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1 Introduction

The “calculus” part of Stochastic Calculus involves a new kind of integral, the
Ito integral, and a new kind of chain rule, Ito’s lemma. These go together
because the Ito integral is necessary to define the terms that appear in Ito’s
lemma. Ito’s lemma requires second derivatives with respect to x, as did the
generator calculation from the previous section. The quadratic variation is a
measure of the “noisiness” of a diffusion Xt. The new “Ito term” that appears
in Ito’s lemma involves second derivatives and quadratic variation.

The Ito calculus is for functions of time. It is expressed using the notation
of differentials, dt, dXt, and so on. You can think of these informally as ∆t and
∆X when ∆t is small. The formal interpretation of a differential expression
is that it leads to a true formula when integrated. For example, there is the
informal expression of an SDE

dXt = a(Xt)dt+ b(Xt)dWt . (1)

The formal expression involves integrating both sides between two time limits∫ t2

t1

dXt =

∫ t2

t1

a(Xt) dt+

∫ t2

t1

b(Xt) dWt .

The integral on the left is supposed to “add up” all the small changes dXt that
happen in the time interval [t1, t2]. The sum of the small changes should be the
total change. This leads to the integral formulation of the SDE, which is

Xt2 −Xt1 =

∫ t2

t1

a(Xt) dt+

∫ t2

t1

b(Xt) dWt . (2)

Informally, we think of the integral form (2) coming from the differential form
(1) by integration. The formal definition is the reverse. The dW integral on the
right is an Ito integral, and the integral relation (2) is the definition of the SDE
(1).

The Ito calculus, like other calculus, involves formulas that are true in the
limit ∆t → 0. The finite ∆t approximation may have terms involving various
powers of ∆t. In ordinary calculus, the terms you ignore in the limit have higher
powers of ∆t, so that even the sum of many such terms is small when ∆t is small.
The sums are small even if you replace these terms by their absolute values. In
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stochastic calculus, there are sums that are small for small ∆t not because the
terms are very small, but because the terms are somewhat small, and have mean
zero, so that the positive terms approximately cancel the negative ones. This
cancellation is behind the “Ito rule” (so called, and not by Ito) dW 2 = dt. It’s

true that E
[

(∆W )
2
]

= ∆t. But this is not true without the expectation. For

example, there is about a 52% chance that (∆W )
2
< .5∆t. As explained just

above, the differential formula dW 2 = dt should be interpreted as an integral
relation (see Section 3). This integral formula holds because the differences
∆W 2 − ∆t have mean zero and cancel in the ∆t → 0 limit. If you sum the
absolute values

∣∣∆W 2 −∆t
∣∣, the sum does not vanish in the limit.

We said in the Section 1 notes that you do not have to think of a general
diffusion process Xt as being “driven” by Brownian motion. We said then that
b∆W is just a way of saying “noise with mean zero, variance b2∆t”. The Ito
calculus gives a different meaning to bdWt through the Ito integral on the right
of the integral form (2). If you set t1 = 0 (say), then the right side defines Xt2

as a function of t2 and W[0,t2] for t > 0. The integral on the right involves the
Brownian motion path Wt only in the range from t = 0 to t = t2. The Ito
calculus defines integrals of the form

Yt =

∫ t

0

bsdWs . (3)

The integrand bs can depend on the Brownian motion path W . If it does
depend on W , then it will be random. But the integrand cannot depend on W
in an arbitrary way. The integrand must be non-anticipating, which means that
future values Ws for s > t are independent of the integrand bs for s ≤ t. Said
a different way, the integrand value bt can be a function of t and W[0,t]. The
“argument” of the function a cannot involve Ws for s > t. Functions bt(W ) are
also called adapted or progressively measurable. The integrand b(Xt) in (2) is
non-anticipating because Xt is a function of Ws only for s ≤ t.

A process is a function of time. The Ito integral (3) defines the process Yt.
An Ito process is any process that can be defined as the sum of an Ito integral
and a regular integral

Yt =

∫ t

0

bs dWs +

∫ t

0

as ds . (4)

The regular calculus integral (the “Riemann integral”) is defined for any con-
tinuous integrand as even if it is anticipating (not non-anticipating). The limit
that defines the regular integral does not rely on cancellation as the Ito integral
definition does. The integral version of the SDE formula (2) shows that a dif-
fusion process is an Ito process. It does not go the other way. An Ito process
does not have to be a diffusion process because an Ito process does not have to
have the Markov property. The differential form of the Ito process formula (4)
is

dYt = btdWt + atdt . (5)
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As we already said, the Ito integral gives meaning to differential expressions like
this. The differential expression (5) is an SDE and defines a diffusion process if
at and bt are functions of Yt.

Most of the derivation in this Section is for one component processes. The
extension to more than one component is not hard, if you have understood the
one component version.

2 Progressively measurable, filtration

The mathematical theory of diffusion processes uses the concepts of probabil-
ity measure, sigma algebra, filtration, conditional expectation, and progressively
measurable. This course treats these concepts intuitively and incompletely. The
goal is not that you will be able to follow a mathematical proof, but that you
will understand what is meant by statements like Zt = E[Z|Ft]. Here, “un-
derstand” means something like “know what it means to simulate Zt”. More
precisely: be able to say what is being simulated and how it might be done.

Warnings: (1) This Section is not “linear”, which means that things may
be defined after they are first used. You may have to read a few times to get
it straight. I hope non-linear writing makes the material less mysterious. (2)
People use different notation for the same things and the same notation for
different things. For example, some people say Z ∈ F makes no sense if Z is
a random variable and F is a sigma algebra. Many people write this to ex-
press the idea that Z is measurable with respect to F . (3) Concepts may be
defined “informally” in terms of imprecise ideas like “information”. This may
be followed by criteria for computation that still are not mathematical defini-
tions. (4) Some concepts use the same words used in elementary probability
but mean something slightly different. Conditional expectation is an example.
(5) Some definitions here are not the usual ones at the beginnings of probability
books. For example, a σ−algebra is usually defined as a collection of sets, not
a collection of functions. The “collection of functions” definition is equivalent,
and more often (in my unscientific estimation) useful than the collection of sets
version.

A sigma algebra (or σ−algebra) represents a certain state of information.
If Z is a random variable, we write Z ∈ F to mean that the information in
the σ−algebra F precisely determines the value of Z. We write F ⊂ G if G
contains all the information of F , which is the same as saying Z ∈ F implies
that Z ∈ G. If t represents time, then Ft represents the information available
at time t”. Thus, Z ∈ Ft means that the information in Ft determines the
value of Z precisely. The family of σ−algebras Ft forms a filtration if there is
no forgetting, Ft ⊂ Ft+s if s ≥ 0.

The σ of σ−algebra is for “summation”, more precisely, infinite sums (like
Taylor series). It has to do not with sums in particular, but with completeness.
The set of real numbers is complete in the sense that if qn is a sequence of
rational numbers that “should have a limit”, then there is a real number r with
qn → r as n → ∞. For example, comes from the Taylor series formula for ex
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when x = 1. Define the rational numbers

qn =

n∑
k=0

1

k!
.

Then

lim
n→∞

qn =

∞∑
k=0

1

k!
= e .

Everything in calculus is defined using limits.
Stochastic calculus needs limits of functions and/or random variables or

random paths. For F to be a σ− algebra, it first has to be an algebra in the
sense that if Z1 ∈ F and Z2 ∈ F then Z1 + Z2 ∈ F and Z1Z2 ∈ F . The σ
in σ−algebra means that if Zn is a family of functions that “should” have a
limit (technical definitions omitted) than there is a Z ∈ F so that Zn → Z as
n→∞. As an example, for any ∆t = T/n, we can define the Euler Maruyama
approximate solution to the SDE as

X
(∆t)
tk+1

= X
(∆t)
tk

+ ak∆t+ bk∆Wk .

We use the abbreviation a(X
(∆t)
tk

) = ak, and similarly for bk. The actual dif-
fusion path Xt is defined as the limit ∆t → 0 or n → ∞ of these approximate
paths. The approximate paths X(∆t) are measurable because they involve only
addition and multiplication of quantities derived from ∆W . The limit is mea-
surable because it should exist and F is a σ−algebra.

The increasing family Ft form a filtration. This represents states of partial
information. At time t you know Ft completely but there are things in Ft+s

that you don’t know, if s > t. Two component random variables (X,Y ) with
probability densities p(x, y) illustrate partial information. There is a σ−algebra
FXY in which you know both X and Y . This is the one we normally use
without thinking about it in basic probability. There also is a σ−algebra FX

that “knows” the value of X but not the value of Y . Suppose Z = V (X,Y ) is
some function. Then you know Z if you know X and Y , so Z ∈ FXY . But if
you only know X, and if Z depends on Y in some way, then you do not know Z
completely. That means Z /∈ FX . We say that FX is the σ−algebra generated
by X and FXY is generated by X and Y . A random variable is in a σ−algebra
if it is a function of the variables used to define the algebra. Thus, Z = V (X) is
in FX and in FXY . Also Z = X2 +Y 2 (for example) has Z ∈ FXY but Z /∈ FX .

Conditional expectation of a random variable with respect to F is the ex-
pected value of Z, conditioned on the information in F . As an example,
let (X,Y ) be jointly normal with mean zero, each variance 1 and covariance
cov(X,Y ) = E[XY ] = 1

2 . Then Y /∈ FX , but if you know X, then the condi-
tional expectation of Y is 1

2X. This is written

E[Y | FX ] =
1

2
X . (6)
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In undergraduate probability, this may be written

E[Y | X = x ] =
1

2
x . (7)

In undergrad probability, conditional expectation is the ordinary expectation,
conditional on some event, such as X = x. In stochastic calculus, conditional
expectation is is a random variable because the information you are conditioning
on is random.

Here’s a definition. If Z is a random variable, the conditional expectation

U = E[Z | F ]

is another random variable with U ∈ F and so that U minimizes

E
[

(V − Z)
2
]
. (8)

over all random variables V ∈ F . The conditional expectation is the best
approximation, in the least squares sense, to a function that is determined by
the information in F . This is consistent with ordinary expected value. If X is a
random variable, the expected value minimizes the least squares approximation
error of X by a number

µ = arg min
a

E
[

(X − a)2
]
.

The undergrad conditional expectation (7) also is found in this way. The
stochastic calculus version of this (6) follows from the general minimization
definition because any V ∈ FX may be written as a function g(X), and

E
[

(g(X)− Y )
2
]
≥ E

[(
1

2
X − Y

)2
]
.

In stochastic calculus, we most often find conditional expectation indirectly or
informally without using the definition involving (8) directly.

There is a standard filtration or maybe natural filtration associated to an SDE
(1). In this filtration, Ft knows the Brownian motion path from the beginning
up to time t, which we write W[0,t]. A random function Yt is adapted to this
filtration if Yt ∈ Ft for all t, which means that Yt is determined by W[0,t].
As explained before, the Euler Maruyama approximation determines Xt using
values in W[0,t] and the ∆t→ 0 limit. This shows that Xt is adapted. Therefore
a(Xt) and b(Xt) also are adapted.

For proving things in stochastic calculus, we often use the independent in-
crements property of Brownian motion in the form that says any increment in
the future of t is independent of Ft, which means independent of any random
variable Yt ∈ Ft. This applies in particular to approximations to the Ito inte-
gral and to solutions of stochastic differential equations. We take always take
∆Wk = Wtk+1

−Wtk so that ∆Wk is independent of Ftk . In particular, this
means that ∆Wk is independent of X[0,tk].
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Conditional expectation as we have just defined it gives a slightly different
way to think of value functions.

f(Xt, t) = E[V (XT ) | Ft ] . (9)

The quantity on the left side is random, because Xt is random, but Xt ∈ Ft, so
it is known at time t.

The conditional expectation defined here has the tower property. If G ⊂ F ,
then we can take the conditional expectation with respect to the information
in F and then take the conditional expectation of that with respect to the
smaller amount of information in G. The result is the same as taking conditional
expectation with respect to G in one step;

E[ E[Z | F ] | G ] = E[Z | G ] .

One case is when G is the “trivial” σ−algebra that has no information. The
conditional expectation with respect to no information is just the expectation.
Therefore

E[ E[Z | F ] ] = E[Z] .

Another case is Ft ⊂ Ft+s, which gives

f(Xt, t) = E[ f(Xt+s, t+ s) | Ft ] .

We used this (in a different form, but the same idea) to derive the backward
equation.

3 Quadratic variation

The quadratic variation is a first example of a ∆t → 0 limit formula that is
true because of cancellation in the error terms in the finite ∆t approximation.
With ∆t > 0 there are discrete time values tk = k∆t. If Yt is an Ito process
(one component for now), the quadratic variation is the limit (I dislike the [Y ]t
notation, but people use it)

[Y ]t = lim
∆t→0

∑
tk<t

(
Ytk+1

− Ytk
)2

. (10)

The number of terms on the right is nt ≈ t/∆t. This has nt → ∞ as ∆t → 0
with t fixed. The quadratic variation formula is

[Y ]t =

∫ t

0

b2s ds . (11)

This formula seems natural, as we will see, but the derivation relies on a technical
calculation and the hypothesis that a is non-anticipating.

The mathematically correct derivations of Ito calculus formulas like (11) are
too technical and long for this quick Stochastic Calculus course. Instead, here
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is something with the essence but not the details. We replace the integrals (4)
with their ∆t approximations. We denote increments of Brownian motion by
∆Wj = Wtj+1

−Wtj .

Yk =
∑
tj<tk

btj∆Wj +
∑
tj<tk

atj∆t . (12)

A crucial point here, and in all of Ito calculus, is that ∆Wj is “in the future of”
tj , and therefore is independent of btj . The limits in Ito calculus would either be
different or would be wrong if you violate this. For example, the limit defining
the Ito integral is different if you use “backward” differences ∆Wj = Wtj−Wtj−1

.
Differences like this do not change the limits defining “regular” calculus, but
they do in Ito calculus.

If you make the approximation (12) in the quadratic variation definition
(10), the result is

[Y ]
(∆t)
t ≈

∑
tk<t

(btk∆Wk + atk∆t)
2
.

The expected value of a typical term in this sum is

E
[
b2tk∆W 2

k

]
.

The following calculation uses the tower property and the independent incre-
ments property. It also uses the “obvious” fact that if U ∈ F , then

E[UV | F ] = UE[V | F ] .

This is applied with U = atk .

E
[
a2
tk

∆W 2
k

]
= E

[
E
[
a2
tk

∆W 2
k | Ftk

] ]
= E

[
a2
tk

E
[

∆W 2
k | Ftk

] ]
= E

[
a2
tk

]
∆t .

4 Ito integral

The Ito integral with respect to a process Xt with integrand bt is a limit similar
to the Riemann integral limit (usual notation and assumptions, t > 0, ∆t > 0,
tk = k∆t)

Yt =

∫ t

0

bs dXs = lim
∆t→0

∑
tk<t

btk
(
Xtk+1

−Xtk

)
. (13)

We can allow different kinds of processes Xt and integrands bt. The technical
details depends on those choices. But we always require that bt ∈ Ft and that
we use the forward in time difference Xtk+1

− Xtk . The Riemann integral is
less rigid in that allows, for example, backward difference Xtk − Xtk−1

. The
following example explains why the Ito integral definition is more rigid
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Example,
∫ t

0
WsdWs

The ordinary calculus lessons on integration may start with an example where
the limit (13) may be computed explicitly. This illustrates “what’s going on” but
is not the way most integrals are calculated. In ordinary calculus, most integrals
are done by “anti-differentiation”. The fundamental theorem of calculus and
the rules of differentiation are used to guess the anti-derivative. The analogous
calculations in Stochastic Calculus are done using Ito’s lemma.

The example has bt = Wt and Xt = Wt. The integrand is Brownian motion
and the process is Brownian motion.

Yt =

∫ t

0

Ws dWs .

The sum that approximates the Ito integral is

Y
(∆t)
t =

∑
tk<t

Wk(Wk+1 −Wk) . (14)

We write Wk instead of Wtk for simplicity. The trick for this specific example
is

Wk =
1

2
(Wk+1 +Wk)− 1

2
(Wk+1 −Wk) . (15)

This makes Y (∆t) = C(∆t)−D(∆t) where we use Wk+1+Wk in C and Wk+1−Wk

in D.
The calculations are simple and different. First

C
(∆t)
t =

1

2

∑
tk<t

(Wk+1 +Wk) (Wk+1 −Wk)

What makes it possible to compute this is the formula (a+ b)(a− b) = a2 − b2.
Therefore (defining tn to be the largest tk with tk < t)

C
(∆t)
t =

1

2

[(
W 2

1 −W 2
0

)
+
(
W 2

2 −W 2
1

)
+ · · ·+

(
W 2

n+1 −W 2
n

)]
.

Note that W 2
1 appears with opposite sign in the first and second terms on the

right, so W 2
1 cancels in the sum. Similarly, every W 2

k cancels except W0 and
Wn+1. A sum like this is called telescoping1. It collapses to just

C
(∆t)
t =

1

2

(
W 2

n+1 −W 2
0

)
.

In the limit ∆t→ 0, we have tn+1 → t. Also, W0 = 0 (a convention for ordinary
Brownian motion), so we are left with just

Ct = lim
∆t→0

C
(∆t)
t =

1

2
W 2

t .

1Some small telescopes collapse down to be carried and expanded to be used. Here are
some examples. The terms in the sum are like sections of the telescope. The sum collapses,
leaving just the beginning of the first term and the end of the last terms.
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Notice that the formula for the limit is simple. This is a feature ordinary calculus
and Stochastic calculus have in common. The integral has a deep mathematical
definition but the formula for it is simple. By contrast, the discrete sums are
easy to define but the formulas are complicated.

The D sum is

D
(∆t)
t =

1

2

∑
tk<t

(Wk+1 +Wk)
2
.

This is the discrete approximation to the total variation, so

Dt = lim
∆t→0

D
(∆t)
t =

1

2
t .

Altogether, we get

Yt =

∫ t

0

WsdWs = Ct −Dt =
1

2
W 2

t −
1

2
t . (16)

We will come back to this formula once to get it from Ito’s lemma and again to
observe that it is a martingale.

Returning to an earlier point, you get conditional independence (or approx-
imate conditional independence in fancier situations) if you put dXt in the
future of bt in the Ito integral. That is the reason for using btk(Xtk+1

− Xtk)
in the limit that defines the Ito integral. Using btk+1

instead of btk would mean
that the b value used “knows” the increment (Xtk+1

−Xtk), which can change
the value of the integral. The present example is an opportunity to illustrate
that with a concrete calculation. Suppose we replace Wk(Wk+1 −Wk) with
Wk+1(Wk+1 −Wk) in approximate Ito formula (14). If this were a Riemann
integral then the limit would be the same. But here the limit is different. The
trick (15) still applies, but in the form

Wk+1 =
1

2
(Wk+1 +Wk) +

1

2
(Wk+1 −Wk) .

The bad sum B
(∆t)
t that is not an Ito integral approximation can be calculated

using the ideas we used for the good one. The result is

B
(∆t)
t =

∑
tk<t

Wk+1 (Wk+1 −Wk)

=
1

2

∑
tk<t

(Wk+1 +Wk) (Wk+1 −Wk) +
1

2

∑
tk<t

(Wk+1 −Wk) (Wk+1 −Wk)

=
1

2
W 2

n+1 +
1

2

∑
tk<t

(Wk+1 −Wk)
2
.

The limit is

Bt = lim
∆t→0

B
(∆t)
t =

1

2
W 2

t +
1

2
t .
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This differs from the Ito formula (16) in that the “Ito correction” is positive
rather than negative. The bad version Bt is not a martingale.

By now it may be clear that the “Ito answer” (calculation of an integral) is
different from what you get from standard calculus. To see that explicitly, here
is a calculation as it could be done in basic calculus. If Wt were a differentiable
function of t (it is not), then we could write

dWs =
dWs

ds
ds .

The integral would be calculated using the regular calculus chain rule and the
fundamental theorem of (regular) calculus:∫ t

0

WsdWs =

∫ t

0

Ws
dW

ds
ds

=

∫ t

0

1

2

d

ds

(
W 2

s

)
ds

=
1

2
W 2

t .

This differs from the Ito answer (16) in that is lacks the correction − 1
2 t.

5 Ito’s lemma

Ito’s lemma is the chain rule for differentiating (with respect to time) a function
of an Ito process. For a function of Brownian motion, the formula is

df(Wt, t) = ∂wf(Wt, t)dWt + ∂tf(Wt, t)dt+
1

2
∂2
wf(Wt, t)dt . (17)

The “d” on the left side is taken to mean the change in f(Wt, t) in a small
increment of time dt, but that interpretation is suspect/false, as we will soon
see. The first two terms on the left correspond to the ordinary calculus chain
rule. If Wt were a differentiable function of t, in textbook calculus derivative
form or using less formal differential form that you get by multiplying both sides
by dt:

df(Wt, t)

dt
= ∂wf(Wt, t)

dWt

dt
+ ∂tf(Wt, t)

df(Wt, t) = ∂wf(Wt, t)dWt + ∂tf(Wt, t)dt .

The Ito’s lemma formula (17) has the extra “Ito term” 1
2∂

2
wf(Wt, t)dt. The Ito

term is possible because Wt is not a differentiable function of t.
The differential expression (17) can be understood as an informal way of

writing a formula involving integrals. The integral form makes pure mathe-
maticians happy because the differentials in (17) do not have mathematical
definitions. The integral form also explains why the “Ito rule” is appropriate.
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It’s because the integral involves many (infinitely many) independent (dW )2

contributions so the Ito rule is an expression of the law of large numbers saying
that a sum of many independent terms may be replaced by the mean (sort of,
see below). The proof of Ito’s lemma is a verification of the integral form.

The main postulate of integration is that when you add up (integrate) all
the small changes in some quantity, the result is the total change. In this case,
that principle is ∫ t

0

df(Wt, t) = f(Wt, t)− f(W0, 0) . (18)

The integral of the differential change is the total change. If we apply this to
the differential expression (17), the result is

f(Wt, t)−f(W0, 0) =

∫ t

0

(
∂tf(Ws, s) +

1

2
∂2
wf(Ws, s)

)
ds+

∫ t

0

∂wf(Ws, s)dWs .

(19)
To remember about it:

• You need Taylor expansion that include all terms
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