u, v, w) be some function of these variables and consider the the
conditional expectations

G(u, v) = E[F (u, v,W ) | U = u, V = v ]

H(u) = E[F (u, V,W ) | U = u ] .
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Then H(u) is the conditional expectation of F , conditioned on U = u. It is
also the conditional expectation of G, which is the conditional expectation of
F , conditioned on U = u and V = v. In formulas,

H(u) = E[G(u, V ) | U = u ] .

We apply this generic tower property to the three variables Xt, Xt+s, and
XT , and to the function F = V (XT ). We assume t < t + s < T . We are
interested in the conditional expectation of a function that depends on one of
the three variables

f9x) = E [V (XT ) | Xt = x ] .
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