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Option Pricing in the Presence of Transactions Costs

Chi Lee

1. Introduction

The widely accepted model for option pricing, as developed by Black and Scholes, uses
the no-arbitrage framework whereby the payout of an option is replicated using a
dynamic hedging strategy.  The argument is that any price that differs from the cost of
setting up this replicating portfolio, or the no-arbitrage price, leads to an opportunity to
make an arbitrage profit.

At the heart of the model is the assumption that once the replicating portfolio is set up,
no additional funds are needed.  This self-financing would be achieved only if any
adjustments in the hedge resulting from changes in the underlying can be financed
exactly from the old portfolio.  This is possible only if there are no transactions costs.

In the presence of transactions costs, the arbitrage argument fails.  With transactions
costs, continual infusion of funds is required into the replicating portfolio and regardless
of how small the transactions costs are, hedging continuously would cause the overall
transactions costs to grow without bound.

Discrete hedging would bound the effects of transactions costs, but this would lead to
errors in the replication and would also invalidate the arbitrage argument.

An alternative approach to the no-arbitrage framework is to value options using
economic theory where investors act according to their preferences.  In arbitrage pricing,
the risk tolerance of an investor is irrelevant because the investor is never exposed to
any risk.  If an arbitrage opportunity exists, investors with different levels of risk
aversion would follow the same strategies to profit from an arbitrage.

In the preference-based approach, an investor follows a trading strategy that optimizes
her preferences.  So the value of an option is the expected cost of creating and hedging a
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portfolio that replicates the payout of an option.  Non-zero transactions costs will
influence the trading strategy of the investor and change the expected cost of the
replication, but its effect will be bounded.

This paper will use the economic approach to model the effects of transactions costs on
the valuation of options.  Before presenting the model, we develop the ideas of a utility
function to describe investor preferences and dynamic programming for optimizing a
trading strategy.

2. Utility Functions

Borrowing from economic theory, the preferences of an investor can be represented by a
utility function.  Utility is the quantity that an investor is trying to maximize.  So in
making a decision, the investor is concerned with picking a strategy that will lead to the
maximum amount of utility.  For our analysis, we will be concerned only with the utility
of wealth or monetary value.

Utility functions are assumed to be monotonically increasing and strictly concave.  An
increasing utility function means that an investor would always prefer having more
wealth.  The assumption of concavity translates to the view that each additional unit of
wealth has diminishing utility to the investor.  It also leads to the result that investors are
risk averse.  This is a desired result since investors are generally assumed to have an
aversion to risk.  Stated more formally, a utility function )(⋅U is risk averse at wealth

W if for all gambles ε~  with 0)~( =εE if

).~()( ε+> WEUWU

The proof that a strictly concave function leads to risk aversion is proved as follows.
Assuming 0)~( =εE and )(⋅U is strictly concave at W , by Jensen’s inequality

).(])~[()]~([ WUWEUWUE =+<+ εε

In choosing a utility function, it must be continuous and differentiable.  Commonly used
utility functions include the negative exponential utility function

aWeWU −−=)(

and the power utility function

.)( aWWU =

Typically, wealth is always assumed to be positive, however, in our option pricing
model there are instances of negative wealth.  In obtaining the results presented later in
this paper, negative exponential utility function was used.



3

3. Dynamic Programming

An optimal trading strategy can be seen as a stochastic control problem where the
control represents a trading strategy that effects the final outcome of a process.  The
control is optimized over all possible values to meet a chosen goal, usually determining
the minimum or maximum expected value of the process.

Dynamic programming is a technique for solving stochastic optimization problems in a
discrete setting.  It is a useful method for computing both the optimal strategy and value
when the problem is optimizing over some expected value at a later point in time.

The main idea behind dynamic programming is that when making a series of decisions,
a decision made in an earlier period must be consistent with the intention of optimizing
over all later periods.  If the optimal strategy at time 1+t is known, then determining
the optimal strategy at time t  becomes a single period problem.   So by working
backwards one period at a time, a multi-period decision problem can be reduced to a
sequence of one-period problems.  Using a recursive procedure, the optimal controls
with one period to go can be computed first, then the controls with two periods to go,
and so forth.

While dynamic programming can be applied in a deterministic setting, we are concerned
with how it operates in a Markov setting.  Markov chains have the property that all the
information relevant to predicting the evolution of the process at time t  is simply the
state at time t .  Past information is not needed.  A Markov control process X  has a
control function ),( tXα  that depends on the state as well as time.

To solve for a maximum expected value of a function that is driven by a Markov control
process at timeT

])(|))(([max),( tt xtXTXfEtxf == αα

we compute )1,( −Txf  from ),( Txf  and solve recursively backwards.  Since the
optimal decision strategy for later periods must be known, only the control for the
current time need to be solved.  For transition probabilities ))(,,( 1 txxp tt α+ and state

space Ω ,the expected value at time 1+t is

)).(,,()1,()](,)(|)1),1(([ 11

1

txxptxftxtXttXfE tt
x

tt

t

αα +
Ω∈

+∑
+

+==++

The optimal control leads to the maximum expected value at time t:
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ttt
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t txxptxftxf α

α

Starting with the final period when the values are known, this equation is used each
period to compute the desired value at the current time.

4. Binomial Process

We follow the Black-Scholes theory and assume the underlying security follows a
geometric brownian motion

dZdt
S

dS σµ +=

where Z is a normally distributed random variable with 0][ =ZE  and dtZ =]var[ .

                                   up
ts 1+

        ts

                                   down
ts 1+

Since dynamic programming is applicable only in a discrete setting, we model the
underlying security as a recombining binomial process )(tS .   So given that at time

t tstS =)( , the asset price can either go up to uss t
up
t =+1 or down to dss t

down
t =+1 at time

1+t .  Since the process is recombining du /1= , we can match mean and variance of
the discrete binomial process and the original continuous assumption to solve for the
probability.  The expected value of )1( +tS  is

t
dt

tt sesdppustStSE µ=−+==+ ))1((])(|)1([

and the variance of )1( +tS is

2222 ))()1((])(|)1(var[ t
dt

t sedppustStS µ−−+==+

.))(1( 22 22

t
dt see

dt

−= σµ
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Using the above equations we get the probability of an up move

du

de
p

dt

−
−=

µ

5. General Model (no transactions cost)

Using the economic framework, the value of an option ),( tsV t  is the expected cost of

hedging an option with the payoff at maturity ),( TsV T using a trading strategy that
maximizes the expected utility of the investor.  The optimal control will solve for

 )],),,(([max ααα TT sTsVUE

or for a single period

∑
Ω∈

+++
+

+
1

)).(,,(),),1,((max 111
)(

ts
tttt

t
tsspstsVU αα

α

To compute the value of the option, we take the expected utility and use the inverse
utility function to map back into monetary units or wealth

)],),1,(([max),( 11
1 ααα ++

− += ttt stsVUEUtsV

so the recursive equation for dynamic programming would be

∑
Ω∈

+++
−

+

+=
1

)).(,,(),),1,((max),( 111
)(

1

ts
tttt

t
t tsspstsVUUtsV αα

α

We can rewrite these formulas more explicitly for a binomial process.

6. Binomial Model (no transactions cost)

An option can be hedged by setting up a portfolio that closely replicates the payoff of
the option in any given state.   In our model, that replicating portfolio will simply be a
holding of the underlying security )( Hh∈ .  The control that the investor will use to
optimize is the holding level at each period.  In the Black-Scholes model, this holding
level is set equal to the delta of the option.  So at time t  the investor will be long
hamount of the underlying and short the option that she is trying to hedge

),( tsVhs tt −
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and assuming a binomial process two possible states can occur

up state:  )1,( 11 +− ++ tsVhs up
t

up
t  or

down state: )1,( 11 +− ++ tsVhs down
t

down
t .

                                         
)1,( 1

1

++

+

tsV

hs
up
t

up
t

),( tsV

hs

t

t

                                          
)1,( 1

1

++

+

tsV

hs
down
t

down
t

We can compute the value of the option for the realization of each state by setting the
portfolio at time t  to the discounted value of the portfolio at time 1+t  with the risk-
free rate r  and time interval dt

up state: rdtup
t

up
ttt etsVhstsVhs −

++ +−=− ))1,((),( 11

   t
rdtup

t
up
t

up
tt hsehstsVVtsV −−+== −

++ ))1,((),( 11

down state: t
rdtdown

t
down
t

down
tt hsehstsVVtsV −−+== −

++ ))1,((),( 11

The expected utility of a given hedge strategy is easy to solve because we already know
the transition probabilities of the two states.

)1)((*)( pVUpVU down
t

up
t −+

By maximizing the utility over all hedge strategies and converting back into units of
wealth we arrive at the following equation for the value of an option at time t .

)]1)((*)([max),( 1 pVUpVUUtsV down
t

up
t

Hh
t −+=

∈

−

or
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phsehstsVUUtsV t
rdtup
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In a world with no transactions costs, we expect arbitrage pricing to prevail and in order
for this model hold any validity, it should match the Black-Scholes price.  We can see
that because investors have preferences and are averse to risk, the optimal hedging
strategies are close to delta used for the replicating portfolio in the arbitrage model.  In
the arbitrage model, a replicating portfolio would have the same value in all the states.
Using the binomial example above

)1,()1,( 1111 +−=+− ++++ tsVhstsVhs down
t

down
t

up
t

up
t

down
t

up
t

down
t

up
t

ss

tsVtsV
h

11

11 )1,()1,(

++

++

−
+−+

=

In our model, we assume that the investors are risk averse and their utility function is
concave.  As shown previously, this means that

)~()( ε+> WEUWU

So assuming that the gamble is fair, the investor’s optimal strategy is when h=delta, i.e.
.0]~[ =εVar   In the graph below we can see that the option price produced by the model

converges to the Black-Scholes prices with smaller timesteps.

Figure 1: Comparison of Option Pricing Models
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7. Binomial Model (with transactions cost)

Expanding the model that we have built, we can incorporate transactions cost.
Previously, we have only been concerned with the amount of hedge held from time t  to

1+t .   The amount of hedge held from time 1−t  to t  was not relevant for evaluating
the price of the option at time t  because there were no costs involved in changing the
amount of the hedge.   Once we assume that transactions costs are positive, the hedge
level bh  set before time t becomes important in determining what the optimal hedge

level ah  after time t should be.  Using bh , the transactions costs can be computed.

There are three general method for calculating transactions costs: i) transactions cost can
be modeled as a percentage of the underlying security,  ii) there can be a fixed charge
for each share, or iii) there can be a single flat fee regardless of the number of shares.
Obviously, the transactions cost can also be any combination of these three methods.
We will be looking at all three ways of charging transactions cost.  First, we focus on
modeling transactions costs as a percentage 1c  of the underlying.

To move from one hedge level to another the following  transactions cost is incurred

1|| chhs bat −

This cost is included in the portfolio

.||),( 1chhstsVsh battta −+−

In the two possible state at time 1+t  the cost of the hedge becomes

up state: tabat
rdtup

tab
up
tbt shchhseshhtsVhtsV −−+−+= −

++ 111 ||)),1,((),,(

down state: tabat
rdtdown

tab
down
tbt shchhseshhtsVhtsV −−+−+= −

++ 111 ||)),1,((),,(

and the value of the option is

pshchhseshhtsVUUhtsV tabat
rdtup

tab
up
t

Hh
bt

a

*)||)),1,(((max[),,( 111
1 −−+−+= −

++
∈

−

)]1)(||)),1,((( 111 pshchhseshhtsVU tabat
rdtdown

tab
down
t −−−+−++ −

++
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or more generally, assuming the total transactions costs of moving from one hedge state
to another is tc , the equation can be written as

pshtceshhtsVUUhtsV ta
rdtup

tab
up
t

Hh
bt

a

*))),1,(((max[),,( 11
1 −+−+= −

++
∈

−

)].1)()),1,((( 11 pshtceshhtsVU ta
rdtdown

tab
down
t −−+−++ −

++

So going back to our model of transactions costs as a percentage of the underlying,

.|| 11 chhstctc bat −==

In the two other types of transactions costs where a fixed cost 2c  is charged for each

share and a flat fee 3c  is charged for each trade, the total transactions cost can be

represented as

22 || chhtc ba −=

33 ctc =
, respectively.

8. Results

The following results were generated for the valuation of a call option assuming a spot
stock price 100 =s , strike price 10=k , volatility 4.=v , drift of the stock 18.=µ ,

risk-free rate 10.=r , and time to expiration 1=T .  In addition to the value of the
option, we are also interested in obtaining the expected number of shares traded
Ψ where the investor has no initial holdings 00 =h  and is assumed to follow the

optimal trading strategy α

∑
=

+ −=Ψ
T

t
tt hhEh

0
10 |]|[),( αα .

This number will provide insight into how transactions costs influence the hedging
strategy.  In Figure 2 and 3, we set the total number of timesteps n  to 100 and the total
hedge units m  to 200, i.e. when 200=h  the replicating portfolio will have a delta of 1
and be fully hedged.
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Consistent with our intuition, the value of the option in Figure 2 increases as the cost of
transacting a trade ( 1c , 2c , and 2c ) goes up for all three types of costs.  This was
expected because, any increase in the transactions cost would increase the cost of
creating and maintaining a replicating portfolio.  Figure 3 also reaffirms our expectation
of what happens to Ψ as transactions costs goes up.  Opposite to the option value, as 1c

and 2c  decrease, Ψ increases.  Theoretically, when there are no transactions costs, and

∞=m  (hedge units are not discrete) , Ψ should go to ∞  .  This is the continuous
hedging assumption of the Black and Scholes model.  Interestingly, as 3c grows, Ψ
first goes down and then goes back up.  This is due to the fact that a flat fee which
disregards the number of shares to be traded, will encourage an investor to optimize her
hedge by adjusting a larger number of shares with fewer trades.  Thus, the expected
number of shares traded will not necessarily go down with increased cost.

Figure 2:  Option Prices with Transactions Costs
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Figure 3: Expected No of Shares Traded - with Transactions Costs
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Figure 4: Convergence with Finer Time Step and Hedge Unit Size
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Figure 5:  Hedging Strategy with No Transactions Costs
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Figure 6: Hedging Strategy with Transactions Costs – Percentage Costs
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Figure 7: Hedging Strategy with Transactions Costs – Fixed Per Share Costs
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Figure 8: Hedging Strategy with Transactions Costs – Flat Cost Per Trade
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These results clearly show that the optimal hedging strategy is effected by transactions
costs.  Depending on the type of transactions costs, the strategy is different.  However,
transactions costs generally lead to reduced number and size of readjustments to the
portfolio.

Understanding the sensitivities of the valuation to its parameters is an important part of
option pricing.  Since the parameters are changing constantly, the hedging process is
much more complicated in practice.  Figures 9 to 13 displays the effect of transactions
costs on the sensitivities (or Greeks) of the option, i.e. the first derivative of the option
value w.r.t. 0s (Figure 9), v (Figure 10), µ  (Figure 11), r (Figure 12), and T (Figure

13).  Each of the graphs include three curves for in the money (14=k ), at the money
( 10=k ) , and out of the money ( )6=k  options.

For nearly all the parameters, greater transactions costs lead to an increase in
sensitivities.  An exception is the sensitivity to µ  which has mixed results.  Note that

the sensitivity to T  is often called Theta and it measures the sensitivity to a decrease in
time to expiration.  Figure 13 below shows the sensitivity to an increase in time to
expiration.
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Figure 9: Sensitivity to Spot Stock Price
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Figure 10: Sensitivity to Volatility
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Figure 11: Sensitivity to Expected Return of Stock (mu)
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Figure 12: Sensitivity to Risk-Free Rate
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Figure 13: Sensitivity to Time to Expiration
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9. Summary

Arbitrage pricing provides a powerful argument for the valuation of contingent claims.
However, the model falls apart when its assumptions are relaxed.  In particular, the
option price grows without bound when the transactions costs are non-zero.  The
preference-based models, like the one that we have developed, provide a more flexible
framework that is viable with less restrictive assumptions.

By using dynamic programming, we have been able to price contingent claims in a
discrete setting as the expected cost of hedging the option over an optimal strategy.  We
have verified that when there are no transactions costs, our model produces a price that
converges to the Black-Scholes price.

Given our assumptions, the results clearly indicate that transactions costs effect both the
price of the option and the hedging behavior.  Since transactions costs do exist in the
marketplace, our model should provide useful insights into the pricing of options.  In
particular, it is a useful model of how hedging strategies change with different
transactions costs.
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Appendix

The following MATLAB function prices a call option with transactions costs 1c , 2c ,

and 3c  using dynamic programming.  The investor is assumed to have the utility

function, utility_fn().

function[value,dh]=option_pricer(So,K,v,mu,r,T,n,h,c1,c2,c3,a,type)
S(1,1)=So;
dt=T/n;
u=exp(v*sqrt(dt));
d=exp(-v*sqrt(dt));
p=(exp(mu*dt)-d)/(u-d);

%Stock Tree
for t=2:n+1
   for s=1:t-1
    S(s,t)=S(s,t-1)*u;
   end
    S(t,t)=S(t-1,t-1)*d;
end

for db=0:h
   fb(:,db+1)=max(S(:,t)-K,0);
   dh(:,n+1,db+1)= (S(:,t)>K)*h-db;
end

for t=n:-1:1                      %Time
for s=1:t
   fa=fb;                         %fa – option value previous timestep
  for db=0:h                      %fb – option value current timestep
     for da=0:h
        dS=da/h*S(s,t);
        cost=abs(da-db)/h*S(s,t)*c1+c2*abs(da-db)/h+c3;
        if da==db
          cost=0;
        end
   up=(fa(s,da+1)-da/h*S(s,t+1))*exp(-r*dt)+dS+cost;
   down=(fa(s+1,da+1)-da/h*S(s+1,t+1))*exp(-r*dt)+dS+cost;

utility(da+1)=utility_fn(up,a,type,utype,1)*p+utility_fn(down,a,type,uty
pe,1)*(1-p);
end  %da

fb(s,db+1)=utility_fn(max(utility),a,type,utype,-1);
[blank,opt_da]=max(utility);

opt_da=opt_da-1;
dh(s,t,db+1)=opt_da-db;

clear utility;
end  %db
end  %s
end  %t

value=fb(1,1)


