
Computational Methods in Finance, Lecture 1,
Duality and Dynamic Programming.

Last revised September 2000

Jonathan Goodman ∗

Courant Institute of Mathematical Sciences, NYU

September 12, 2000

1 Introduction

There are two main ideas in the arbitrage theory of pricing. One is that in
complete markets, everyone should agree on a common price – any other price
leads to an arbitrage opportunity. The other is that this price is the expected
value of the cash flow with respect to some probability model – risk neutral
pricing. In the simplest case, this probability model is a discrete Markov
chain. This lecture describes how to compute probabilities and expected
values for discrete Markov chain models. This is the main computational
step in ”risk neutral“ option pricing.

The methods here compute the expected values by a time marching pro-
cess that uses the transition matrix. Another evolution process allows us
to compute probabilities. These evolution processes are related but not the
same. The relation between the forward evolution for probabilities and the
backward evolution for expected values is called duality. It is similar to the
relation between a matrix and its transpose. The transpose of a matrix is
sometimes called its dual.

∗goodman@cims.nyu.edu, or http://www.math.nyu.edu/faculty/goodman, I retain the
copyright to these notes. I do not give anyone permission to copy the computer files related
to them (the .tex files, .dvi files, .ps files, etc.) beyond downloading a personal copy from
the class web site. If you want more copies, contact me.

1

The method of risk neutral arbitrage pricing extends to other more tech-
nical situations, but the main ideas are clear in the simple context of Markov
chains. If the Markov chain model is replaced by a stochastic differential
equation model, then the transition matrix is replaced by a partial differen-
tial operator – the ”generator“, and the matrix transpose is replaced by the
“dual” of this generator. This is the subject of future lectures.

Many financial instruments allow the holder to make decisions along the
way that effect the ultimate value of the instrument. American style options,
loans that be repaid early, and convertible bonds are examples. To compute
the value of such an instrument, we also seek the optimal decision strategy.
Dynamic programming is a computational method that computes the value
and decision strategy at the same time. It reduces the difficult “multiperiod
decision problem” to a sequence of hopefully easier “single period” problems.
It works backwards in time much as the expectation method does. The tree
method commonly used to value American style stock options is an example
of the general dynamic programming method.

2 Markov Chains

(This section assumes familiarity with basic probability theory using mathe-
maticians’ terminology. References on this include the probability books by
G. C. Rota, W. Feller, Hoel and Stone, and B. V. Gnedenko.)

Many discrete time discrete state space stochastic models are stationary
discrete Markov chains. Such a Markov chain is characterized by its state
space, S, and its transition matrix, P . We use the following notations:

• x, y, . . .: possible states of the system, elements of S.

• The possible times are t = 0, 1, 2,

• X(t): the (unknown) state of the system at time t. It is some element
of S.

• u(x, t) = Pr(X(t) = x). These probabilities satisfy an evolution equa-
tion moving forward in time. We use similar notation for conditional
probabilities, for example, u(x, t|X(0) = x0) = Pr(X(t) = x|X(0) =
x0).

2

• p(x, y) = Pr(x → y) = Pr(X(t + 1) = y|X(t) = x). These “transition
probabilities” are the elements of the transition matrix, P .

The transition probabilities have the properties:

0 ≤ p(x, y) ≤ 1 for all x ∈ S and y ∈ S. (1)

and ∑
y∈S

p(x, y) = 1 for all x ∈ S. (2)

The first is because the p(x, y) are probabilities, the second because the state
x must go somewhere, possibly back to x. It is not true that

(NOT ALWAYS TRUE)
∑
x∈S

p(x, y) = 1 . (NOT ALWAYS TRUE)

The Markov property is that knowledge of the state at time t is all the
information about the present and past relevant to predicting the future.
That is:

Pr(X(t + 1) = y|X(t) = x0, X(t− 1) = x1, . . .)

= Pr(X(t + 1) = y|X(t) = x0) (3)

no matter what extra history information (X(t−1) = x1, . . .) we have. This
may be thought of as a lack of long term memory. It may also be thought of
as a completeness property of the model: the state space is rich enough to
characterize the state of the system at time t completely.

To illustrate this point, consider the model

Z(t + 1) = aZ(t) + bZ(t− 1) + ξ(t) , (4)

where the ξ(t) are independent random variables. Models like this are used
in “time series analysis”. Here Z is a continuous variable instead a discrete
variable to make the example simpler. If we say that the state at time t
is Z(t) then (4) is not a Markov chain. Clearly we do better at predicting
Z(t + 1) if we know both Z(t) and Z(t− 1) than if we know just Z(t). If we
say that the state at time t is the two dimensional vector

X(t) =

(
Z(t)
Z(t− 1)

)
,

3

then (
Z(t)
Z(t− 1)

)
=

(
a b
1 0

)(
ξ(t)
0

)

may be rewriten

X(t + 1) = AX(t) +

(
ξ(t)
0

)
.

Thus, X(t) is a Markov chain. This trick of expressing lag models with
multidimensional states is common in time series analysis.

The simpler of the evolutions, and the one less used in practice, is the
forward evolution for the probabilities u(x, t). Once we know the numbers
u(x, t) for all x ∈ S and a particular t, we can compute them for t + 1.
Proceding in this way, starting from the numbers u(x, 0) for all x ∈ S, we
can compute up to whatever T is desired. The evolution equation for the
probabilities u(x, t) is found using conditional probability:

u(x, t + 1) = Pr(X(t + 1) = x)

=
∑
y∈S

Pr(X(t + 1) = x|X(t) = y) ·Pr(X(t) = y)

u(x, t + 1) =
∑
y∈S

p(y, x)u(y, t) . (5)

To express this in matrix form, we suppose that the state space, S, is
finite, and that the states have been numbered x1, . . ., xn. The transition
matrix, P , is n × n and has (i, j) entry pij = p(xi, xj). We sometimes
conflate i with xi and write pxy = p(x, y); until you start programming the
computer, there is no need to order the states. With this convention, (5) can
be interpreted as vector–matrix multiplication if we define a row vector u(t)
with components (u1(t), . . . , un(t)), where we have written ui(t) for u(xi, t).
As long as ordering is unimportant, we could also write ux(t) = u(x, t). Now,
(5) can be rewritten

u(t + 1) = u(t)P . (6)

Since u is a row vector, the expression Pu does not make sense because the
dimensions of the matrices are incompatible for matrix multiplication. The
convention of using a row vector for the probabilities and therefore putting
the vector in the left of the matrix is common in applied probability. The

4

relation (6) can be used repeatedly1

u(1) = u(0)P and u(2) = u(1)P
→

u(2) = (u(0)P)P = u(0) (PP) = u(0)P 2

to yield
u(t) = u(0)P t , (7)

where P t means P to the power t, not the transpose of P .
Actually, the Markov property is a bit stronger than (3). It applies not

only to events determined by time t+1, but to any events determined in the
future of t. For example, if A is the event X(t + 3) = x or y and X(t + 1) 6=
X(t + 4), then

Pr(A | X(t) = z and X(t− 1) = w) = Pr(A | X(t) = z) .

3 Expected Values

The more general and useful evolution equation is the backward evolution
for expected values. In the simplest situation, suppose that X(t) is a Markov
chain, that the probability distribution u(x, 0) = Pr(X(0) = x) is known,
and that we want to evaluate E(V (X(T)). We will call time t = 0 the
present, time t = T the payout time, and times t = 1, · · · , T −1 intermediate
times.

The backward evolution computed the desired expected value in terms of
a collection of other conditional expected values, f(x, t), where x ∈ S and t
is an intermediate time. We start with the final time values f(x, T) = V (x)
for all x ∈ S. We then compute the numbers f(x, T − 1) using the f(x, t)
and P . We continue in this way back to time t = 0.

The f(x, t) are expected values of the payout, given knowledge of the
state at a future intermediate time:

f(x, t) = E [V (X(T))|X(t) = x] . (8)

Recall our convention that time 0 is the present time, time t > 0 is in the
future, but not as far in the future as the time, T , at which the payout is

1The most important fact in linear algebra is that matrix multiplication is associative:
(AB)C = A(BC) for any three matrices of any size, including row or column vectors, as
long as the multiplication is compatible.

5

made. We may think of the f(x, t) as possible expected values at the future
intermediate time t. At time t we would know the value of X(t). If that
value were x, then the expected value of V (X(T)) would be f(x, t).

Instead of computing f(x, t) directly from the definition (8), we can com-
pute it in terms of the f(x, t + 1) using the transition matrix. If the system
is in state x at time t, then the probability for it to be at state y at the next
time is p(x → y) = p(x, y). For expectation values, this implies

f(x, t) = E [fT (X(T))|X(t) = x]

=
∑
y∈S

E [fT (X(T))|X(t + 1) = y] ·Pr (X(t + 1) = y | X(t) = x)

f(x, t) =
∑
y∈S

f(y, t + 1)p(x, y) . (9)

It is clear from (8) that f(x, T) = V (x); if we know the state at time T
then we know the payout exactly. From these, we compute all the numbers
f(x, T − 1) using (9) with t = T − 1. Continuing like this, we eventually
get to t = 0. We may know X(0), the state of the system at the current
time. For example, if X(t) is the price of a stock at time t, then X(0) = x0

is the current spot price. Then the desired expected value would be f(x0, 0).
Otherwise we can use

E [V (X(T))] =
∑
x∈S

E [V (X(T))|X(0) = x] ·Pr (X(0) = x)

=
∑
x∈S

f(x, 0)u(x, 0) .

All the values on the bottom line should be known.
Another remark on the interpretation of (9) will be helpful. Suppose we

are at state x at time t and wish to know the expected value of V (X(T)). In
one time step, starting from state x, we could go to state y at time t+1 with
probability2 p(x, y). The right side of (9) is the average over the possible y
values, using probability p(x, y). The quantities being averaged, f(y, t + 1)
are themselves expected values of V (X(T)). Thus, we can read (9) as saying
that the expected value is the expected value of the expected values at the
next time. A simple model for this situation is that we toss a coin. With
probability p we get payout U and with probability 1−p we get payout V . Let
us suppose that both U and V are random with expected values fU = E(U)

2Here we should think of y as the variable and x as a parameter.

6

and fV = E(V). The overall expected payout is p · fu + (1 − p) · fV . The
Markov chain situation is like this. We are at a state x at time t. We first
choose state y ∈ S with probability p(x, y). For each y at time t + 1 there is
a payout probability, Uy, whose probability distribution depends on y, t + 1,
V , and the Markov chain. The overall expected payout is the average of the
expected values of the Uy, which is what (9) says.

As with the probability evolution equation (5), the equation for the evo-
lution of the expectation values (9) can be written in matrix form. The
difference from the probability evolution equation is that here we arrange
the numbers fj = f(xj , t) into a column vector, f(t). The evolution equation
for the expectation values is then written in matrix form as

f(t) = Pf(t + 1) . (10)

This time, the vector goes on the right. If apply (10) repeatedly, we get, in
place of (7),

f(t) = P T−tf(T) . (11)

There are several useful variations on this theme. For example, suppose
that we have a running payout rather than a final time payout. Call this
payout g(x, t). If X(t) = x then g(x, t) is added to the total payout that
accumulates over time from t = 0 to t = T . We want to compute

E

[
T∑

t=0

g(X(t), t)

]
.

As before, we find this by computing more specific expected values:

f(x, t) = E

[
T∑

t′=t

g(X(t′), t′)|X(t) = x

]
.

These numbers are related through a generalization of (9) that takes into
account the known contribution to the sum from the state at time t:

f(x, t) =
∑
y∈S

f(y, t + 1)p(x, y) + g(x, t) .

The “initial condition”, given at the final time, is

f(x, T) = g(x, T) .

7

This includes the previous case, we take g(x, T) = fT (x) and g(x, t) = 0 for
t < T .

As a final example, consider a path dependent discounting. Suppose for a
state x at time t there is a discount factor r(x, t) in the range 0 ≤ r(x, t) ≤ 1.
A cash flow worth f at time t+1 will be worth r(x, t)f at time t if X(t) = x.
We want the discounted value at time t = 0 at state X(0) = x of a final time
payout worth fT (X(T)) at time T . Define f(x, t) to be the value at time t of
this payout, given that X(t) = x. If X(t) = x then the time t + 1 expected
discounted (to time t + 1) value is∑

y∈S
f(y, t + 1)p(x, y) .

This must be discounted to get the time t value, the result being

f(x, t) = r(x, t)
∑
y∈S

f(y, t + 1)p(x, y) .

4 Duality and Qualitative Properties

The forward evolution equation (5) and the backward equation (9) are con-
nected through a duality relation. For any time t, we compute (8) as

E [V (X(T))] =
∑
x∈S

E [V (X(T))|X(t) = x] ·Pr(X(t) = x)

=
∑
x∈S

f(x, t)u(x, t) . (12)

For now, the main point is that the sum on the bottom line does not depend
on t. Given the constancy of this sum and the u evolution equation (5), we
can give another derivation of the f evolution equation (9). Start with∑

x∈S
f(x, t + 1)u(x, t + 1) =

∑
y∈S

f(y, t)u(y, t) .

Then use (5) on the left side and rearrange the sum:

∑
y∈S

(∑
x∈S

f(x, t + 1)p(y, x)

)
u(y, t) =

∑
y∈S

f(y, t)u(y, t) .

Now, if this is going to be true for any u(y, t), the coefficients of u(y, t) on
the left and right sides must be equal for each y. This gives (9). Similarly,
it is possible to derive (5) from (9) and the constancy of the expected value.

8

The evolution equations (5) and (9) have some qualitative properties in
common. The main one being that they preserve positivity. If u(x, t) ≥ 0 for
all x ∈ S, then u(x, t + 1) ≥ 0 for all x ∈ S also. Likewise, if f(x, t + 1) ≥ 0
for all x, then f(x, t) ≥ 0 for all x. These properties are simple consequences
of (5) and (9) and the positivity of the p(x, y). Positivity preservation does
not work in reverse. It is possible, for example, that f(x, t + 1) < 0 for some
x even though f(x, t) ≥ 0 for all x.

The probability evolution equation (5) has a conservation law not shared
by (9). It is ∑

x∈S
u(x, t) = const . (13)

independent of t. This is natural if u is a probability distribution, so that
the constant is 1. The expected value evolution equation (9) has a maximum
principle

max
x∈S

f(x, t) ≤ max
x∈S

f(x, t + 1) . (14)

This is a natural consequence of the interpretation of f as an expectation
value. The probabilities, u(x, t) need not satisfy a maximum principle either
forward of backward in time.

This duality relation has is particularly transparent in matrix terms. The
formula (8) is expressed explicitly in terms of the probabilities at time t as

∑
x∈S

f(x, T)u(x, T) ,

which has the matrix form
u(t)f(T) .

Written in this order, the matrix multiplication is compatible; the other
order, f(T)u(T), would represent an n×n matrix instead of a single number.
In view of (7), we may rewrite this as

u(0)P tf(T) .

Because matrix multiplication is associative, this may be rewritten[
u(0)P t

]
·
[
P T−tf(T)

]
(15)

for any t. This is the same as saying that u(t)f(T − t) is independent of t,
as we already saw.

9

In linear algebra and functional analysis, “adjoint” or “dual” is a fancy
generalization of the transpose operation of matrices. People who don’t like
to think of putting the vector to the left of the matrix think of uP as mul-
tiplication of (the transpose of) u, on the right, by the transpose (or adjoint
or dual) of P . In other words, we can do enough evolution to compute an
expected value either using P its dual (or adjoint or transpose). This is the
origin of the term “duality” in this context.

5 Dynamic Programming

Dynamic programming is a method for valuing American style options and
other financial instruments that allow the holder to make decisions that effect
the ultimate payout. The idea is to define the appropriate value function,
f(x, t), that satisfies a nonlinear version of the backwards evolution equation
(9). In the real world, dynamic programming is used to determine “optimal”
trading strategies for traders trying to take or unload a big position without
moving the market, to find cost efficient hedging strategies when trading
costs or other market frictions are significant, and for many other purposes.
Its main drawback stems from the necessity of computing the cost to go
function (see below) for every state x ∈ S. For complex models, the state
space may be too large for this to be practical. That’s when things really
get interesting.

I will explain the idea in a simple but somewhat abstract situation. As
in the previous section, it is possible to use these ideas to treat other re-
lated problems. We have a Markov chain as before, but now the transition
probabilities depend on a “control parameter”, ξ. That is

p(x, y, ξ) = Pr (X(t + 1) = y|X(t) = x, ξ) .

In the “stochastic control problem”, we are allowed to choose the control
parameter at time t, ξ(t), knowing the value of X(t) but not any more about
the future than the transition probabilities. Because the system is a Markov
chain, knowledge of earlier values, X(t−1), . . ., will not help predict or control
the future. Choosing ξ as a function of X(t) and t is called “feedback control”
or a “decision strategy”. The point here is that the optimal control policy
is a feedback control. That is, instead of trying to choose a whole control
trajectory, ξ(t) for t = 0, 1, . . . , T , we instead try to choose the feedback
functions ξ(X(t), t). We will write ξ(X, t) for such a decision strategy.

10

Any given strategy has an expected payout, which we write

Eξ [V (X(T))] .

Our object is to compute the value of the financial instrument under the
optimal decision strategy:

max
ξ

Eξ [V (X(T))] , (16)

and the optimal strategy that achieves this.
The appropriate collection of values for this is the “cost to go” function

f(x, t) = max
ξ

Eξ [V (X(T))|X(t) = x] . (17)

As before, we have “initial data” f(x, T) = V (x). We need to compute the
values f(x, t) in terms of already computed values f(x, t + 1). For this, we
suppose that the optimal decision strategy at time t is not yet known but
those at later times are already computed. If we use control variable ξ(t) at
time t, and the optimal control thereafter, we get payout depending on the
state at time t + 1:

E [f(X(t + 1), t + 1)|X(t) = x, ξ(t)] =
∑
y∈S

f(y, t + 1)p(x, y, ξ(t)) .

Maximizing this expected payout over ξ(t) gives the optimal expected payout
at time t:

f(x, t) = max
ξ(t)

∑
y∈S

f(y, t + 1)p(x, y, ξ(t)) . (18)

This is the principle of dynamic programming. We replace the “multiperiod
optimization problem” (17) with a sequence of hopefully simpler “single pe-
riod” optimization problems (18) for the cost to go function.

6 Examples and exercises

1. A stationary Markov chain has three states, called A, B, and C. The
probability of going from A to B in one step is .6. The probability of
staying at A is .4. The probability of going from B to A is .3. The
probability of staying at B is .2, and the probability of going to C is .5.
From state C, the probability of going to B is .8 and the probability
of going to A is zero. The payout for state A is 1, for state B is 4, and
for state C is 9.

11

a. Compute the probabilities that the system will be in state A, B, or
C after two steps, starting from state A. Use these three numbers
to compute the expected payout after two steps starting from state
A.

b. Compute the expected payouts in one step starting from state A
and from state B. These are f(A, 1) and f(B, 1) respectively.

c. See that the appropriate average of f(A, 1) and f(B, 1) agrees with
the answer from part a.

2. Suppose a stock price is a stationary Markov chain with the following
transition probabilities. In one step, the stock goes from S to uS
with probability p and from S to dS with probability q = 1 − p. We
generally suppose that u (the uptick) is slightly bigger than one while d
(the downtick) as a bit smaller. Show that the method for computing
the expected payout is exactly the binomial tree method for valuing
European style options.

3. Formulate the American style option valuation problem as an optimal
decision problem. Choosing the early exercise time is the same as
deciding on each day whether to exercise or not. Show that the dynamic
probramming algorithm discussed above is the binomial tree method
for Amercian style options. The optimization problem (18) reduces to
taking the max between the computed f and the intrinsic value.

4. This is the simplest example of the “linear quadratic gaussian” (LQG)
paradigm in optimal control that has become the backbone of tradi-
tional control engineering. Here X(t) is a real number. The transitions
are given by

X(t + 1) = aX(t) + σG(t) + ξ(t) , (19)

where G(t) is a standard normal random variable and the G(t) for
different t values are independent. We want to minimize the quantity

C =
T∑

t=1

X(t)2 + µ
T−1∑
t=0

ξ(t)2 (20)

We want to find a chioce of the control, ξ, that minimizes E(C). Note
that the dynamics (19) are linear, the noise is gaussian, and the cost
function (20) is quadratic. Define the cost to go function f(x, t) to be

12

the cost incurred starting at x at time t ignoring the costs that are
incurred at earlier times. Start by computing f(x, T − 1) explicitly by
minimizing over the single variable ξ(T − 1). Note that the optimal
ξ(T − 1) is a linear function of X(T − 1). Using this information,
compute f(x, T − 2) by optimizing over ξ(T − 2), and so on. The
LQG model in control engineering justifies linear feedback control in
much the same way the gaussian error model and maximum likelihood
justifies least squares estimation in statistics.

13

