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1. INTRODUCTION

This thesis discusses using Monte Carlo Methods for evaluating calculations related to Value at Risk (VaR).
This is a problem estimating the probability of a very unlikely event. We show that an Importance Sampling
method motivated by the Theory of Large Deviations leads to significant improvements in the accuracy of the
Monte Carlo Estimator. Implementation of this strategy leads to a constrained optimization problem, which
may have multiple local minima. These local minima lead to new difficulties in the importance sampling.

Value at Risk is a tool for risk management in financial institutions [11]. It is about finding an amount
that could be lost with probability a. Let V; represent the value of a portfolio of (risky) assets at time ¢.
Since V; is a stochastic process it has a distribution at time ¢. The Value at Risk at time ¢ at level « is the

o' quantile of the distribution of V;. In the following equation,
P(V; <va) =« 1)

vq is the VaR. For example, the 30-day 5% VaR would be v o5 for V(%).

This paper focuses on the converse of the Value at Risk problem. Rather than determining the the ath
quantile, we will compute « for a specified v,.

There are a variety of ways to compute Value at Risk [11]. At the very minimum, one must be able to
evaluate the portfolio at time, ¢. Monte Carlo simulation of the portfolio will provide an empirical distribution
of V; from which an estimator for & can be computed.

First we will give a short overview of Monte Carlo methods and Importance Sampling. Next, a portfo-
lio model will be developed. Finally, the Importance Sampling method will be applied to several sample

portfolios demonstrating its efficiency.



2. OVERVIEW OF MONTE CARLO METHODS AND IMPORTANCE SAMPLING

For a brief overview of Monte Carlo integration, let X be a random variable in R? with multi-variate

distribution density f(zx). To find find a probability, p, of the event X € (4, C R?) one must evaluate

p=[ Tn@)f@ds @
where I4_ is an indicator function defined as follows:
1 ifze A,
Ia,(z) = 3)

0 otherwise.

To integrate this function by Monte Carlo one takes advantage of the fact that

1 N
p= [ 10.@f@ds = Bl )]~ > 1. (X) =5 (®)

where Ef[g(x)] is the mathematical expectation of g(z) with z distributed with density f.

We will call p the Monte Carlo estimator and 62 the variance of I4_(z)!. The central limit theorem says
that p ~ N(p, %2) Define the statistical error, € = % Then p + € sets up approximately a 95% confidence
interval for p. The relative error of p is 5 This can be thought of as the size of the statistical error relative
to the estimator. For Monte Carlo calculations, this ideally should be no more than 5%.

If one can find another estimator for p with a smaller variance, then the relative error will be smaller
for the same sample size, N. Conversely one can achieve a given relative error with a smaller sample.
The computations will be more efficient since better numbers are obtained with improved computer time.
Importance sampling can sometimes be used to find such an estimator.

Importance sampling is based on the following set of equalities:

N N _ _ f@ g o
5= 5 2 Tau (X0 Byl ()] = / Iy, (2)f(z)de = / T, @58 fayas = 5)
] ), .1« NiON
Ef[IAa(y)%] ~ N;IAQ(YQ)J;(E) =p

where the Y; are randomly drawn from density f (y). The density f is sometimes called the twisted density
and ¢(z) = % is called importance function. It should be noted that both f and f need to be defined in
the same domain.

To keep the estimators distinct, let § come from the Y; taken from F using the importance function and
p will refer to the estimator obtained using straight Monte Carlo. The central limit theorem applies to both
p and p. The mean is p in either case. However, the corresponding variances should be different. Ideally, 52,
the variance of I4_(z) % with respect to f, is much less than 2. That makes é = % less than €, creating
a much tighter interval in which one has a 95% chance of finding p, the true mean. The corresponding

relative error will be appropriately less.

1This is the variance of I4_ (z) sampled from the density, f(z), not the variance of x with respect to f(z).
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As an example, consider the prospect of finding p = P(Z < —3) for Z ~ N(0,
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= Var©
estimator p was to estimate p for the event A, = {Z; |Z; < —3}. In hopes of finding an importance function
_ w+3)?

experiment we generate, N random variables from the Gaussian density, f(2)

1

Van
variance 1. For the Y; drawn from f, the set A, was the same: {Y |Y" < —3}. The two estimators are

that gave the estimator p a smaller variance, we used f (y) = , & Gaussian with mean -3 and

. 1
p=NZ_:I{Z< 33(Z

and

3Yi+%

ﬁZNZ (vi<—33(Y3)

N Z {Yi<— 3}
i1

Trials were done for different values of N. However, the same sequences of random numbers were used

Y;)
for both estimators. For i = 1,...
from a uniform distribution. By the Box-Muller method [12], the pair Z;—1 = \/—2log(Usz;—1) cos(2nUs;)
and Zs; = \/—2log(Us;) sin(2nUz;_1) are independent Gaussian random variables. The Z; are used for the

, N, the random numbers Us;—1 and Us; were sampled independently

standard normal X;. Then the Y; = X; — 3 were created and were independent with common distribution

N(-3,1). A new sequence of random numbers were used for each value of N. The results were as follows:

N P €= % rel. error () | Samples

1000 |0 0 N/A 0

10000 0.0016 | 0.00079936 | 49.9% 16

50000 | 0.00124 | 0.000314765 | 25.4% 62

100000 | 0.00133 | 0.000230498 | 17.3% 133

1000000 | 0.00132 | 7.26156e-05 | 5.5% 1320

TABLE 1. Regular Monte Carlo - estimator p

N D €= % rel. error (;5) | Samples
1000 0.00134758 | 0.000153425 | 11.39% 510
10000 | 0.00133979 | 4.96594e-05 | 3.7% 4996
50000 | 0.00137612 | 2.25461e-05 | 1.6% 24978
100000 | 0.00133566 | 1.56792e-05 | 1.2% 49256
1000000 | 0.00134561 | 4.96111e-06 | 0.36% 499312

TABLE 2. Importance Sampling - estimator p

Clearly, using samples from f and the importance function ¢ to weigh the contribution of each random

variable is much more efficient than using random variables drawn from f. The number of samples needed

with the importance sampling method is reduced by a factor of over 100. Figure 1 shows that one is far



more likely to find a sample from the twisted distribution, f than from the original. Roughly half will be
in set A,. And since there is far less fluctuation in the weight assigned to each each sample, the variance is
much lower.
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FI1GURE 1. Log scale of the two densities and the importance function

Looking at the Figure 1, one wonders if it wouldn’t be even more efficient to use a twisted distribution
that more closely resembles the tail of the original or perhaps adjusting the variance parameter of f to get
samples that are assigned greater value (i.e. closer to -3). In fact, using an exponential distribution with the
proper parameters is even more efficient than using a Gaussian with different parameters. In many cases,
Large Deviation Theory can be used to find more optimal twisted distributions for a variety of problems [3]
[17] .

However, stock prices are often modeled with a log-normal distribution. A log-normal distribution has
no moment generating function [4]. Finding the moment generating function is the first step in the Large
Deviations technique. But as we will show, this method of mean shifting will give us a significant reduction
in the variance of the Monte Carlo estimator.

The next section develops a model for stock prices with correlated returns and a multi-variate log-normal

joint distribution.



3. PORTFOLIO, STOCK PRICE MODEL AND JOINT DISTRIBUTION

In order to use the importance sampling method described in the last section, one must have a density
from which to draw samples. This section develops the process that we use to model stock prices and defines
the function, V; that represents the value of the portfolio at time, t.

A portfolio, IT, contains securities whose values are dependent on d underlying random (risky) variables.
These are denoted S;,i € {1,...,d}. The vector S(t) = [Si(t),...,Sa(t)]T is the state of the values of
the underlying variables at time, t. The random variables, S;, will be assumed to represent stock prices.
The assets can be the underlying variables or derivative securities whose value is based on the underlying
variables, such as options or futures. Since path-dependent options do not have a unique price for a given
state-space, S(T'), they will not be considered in this paper.

The value of the portfolio is a function V(S(¢)) : R — R!. This may be written as V;(S) or V(S(t)),
depending on notational requirements. If V' or S appear without a ¢, the time dependency will be implied.
For the purposes of this paper, the portfolio will consist of By of risk free money (bonds, money market
accounts, etc.) acquired at time, ¢ = 0, accruing continuously compounded interest at rate, r, d stocks and

European puts and calls on those stocks. The value of the portfolio is

d
V(S(t)) = Boe™ + Z 8iS;(t) + ¢;C(Si(t), 04,7, Ke iy Tes) + piP(Si(t), 04,7 Kp iy Tp ). (6)

i=1
Here, s;,¢;, and p; are the amount of shares, calls, and puts on the underlying asset, S;. C(-) and P(-) are
the Black-Scholes prices of calls and puts. The parameters o;, 7, K(.) ;, T{.) ; are the volatility, risk-free rate,
strike price, and expiration time for the options on S;. Negative values of By, s;, ¢;, and p; correspond to
borrowing money or short-selling the assets. For the purposes of this paper, S will typically mean a collection
of stocks and will be referred to as such. However, one could easily substitute any underlying variable that
is assumed to follow the same geometric Brownian motion process described below, such as foreign exchange

rates.

In one dimension, the equations are as follows [1]. Itd’s theorem states that for a stochastic process

dXy = a(Xy, t)dt + b( Xy, t)dW, where Wy is a Weiner process, and a function U(Xy, t):

b(X, t)2> dt + a—UdW. (7)

S+ a0+

ot 90X 20X?

U U 102U
U = ( X

The random variables, S; are each assumed to follow the following Itd process:
ds; = S,u,dt + S;o;dW;. (8)

Here, pu; is the stock’s expected growth rate, and o; is the volatility.
This SDE in equation 8 can be solved using Itd’s theorem (equation 7) to transform it into an ODE. Let

dX = dS;, a(S;,t) = Sips, b(S;,t) = Sio;, and U(X,t) = log(S;). Then (using short-hand notation for the



partials) Uy = 0, Us = S%, and Uss = —gz. Using It6’s theorem:

1
d(log(S;)) = (ui — Eag)dt + 0;dWy.

Integrating both sides with respect to ¢ yields:
log(Si(t) = (i — %af)t + oW, + C.
Let t = 0 to solve for C' (recalling that W, = 0):
log(S5:(0)) = C.
Taking exponentials of both sides,
Si(t) = Si(0)elri=zoIbent, (9)

This process is called Geometric Brownian Motion. With this solution, one can obtain the density for S;(t).
Let G be a standard normal random variable, i.e. N(0,1). Then X = bG + a has distribution N(a, b?).
The random variable Y = eX+@ has a log-normal distribution with parameters a and b%. This is denoted
Y ~ A(a,b?) [4]. It has the probability density function
1 _ (ogz—a)?

— 7. 10
:cb\/27re ” (10)

Applying it to the above equation for S;(¢t) We find that S;(t) ~ A((ui - 1)t U?t).

flz) =

Since we are interested in modeling a portfolio, we must consider the multi-dimensional case. Let, G be a d-
dimensional column vector of independent N (0,1) random variables. One must proceed as before to use G to
create X ~ N(a, B), where a is the mean vector and B is the covariance matrix with elements (B);; = p;;bib;
where p;;, b;, and b; are the corresponding covariance and variances of X; and X;. First, a “square root”
of the covariance matrix, B, is needed to act as the standard deviation, b, in the previous example. This
is the Cholesky decomposition. If any matrix, B is positive definite, then a lower triangular matrix, L, can
be found such that B = LLT. Since the covariance matrix of a multi-variate normal distribution is always
positive definite, this is possible. Then X = LG + a ~ N(a, B).

If X ~ N(a,B) and Y is a random vector such that y; = e, where x; and y; are the i*® element of X
and Y, then Y has a multivariate log-normal distribution, A(a, B) [10]. The density function is analogous

to the scalar case in equation 10:

1
Y1 - .. yiy/det(B)(27)

The next step is constructing a d-dimensional diffusion process that reasonably simulates correlated stock

f) = fyr,---9a) =

- o [%(Y ~a)"S (¥ ~a)]. (1)

prices. Then we will solve the multi-variate equation using It6’s Theorem to determine if it is log-normally
distributed component-wise. This would imply portfolio has a multi-variate log-normal distribution. If it

does, we would then determine the proper parameters.



Clearly, if the S; were all independent, the collection of stocks would have a A(u,I) distribution where
1 is the vector of expected growth rates for the assets and I is the identity matrix. But instead of using
d independent Weiner processes, W;, to represent the returns, the model requires correlated underlying
processes.

Let Cgxq be the correlation matrix with elements, (C);; = pij, Vaxa be a diagonal matrix whose elements
are (V)i = 04, and S’dxd be a diagonal matrix whose elements are S’“ = S;, the i*" entry in S. Since C is
symmetric and positive definite, by virtue of being a correlation matrix, it has a Cholesky decomposition,
C = LLT [7]. Then the covariance matrix ¥ = VLLTV = (VL)(VL)T. However, if one wants to use
the previous, one dimensional process as a guide to the general case, the vector of Brownian Motions,
Z = LW will give a vector of N(0,1) random variables with correlation structure, C. Component-wise

Z; = 2221 l;jW;. Keeping Var[Z;] = 1 allows a diffusion process to take the form
dS = Sudt + SV LdW,

with the individual stocks following,

dS, = S,/J/zdt + S,O’de, = Sz[l/zdt + SiO'z' Z l“dWJ
j=1

As with the one dimensional model, the factor ¢;dZ;(t) makes the returns have a N(0,0?t) distribution.
Individually, the stocks behave as usual, but as a whole, the trends will be apparent, since the Z; are
correlated according to C' (with covariance X).

To solve the system of SDEs and determine the parameter for A, one must use the multi-dimensional It6
theorem. Let U(X,t) € RF, X, A(X,t) € R?, B(X,t) € R**™, and W; € R™. Then for a d-dimensional
diffusion driven by m Weiner processes, dX = Adt + BdW,

dU = (Ut +UxA+ % i i Ux.x, (BBT)ij)dt + Ux BdW. (12)
i=1 j=1
Here, Ux is a k x d matrix with elements (Ux);; = g—% where U is the i‘" element of U and X is the j" ele-
ment of X. Also, Ux, x; isa k-dimensional column vector such that Uy, x; = ( agjg}(j , 839(2,- gg(j e 839(21- gg(j )T
and Uy is a k-dimensional column vector whose entries (U;); = 3(%".

Now we solve the multi-dimensional diffusion equation (12) for the vector, S, with k =d = m. Let
A= S\’l"’ = (Sllula ) Sdud)Ta

B=SVL
so that
BBT = §%8, (BBT)i; = SiS;0i0,pij
and

U =log(S) = (log(S1),-..,log(Sq))”



and apply It6’s general theorem (equation 12). Then the vector

Ut = 0,
with
& i
(Ux)is = : )
0 i#j
and
0,...,—2,...,00T i=j
UX,'X]' = Si
0 i F#J
Substituting the values into the full equation yields:
d(log(S1)) SLI ... 0 1151 —SL% 0
1 .
: = S : +3 : Stor 4+ ...+ : S22 | dt
d(log(Sd)) 0 PN SLd Nde 0 —§15
SL1 0 5101 0 l11 0 dWl
+ . .
0 I SLd 0 e Sdad ldl e ldd de
m o? op ... 0 Yo lidW;
= 1 dt + :
- 2 . .
Hd 0’3 0 e Od E?:l lddej
M1 g7 Ulej
1
= - = dt :
5 +
Hd (T;Zi Gdde

Looking at the components,

1
d(log(S;)) = (s — iaf)dt + 0ydZ;.

This has already been solved for dW;. Since taken individually, Z; and W; are indistinguishable, the solution,
1 .
50 = Si(0)exp (s = ot + 0:2:00)

still holds.

For a fixed, ¢, the process Z;(t) is a random variable with distribution N(0,t). Since, S;(t) is the exponen-
tial of a N ((/.Lz - %a?)t, Uft) random variable for 1 = 1,...,d, of which ¥ is the correlation (and covariance)
matrix, S ~ A (log So + (1 — 30%) t, %), where o? is the vector whose elements are the variances of their
correspondent stock.

It should be noted that for X ~ A(a,B), the moments are not as direct as with the N(a,B) case.
E[X;] = exp (a; + £b?) and Var [X;] = exp (2a; + b;) (e’ — 1). The mode is exp (a; — $b?). So with the



stock model having log-normal distribution with parameters a; = logSo + (i — 307) t and b7 = o?t, we
have E[S;(t)] = Si(0)e*i¢, which is what they would be valued at if they were risk-free.

It is a bit reassuring that the parameters for an individual stock do not have a dependency on other
stocks. Otherwise we couldn’t evaluate a single asset without knowing the state of the whole market. This
model of course assumes that one can obtain the correlation and volatility matrices for each of the d stocks.
However, if one were to use a different model, this would not necessarily be the case. For example, if we
created a model that uses an index such as the Dow Jones as the driving random process of the portfolio,
another application of It6’s Theorem would be needed to see what the stock process looks like and whether
or not it has a well-known distribution. It is required that S(t) have an explicitly defined density to employ

the importance sampling explored in the next section.



4. IMPORTANCE SAMPLING ON PORTFOLIOS

Now that it has been established that S(t) ~ A ((log S(0) + p — 10?)t,%t), a multi-dimensional log-
normal distribution, it is time to examine the set A, = {S|V(S) < vy} where v, is a prescribed lower
tolerance level for the value of the portfolio at time ¢. Importance sampling will be used to find a more
efficient estimator for p = P (S(t) € Ay) = P (V(S(t)) < v,) = a.

To motivate the specific method, we will work through several examples, applying each phase of the
method as we progress. The first is a simple portfolio, II;, a linear combination of two assets. This allows
us to visualize the problem in two dimensions. The second portfolio, IIs, has a value function dependent on
eight stocks. The portfolio consists of an array of both the stocks and European puts and calls whose values
are contingent on the underlying assets. This will show that the method is still effective in higher dimensions
with non-linear value functions. The first two portfolios are not too different from the Monte Carlo example
in Section 2. However, the final portfolio, I3 is different. While it is only dependent on one stock, there are
two values of S where V(S) = vq4. So two twisted densities must be used to use importance sampling, one
at each value of S. This demonstrates that method’s effectiveness in a more general sense.

First we will consider II;, the two stock portfolio with a linear value function. Then we will examine the
results for a larger, eight-stock portfolio, I, with a non-linear value function. Both of these portfolios and
corresponding value functions will have one minimum rate point. A third portfolio, II3, will have one stock,
but two minimum rate points. The importance sampling method will then be expanded and generalized to
efficiently estimate probabilities for the multiple-minima scenario. The definition of Minimum Rate Point
(MRP) will be introduced as the discussion continues.

For the purposes of visualization, we first consider a simple portfolio, IIy. It contains 150 shares of one
stock, S1, and 100 of another, Ss. The initial values, S;(0) = 18 and S2(0) = 24. The expected growth
rates, u1 and pp are .09 and .12 respectively?. The volatilities are o; = .2 and o5 = .18 with correlation,

p12 = -25. The time frame in question will be 120 days, ¢t = .3288. Then

log 18 09— 1.22
w= + 3288,
log 24 12— 1.182
22 2)(.18)(.25
. (-:2)(-18)(.25) 3288,
(.18)(.2)(.25) 182

and
V(S(.3288)) = 1505, (3288) + 10055(.3288).
21t should be noted that for these calculations the risk free rate, 7, is used only with option pricing. The future values of
the stocks should be modeled using p. The parameter p goes away in risk-neutral valuation of options, but we are not trying

to create a martingale, but model the future behavior of a portfolio. This is true for other “projective” models such as Value

at Risk, where one is interested in the future state of a portfolio, not the present value.

10



The initial value, Vo = V(S(0)) = $5100. If the stocks grew exponentially at their expected rates,
V(5(.3288)) = $5298.92. In this example, let v, be $4300. Figure 2 shows the level sets of the density,
f of II;. The line represents V (S5(.3288)) = v, and the are below is A, = {V(5(.3288)) | V(5(.3288)) < v4}.
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FIGURE 2. Joint Density of S; and S, at time, ¢t = .3288
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FIGURE 3. Empirical Density of V' (5(.3288)) for portfolio II;

Figure 4 shows the contour plot of the density, f, along the curve V(S) = v,. This reveals that the
majority of the mass of f(S1,S2) is located near one point. This is due to the rapid decay of f. This is the

11



main point of the theory of Large Deviations [3]. That is, rare events happen in a predictable manner. To
find this point, one must maximize the density f(S) over the set A,.

In many cases, this property leads to a twisted density for importance sampling [3] [17]. But, the log-
normal distribution doesn’t decay rapidly enough to support a large deviation-based importance sampling
method since [e®® f(z)dx is divergent. However, the majority of the mass of A, still collects at the the

point which is the maximum of f(S) subject the constraint V(S) = v,.
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FI1GURE 4. Close up of f near V < v,

In the case where V(S) is a linear function, solution to the constrained optimization problem, Sy =
min —f(S) subject to V(S) = v, is unique®. We call this point, S,,, the minimum rate point. This must
be found numerically and is usually a non-trivial computational problem. In the case of a non-linear value
function, such as portfolio with options, there may be more than one minimum rate point. That is, there are
more than one local minima in the constrained optimization problem. If there is only one, it is sometimes
referred to as a dominating point.

Finding the minimum rate points requires the implementation of a non-linear constrained optimization
algorithm. There are a variety of methods that can be used, some more efficient or more effective than
others. For this project the exterior penalty method was used. It is a fairly general method that is not too
difficult to implement, but does need some fine-tuning to make it broad and robust. Its main advantage is

that it works well with non-linear constraints. The details of this method can be found in Appendix A.

3Minimizing - f(S) is the same as maximizing f(S). Finding a maximum is sometimes more difficult than finding a minimum,

so we invert the problem and seek the minima.

12



Returning to portfolio IT;, the minimum rate point, Sy, is the only minimum rate point (and as such
is a dominating point). This is the key to this method of importance sampling. As shown in Figure 4, if
V(S) is be less than v,, it has a far greater probability of being near S,, than away from it. Now, one must
construct a titled distribution, F, that covers A, and has most of its mass clustered near z,,.

There is no “correct” way to do this. Some methods are more efficient than others. Sadowsky [17] and
Bucklew [3] describe a way that uses large deviations, Wagner’s [19] approach makes use of the transition
density of a diffusion, and Newton [14] uses sophisticated functional analysis. The heuristic method we will
use is to change the parameters of f(5) so the mean is at S,,.

For estimating the probability of a loss in a portfolio, instead of using A(a, ¥) random samples, a new & is
needed so that the tilted distribution is A(G, ¥) and has mean S,,. This new & can be found component-wise

by solving the following equation for g;:

1
exp (di + 503) = (Sm), (13)
which is
1
a; = log(Sm)i — §Ui2

This tilted distribution F has the majority of its mass near Sy,. This is apparent in Figure 4.
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FI1GURE 5. Original density, f, and tilted density, f.

Using f and the importance sampling method described above, a much better estimate for p = P(V(S) <

vq) can be obtained. Taking N samples from F, the importance function ¢(S) = 285 weighs them appro-

G
priately to give an estimator, p, that will converge to p at the rate O(n_%). While this is true for standard

Monte Carlo as well, the variance of the estimator, 2, is much smaller with importance sampling. This is

13



because the samples that are used in the computations are much more frequent and closer in value; all key
aspects of having small variance (and corresponding small error bars).
Table 3 shows the results of the ordinary Monte Carlo estimation. Table 4 is the results of the same data

(i.e. the same sequence of random numbers) only with Importance Sampling.

N P |e= % rel. error(z5-) | samples | 62
10,000 | .0075 | .0017 23.0% 75 .00744
50,000 | .00908 | .0008484 9.34% 454 .00899

100,000 | .00901 | .0005976 6.63% 901 .00892
500,000 | .00883 | .0002645 3.00% 4413 .00874

TABLE 3. Regular Monte Carlo for II; with v, = 4300

N P €= % rel. error(z5-) | samples | &7
10,000 | .008907 | .000292 3.28% 5126 | .000213
50,000 | .008989 | .000132 1.47% 26013 | .000218

100,000 | .008932 | 9.292e-05 1.04% 51831 | .000216
500,000 | .008939 | 4.156e-05 0.45% 258740 | .00216
TABLE 4. Importance Sampling for II; with v, = 4300

This example shows just how effective this method of Importance Sampling can be. It took 50 times
as many samples using regular Monte Carlo to get an estimator with a better relative error than the one
obtained with Importance Sampling.

For an even more extreme value for v, the results are far more apparent. Table 5 shows what happens if
we set v, to 3300. For N = 10,000 the relative error of p was only 6% using Importance Sampling. As with
any Monte Carlo calculation, the error decreases as N increases. There is no table for the regular Monte
Carlo results because there wasn’t a single sample of S for which V' (S) < 3300 using the same data.

Events that rare are normally out of the scope of Value at Risk. In fact, many users of VaR like to have
their portfolios exceed their VaR levels a% of the time to validate their computations. Having a 2.79e-08
probability for an event one would actually like to see happen on a periodic basis is counter-productive.

The probabilities associated with the first portfolio, II;, could be been calculated analytically since the
value function, V' (S) is linear. The next example, I, shows how this works for a very non-linear portfolio
requiring a more difficult constrained optimization. Furthermore, the dimension is increased from d = 2 to
d = 8. The error bars (confidence intervals) for the estimators, p and p should still be O(n~2) since it is
still Monte Carlo. But the higher dimension means each sample takes longer to compute. Here, the added
efficiency of the Importance Sampling method is much more noticeable, especially as one waits for the results.

If a sample of size 10,000 (or even 5,000 or 1,000) gives a small relative error, it is far more efficient when
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N P €= % rel. error(%-) | samples 52
10,000 | 2.78e-08 | 1.688e-09 6.09% 5118 | 7.130e-15
50,000 | 2.73e-08 | 7.001e-10 2.57% 25859 | 6.129e-15

100,000 | 2.81e-08 | 4.742e-10 1.69% 51799 | 5.622e-15
500,000 | 2.79e-08 | 2.153e-10 0.77% 258641 | 5.7946e-15

TABLE 5. Importance Sampling for II; with v, = 3300

one takes computational resources into consideration. Even the added time for the constrained optimization
is far less than the time needed to compute an accurate estimator.

The new portfolio, II,, consists of 8 stocks with correlated returns and a variety of European puts and
calls (with long and short positions). The risk free interest rate! will be r = .07. The time frame will be 30

days, t = .0822. The correlation matrix, C, whose elements are (C);; = p;; is

1.0000  0.0497  0.1579  0.0648 0.0744 0.0498  0.0507  0.0583
0.0497  1.0000 —0.0843 —-0.1134 -—-0.1916 -0.4140 0.4857 —0.2857
0.1579 —0.0843  1.0000  0.1474  0.4641 -0.0192 -0.0889  0.5782
0.0648 —0.1134 0.1474 1.0000 —-0.2782  0.3582 —0.3612  0.0268
0.0744 —0.1916 0.4641 —0.2782  1.0000 —0.1920 -0.0101  0.5875
0.0498 —-0.4140 -0.0192  0.3582 —0.1920 1.0000 -0.0715 —0.0865
0.0507  0.4857 —0.0889 —-0.3612 —0.0101 —-0.0715  1.0000 —0.2561
0.0583 —0.2857  0.5782  0.0268  0.5875 —0.0865 —0.2561 1.0000

The parameters and positions of each asset can be seen in Table 6 and Table 7, respectively.

i 11213 ]4]5]|6 7 8
S;(0) (initial price) | 35 | 45 | 10 | 32 | 70 | 30 | 48 | 21
ui (growth rate) 151.09).12|.08|.04| .1 |.085|.09

o; (volatility) 2123 3| .2].14].11| .16 | .21
TABLE 6. Parameters of Portfolio I,

This sample portfolio was created to have a distinctly non-normal distribution of values at the terminal
time®. The empirical distribution of V(S(T)) = V(S(.0822)) can be seen in Figure 6. Il has no risk-less
bonds. Since there are short positions, it would normally be assumed that the cash from the sales would
have been invested. But since this paper focuses on random events and not trading strategies, the wisdom
of the portfolio should be ignored.

4Used for computing the prices of the portfolios’ options.
5The correlation matrix was created with the aid of semi-random (some numbers were modified) matrix R. Then RRT was

guaranteed to be symmetric and positive definite with all values between -1 and 1, yielding a suitable correlation matrix.
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i 1 2 3 4 ) 6 7 8
Shares -30| 13 | 100 | 21 | 100 | 300 | 230 | 49
i (puts) 0| o |200] 0 |-100] 0| 010
K, (strike price) - - 12 | - | 68 | - - | -
T,; (expiration time) | — - 109 -|10| - - | -
c; (calls) 0 [-400| O | 10 0 0 |-300| 0
K., (strike price) -1 49 | - | 30| - - | 50 | -
T., (expiration time) | — | .8 - | .62 - - 6 | -

TABLE 7. Positions of Portfolio Il
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FIGURE 6. Empirical Density for Vi, (S(.0822)).

The initial value is Vi, (S(0)) = 29581.30. The lower limit is v, = 26500. The probability of being at or
below this level 30 days into the future is p = P (V' (5(.0822)) < 26500). This was estimated with p and p
using, respectively, regular Monte Carlo and Importance Sampling as before. The sole minimum rate point
in for this value of v, is S, ~ (35,53,10,31.5,69,29,51,20)7 with f(S,,) ~ 1.2e-06. The results of the
Monte Carlo calculations were as follows.

Looking at the results for IIy with v, = 26500, it is clear that a sample of N = 5,000 with importance
sampling is better than a sample of N = 50,000 with regular Monte Carlo sampling.

Now that we’ve seen how effective Importance Sampling can be for a single Minimum Rate Point in

multiple dimensions, we will develop the general case for multiple MRPs.
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N P €= % rel. error(z5-) | samples | 62
1,000 | .009 .005973 66.4% 9 .008919
5,000 | .008 .002520 31.5% 40 .007936

10,000 | .0094 .001930 20.5% 94 .009316
30,000 | .009567 | .001124 11.7% 286 .009442
50,000 | .009420 | .000864 9.17% 471 .009931

TABLE 8. Regular Monte Carlo for Il with v, = 26500

N P €= j—% rel. error(z5-) | samples 52
1,000 | .009404 | .00131 13.9% 492 .0004281
5,000 | .008989 | .000576 6.41% 2588 .0004154

10,000 | .009244 | .000322 3.49% 5074 | .0002599
30,000 | .009551 | .000242 2.54% 15207 | .0004408
50,000 | .00937 | .000170 1.81% 25297 | .0003612

TABLE 9. Importance Sampling for II3 with v, = 26500

With one MRP, the density, f was shifted so that it’s mean corresponded with z,,. Let z,,,,...,Zm,, be
a set of M Minimum Rate Points and NV sample size for a Monte Carlo estimator. To compute an accurate
estimator, p, we must perform Importance Sampling near each of the z,;.

We first divide the N random samples into M parts so that
N=N;+---+ Npy. (14)

To make the notation simpler, take the set of nj where n; = 21:1 Nj. This enumerates the samples into

the following sequence®:

J
no:O,l,...,n1:Nl,...,n2:N1+N2,...,nj:ZNk,...,nM:N. (15)
k=1

Clearly the zeroth sample doesn’t exist but ng is needed for notation used below in equation 17 .

Recall that the set A, is {z | V(z) < v, }, the portfolio states that have a value less than v,. For the general
case, A, is subdivided into M pairwise disjoint subsets Aq,, ..., Aq,, With each A,, corresponding to an
Tpm;. The subsets, Ay, contain all points in set A, that are nearest to ,,;. That is, Ay, = {z s.t. |2y, —2| <

|Zm, — x|V k # j}. The indicator function, I4,, becomes a set of functions defined as:

1 ifze A,
Iy = (16)
0 otherwise.

SFor example, if we partition 100 samples into M = 3 parts with N1 = 60, N> = 30, and N3 = 10, we have ng = 0,n; =
60,n2 = 90, and ng = 100.
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Then equation 5 then becomes:

b= 5 . (XD & By [, @) = [ 1a, @)@z =3 [ 1., F()ds (17)
i=1 j=1
M M
_ O T 1)
;/(m%mﬂﬁwm 3.7, JMMA

1 JY) N~
~Yw X L (Egs =2 n=h
Recall that Ey is expectation with respect to the shifted density f.

The value p is the estimator we seek. Since the indicator functions, I Aaj> divide the domain into disjoint
sets, we have integrated over the entire domain and fully computed P(z € A,).

If we do not use the disjoint sets, it violates the basic equations of Monte Carlo estimators and the
computations produce erroneous results. In other forms of Monte Carlo, it is necessary to account for bad
samples by simply ignoring them in both the summations for the integrand and in accumulating the sample
size [12]. Here, N does not need to be decreased when a sample from one MRP shift falls into a valid
region for another MRP. Partitioning the sample space as we have says that even though a point may give
a portfolio value less than v,, it may not be important to the overall computation unless it does so only for
the MRP from which it came.

As with any Monte Carlo estimator, we need to find its error bar, €. This requires the Central Limit The-
orem and properties of the Normal Distribution [13]. Each estimator, §;, is N(p;, 5

E) where &;‘-’ is the sample

~2
variance of the estimators’. Since  is the sum of Normal random variables, p ~ N (Zj‘il Dj, Z]Ail X,—J]) The

error-bar, €, we use is two standard deviations of the distribution of the estimator. Therefore,

M
Pz € Ay)=prpte=) pj+2
j=1

with a roughly 95% level of confidence.
The only question remaining is how to choose the N;, the number of samples near each MRP. One could
use using number of samples from the f, should be proportional to the value of the original density at the
MRP, f(2m;). That is for a sample of size N, the 4" minimum rate point could be sampled
= SGm)
T £(Sm)

times. This is a purely heuristic method. Clearly one needs to sample more heavily near the more likely

(18)

MRPs. If there are two points and one is more likely to happen, the majority of the Monte Carlo integration
will occur near that one. But the other should not be ignored since you would not be integrating over the
whole domain. This approach is validated by the results of computations on the third portfolio, IIs.

"The variance 5? is analogous to the way the variance of the importance sampled estimator is defined in Section 2 for

equation 5.
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This portfolio, IT3 consists of 150 shares of stock, Si, and is short 400 puts on S;. The current price
of the stock is 20, the expected rate of returns, p; is .09 and its volatility is .2. The options have the
following parameters: Expiration Time, T" = .56, Strike Price, K = 20, Risk Free Interest Rate, r = .07.
The time-frame is .3288 years. There is only one underlying asset and the positions create a sort of straddle
that will lose money if the stock goes too far up or down. Whether or not this is a good investment strategy
is for another paper. But it does create a scenario with two Minimum Rate Points. The frequency of S; and

corresponding value function can be seen in Figure 7.

Portfolio #3
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o

FI1GURE 7. Frequency and Value of Il

To illustrate the effectiveness of this method with regards to multiple MRPs, we will begin with low
values for v,, which will have MRPs that are far away from each other. The two shifted densities will be
probabilistically distinct with very little crossover.

The lower limit, v,, will then be increased and the MRPs will be drawn closer to each other. More samples
will be rejected for falling outside of their MPR’s portion of the sample space despite yielding portfolio values,
V(S), that are less than v,. As v, increases, so does the accuracy of the regular Monte Carlo estimators.
This decreases the need for importance sampling, but it provides us a way to check the accuracy of the full
Importance Sampling method, which are still have greater accuracy for smaller sample sizes.

Table 9 shows values for v, = 1800 with regular Monte Carlo and Importance Sampling. The MPRs are
very far apart, with one for S,,, = 12.0 and the other at S,,, = 24.3. Using the notation of equation 14,
N; = .026N and N, = .974N. When Importance Sampling is used, the majority of the samples clearly
come from the region around S,,,. The estimators, p and p are within each others confidence intervals (+e)

at each value of N, demonstrating the validity of equation 17. The effectiveness of importance sampling is
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obvious since the relative error (the true measure of a Monte Carlo estimator) is less for p with N = 5000
than for p with 100,000 samples.

The “rejected” samples are the X,, that would have been in A, if not for the condition that they be
closest to the minimum rate point, Sy,;, about which their twisted density, fj, is created. In other words,
they are not part of subset, A,;, from equation 16. Since portfolio IT; uses two twisted densities that are
nearly disjoint, there are not too many rejections (around .6%). But they still must be rejected otherwise

the algorithm implied by the general importance sampling equation (17) would not be followed.

method N estimator | € = % rel. error(;5-) | samples | rejected

Reg. M.C. - p 5,000 | .010000 .002814 28.14% 50 N/A

10,000 | .009200 .001909 20.76% 92 N/A

20,000 | .009100 .001343 14.76% 182 N/A

50,000 | .009540 000869 9.11% 477 N/A

100,000 | .009050 .000599 6.61% 905 N/A

Imp. Samp. - p 5,000 | .008727 .000486 5.57% 2357 26
10,000 | .008977 .000349 3.89% 4778 63

20,000 | .008921 .000247 2.77% 9558 130

50,000 | .008880 | .000156 1.75% 23820 325

100,000 | .008861 | .000110 1.24% 47690 662

TABLE 10. Estimators for II3 with v, = 1800

The next computation uses v, = 2000. This has minimum rate points of Sy,, = 13.33 and S,,, = 23.49.
These are closer together and as Figure 7 suggests, the proportions for each MRP are more balanced than
in the previous example. Equation 18 gives N; = .206 N and N2 = .794N. Again, the estimators are within
each others confidence intervals as NV increases and € shrinks, implying that they both will converge to the
true value, p. But even ten times as many samples for regular Monte Carlo are not as accurate as Importance
Sampling.

The final example, in Table 12, shows that even in a situation where Importance Sampling isn’t really
necessary, it still works and is still more accurate. With v, = 2300, we have S,,, = 15.33, S,,, = 22.28,
N; = 414N, and N, = .586 N. The twisted densities are much more equally used than before and about 5%
of the samples are rejected.

The regular Monte Carlo estimator, p has a relative error of 5.75% for 10,000 samples. That is often a
target, so importance sampling is not really called for. But p is more than twice as efficient as p, attaining
greater accuracy with half as many samples. The sequences of both estimators appear to be converging to
the same value, implying that the importance sampling equations (17) can be used in a general situation

and will provide more accurate results while requiring fewer samples.
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method N | estimator | € = % rel. error(;%-) | samples | rejected
Reg. M.C. - p 5,000 | .022600 .004204 18.60% 113 N/A
10,000 | .021600 .002907 13.46% 216 N/A
20,000 | .021500 .002051 9.54% 430 N/A
50,000 | .020880 .001279 6.12% 1044 N/A
Tmp. Samp. - $ | 5,000 | .020409 | .001124 5.51% 2394 78
10,000 | .021089 .000812 3.85% 4871 155
20,000 | .021013 .000573 2.73% 9790 314
50,000 | .020917 .000362 1.73% 24358 752

TABLE 11. Estimators for II3 with v, = 2000

method N estimator | € = 2—\/% rel. error(g5-) | samples | rejected
Reg. M.C.-p | 5,000 | .105400 | .008585 8.24% 527 N/A
10,000 | .107900 | .006205 5.75% 1079 N/A
20,000 | .104700 | .004330 4.14% 2094 N/A
50,000 | .104160 | .002723 2.62% 5208 N/A
Imp. Samp. - | 5,000 |.102885 | .005170 5.03% 2509 262
10,000 | .102358 | .003616 3.53% 5083 509
20,000 | .103240 | .002578 2.50% 10055 1077
50,000 | .103157 | .001627 1.58% 25231 2565

TABLE 12. Estimators for II3 with v, = 2300

5. CONCLUSION

As we’ve shown, Importance Sampling can greatly increase the efficiency and accuracy of Value at Risk
computations. However, it should be reiterated that this was only valid for a a portfolio whose value at time
t has an explicitly defined density. Portfolios with more exotic, time-dependent options, and those based on
indices rather than d underlying variables do not necessarily lead to well-known distributions.

The general formula for Importance Sampling (17) was obtained through the analysis and expansion of
known equations and the partitioning of the sample space (14) was obtained heuristically. Perhaps this

method can be a starting point to computing VaR for more complex portfolios and other problems.
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APPENDIX A. NON-LINEAR OPTIMIZATION
In the general sense, constrained optimization with equality is about finding
min M (z) subject to g;(z) <0,i=1,...,j.
A

M (x) is referred to as the objective function and the g;(x) are the constraints. Since this appendix is about
constrained optimization, separate from Value at Risk and Importance Sampling, the functions M (z) and
g(z) will be used. The method described in this section was pooled from various techniques described in
Bertsekas [2], Gill [6], Jacoby [9], and Pierre [15].

For this project, M (z) is the opposite of the density, —f(S) (since it is easier to recognize a local minimum
than a local maximum), and the sole equality constraint g(z) is taken to be V' (S)—wv,. The equality constraint
can be used since the log-normal distribution is decreasing as it goes away from the global maximum and the
minimum rate point will always be on the constraint. The method described in this section can be modified
to account for inequality constraints.

The penalty method turns a constrained optimization problem into a global optimization problem of

finding

J
min &(z,¢) = M(z) + ¢, Y [g:()]’
i=1

where {¢y} is an increasing sequence, typically where c¢;y1 = mc, with m between 4 and 10. The local
minima of ®(z) converge (as k increases) to the constrained minima of M (z). Increasing the ¢ is referred
to as further penalizing M (z). The fine-tuning referred to earlier is setting up the conditions under which
¢ must be increased. Too little penalization creates a very “flat” ®(z,c) which and too much creates one
that is very steep away from the g;(x) and a “valley” along them. This can cause ill conditioning in matrices
used to find the minima of ®(x) and other numerical instabilities.

This is referred to as sequential unconstrained minimization, from the sequence of global optimizations
that must be performed. However, the global minimizations aren’t very exhausting since x,,(ck) is usually
an excellent starting point to minimize ®(z,cpy1). We are already close to the constrained minima, so we
increase the penalty and begin the global minimization of ®(z) from the previous point. The increased
penalizing of M (x) by going from ci to cx+1 makes x,, (cx+1) closer to satisfying one of the constraints.

Begin with
IV M ()]

" EL w@r)]

where V the gradient operator. Use a global optimization method to find z,,(co), a minimum of ®(z,cy).

If Vi, gi(zm(co)) > €, where € is a preset tolerance level, increase the penalty to ¢;. Continue increasing
the ¢ until z,,,(cg) is found that will both minimize ®(z,c¢) and satisfy the the constraints within a certain
level of tolerance. Of course with equality constraints, many times only one will be satisfied. But it will be
the one constraint that yields the infimum of the constrained minima if the problem were to be done for

each individual constraint. It cannot be overstated how important it is to have good values for the {cy}.
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Using other values may work in some cases, but proceed with caution. For the simple portfolio, I1;, ¢y was
approximately 1072,

A modified Newton’s method was used for the global optimization technique. For z € R, Newton’s
methods for the minimization of a function U(z) will immediately find the minimum of a quadratic approxi-
mation of U(x) at a, the current guess. Let x;,a; be the i*" element of the vectors # and a. The polynomial

is

d d d
Q) =U(@ + 32 75 i =0 + 3 > P (= )@ — )
If that isn’t the actual minimum, the routine is performed again with another quadratic approximation of
Ul(x).
Let z(®) be the k" guess for z,,. Compute, g*) = VU (z*) and H*®) = V2U(z*), the gradient and

Hessian matrices of U(z). Solve the linear system
H®G® = _g®).
The solution, p(*) is the minimum of a quadratic approximation of U (2(%)). Then set z(*+1) = z(*) 4 ¢(¥),

If g+ = VU (z*+1)) ~ 0 and H = V2U (2(**V) is positive definite, then z(*+1) = z, . a local minimum

of U(z). If not, repeat the process for z(*+1). One is hoping U (z*+1)) < U (z(*)).

2
FIGURE 8. Quadratic approximations of U(x) = @ atr=a

Newton’s methods can run into problems, so modifications must be made to insure convergence to ;.

If the quadratic approximation isn’t very accurate, the method can return an z(**1) that is very far from

(z+1)?

the minimum. An example would be U(z) = . The minimum is at U(1) = 4. As seen in Figure 8, a
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quadratic approximation might be good only near the minimum. The function ®(z,c) can often resemble
this. So, care must be taken that one does not allow z(**1) to be based on a bad approximation.
This can be done with a line search in the direction of ¢. Since ¢ points to the minimum of Q(z,z(®), it

is reasonable that it is in the right direction, but it may be too far or too close. So starting with ¢ = 1, let
a=U@@®), b=UE® +t¢®), c=U@® + 2t¢®).

If a > band b < ¢ then z**+1) = b, If ¢ <, the approximation goes too far, solet t = .5. If a > b > ¢, it
hasn’t gone far enough, so let ¢ = 2¢ and try again.

Also, if the domain of U(z) has any restrictions care should be taken that the line search does not attempt
to evaluate the function in that area. If necessary, let ¢ = .5t and start the search over. In the case of the
log-normal density, negative values are not permitted. And if the example in Figure 1 were to be used,
assuming negative values are off limits, the line search at z(¥) = 2 would have to cut ¢ in half several times
before proceeding. It would return a value much closer to x = 2 than z = 1. After a few steps of small values
of t, it would get to a point where the initial quadratic approximation is very accurate, like z(¥) = 1.2.

Another place where Newton’s method might fail is if one is in a region where H(z) is not positive definite.
When H(z) positive definite, it is the multi-dimensional equivalence the second derivative being positive. In
this case, (*t1) is the minimum of Q(x,z®)). If not, it could be a maximum since the method only finds
a point where the gradient of Q(z,2%)) is zero. Performing a line search will often return z**1 so that
U(z*+D) > U(z™®). To counter this problem, Jacoby recommends the following: if ¢(*) - g(z(¥)) > 0, set
¢'®) = —¢*). Then proceed with the line search for the best magnitude of ¢‘*).

This is a fairly robust minimization method. The most computationally intensive parts are evaluating the
functions and solving the linear system. There are ways to speed this up which are mentioned in [7]. And
this is obviously not the only non-linear global optimization method.

A safeguard should be in place to guard against in ill conditioned Hessian matrix. If the process of
solving the linear system, Hq = —g, has zero pivots, division by zero can occur and ruin the computations.

To see how this is possible, return to the example of U(z) = @

skt = gk) _ [[]],’,((:”T((Z)))) Since U"(z) = O(z~!), evaluating it very close to z = 0 could cause problems in

. In one dimension, the algorithm is

floating point arithmetic.

Barring a failure of this form, the full constrained optimization method will return a local minimum, or
at least a point that satisfies the terminating conditions. When searching for the minimum rate point(s),
it is possible that different local minima are found for different starting points, z(®). Some may be valid
minimum rate points, in the case of non-linear constraints, g;(x). In some cases, ®(z,c) may be very flat
so that H(z) is positive definite, the gradient is suitable small and a constraint is sufficiently satisfied. But
the minimum rate point, z,,1 might be insignificant compared to another, T, i.6. f(Tm1) € f(Tmo) for
the density, f. To find as many potential minimum rate points as possible, a method that works that one

samples the initial guess, (9, from F and then implement the constrained optimization and do this several
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times. Tt could be that a particular z(%) leads the optimization routine to a bad point. For example, when
trying to find the most likely way that V(S) = v,, it might go in a direction where the constraint would
be satisfied if an S; is negative. This would should cause the algorithm to terminate, returning a bad value
for S,,. This is more likely to happen in the case of a v, that represents a large loss or in a portfolio with
options. And looking at Figure 9, a graph of of ®(S, ¢), for II;, one can see that the objective function being
optimized forms a basin along the constraint. If 2(%) is the first step that enters this basin and ||[V®(z*, ¢t )||
is sufficiently small, the algorithm might terminate, assuming it has found a minimum when in fact it needs

to take another step or two along the path of the basin.

x 10

Stock #2 0 5

Stock #1

FIGURE 9. Penalty function, ®(S,¢) for II; with ¢ = .1,v, = 4300

To do the constrained optimization with a portfolio with options, recall that the probability density

function of S(t) is for a; = 1og(S;(0)) + (ki — 30°)t and (X);; = pijoi0;t,

1
18 = s Tt ™

is that which must be maximized subject to the constraint of the value function,

%(S—a)TE_l (S —a)

d
V(S(t)) = Boe™ + Y _ 5iSi(t) + c;C(Si(t), 0,7, Keyiy Tei) + piP(Si(t), 04,7, Kp iy Tpi)-
i=1
Using the penalty method and changing the sign of f to make it a minimization problem,

8(S,c) = —f(S(1)) + ¢ (V(S(1)) — va)”

is the objective function to which Newton’s method for global optimization must be applied.
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To evaluate the gradient vector and Hessian matrix of ®(S, ¢) one must use the sensitivies, or the “Greeks”,
for the option components of V(.S). The ones required for this model are
A _OP() , _8C() . _&P() 5°C()
PETS; TT T8S; 98?7 0S?

The exact formulae for European puts and calls can be found in texts such as Hull [8] or Wilmot [20]. If

Iy, =

and I'¢; =

a closed form expression for the Greeks isn’t obtainable, one can always use finite differences. It should be
noted that for the expanded stock model that includes stochastic volatility and interest rates, the vegas and

rhos of the options would be required.

Then
V&(S,c)i = =f(5)fs; +2¢[V(S) = va] Vs,
where
_ov(S) _ . . .
Vs, = 3—5, =8 +¢ilc; + il

And for the Hessian matrix,

(V2®8(S,0))i; = — (f(S)fsis; + fsifs;) +2¢(V(S) —va) Vs, s; + Vs, Vs;

with

0V (S) el (S) +pilp(S) i=3j

VS,'SJ' = =5 a5 = .
08;085; 0 oy

Of course fs, and fs,s; are the partial derivatives of f evaluated at S and can be (carefully) derived with

calculus.

Returning to the portfolio, IT; with v, = 4300, the constrained optimization of the f(.5), the multi-variate

log-normal density, subject to V(S) — v, = 0 returns

14.8076
" 20.7886 |

This is the global minimum of ®(S,¢) = —f(S) + ¢(V(S) — vs)2. A graph of this can be seen in Figure 9.
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APPENDIX B. QUANTILE ESTIMATION

The importance sampling method presented here is in the spirit of Value at Risk (VaR), it is about
estimating p = P(V < wv,) for a given v,. VaR is concerned with the other perspective, given «, what is v,
such that P(V < v,) = a. If one is to make no assumptions about the distribution of V', and with portfolios
of options, that is often the case, there are a few methods of quantile estimation related to Monte Carlo for
finding an estimator, 9, for v,.

The first is order statistics [5]. This is taking a sample of random variables, X7, Xs,..., Xy and sorting
them into Xi.nx, Xa2:n,..., Xn.n. The obvious choice for @, is X[j9oan):n Where [-] is the largest integer
operator. However, like all statistics, this needs a confidence interval that will ideally shrink as N increases.
Many writings on VaR do not mention this when discussing Monte Carlo. They just assume that for the
valuations, VD, V& VN V40,88 will work perfectly well. In many cases it does since N is usually
quite large. But it is a statistical estimator and does require a confidence interval.

Information on the distribution of order statistics can be found in [5]. For a random variable, X, with
distribution F(z) let z, be the value of x such that P(X < z,) = a. If X;,X,,..., XN are a sample from
F, and X;.n,Xo.N,...,XN.n are the corresponding order statistics then the interval (X,.n, Xs.n) covers
o with probabilty

Iy(ry,N—r+1)—I4(s,N —s+1).
Here I,,(-) is the incomplete Beta function, defined by
L(b,) = o A =0Tt
Jo 1A —t)etdt
Fortunately, this can be calculated in Matlab. With N = 10,000, and a = .05, the probability that x g5

is in the interval (X455.10,000, X545:10,000) i .9610. If oo = .01, then (Xs0:10,000, X120:10,000) forms a 95.54%
confidence interval for x ¢;.

VaR is usually given for the first or fifth percentile. For Vi, V,...,Vigoo0 sampled from II, in the
last section, the eight dimensional portfolio. Figure 1 shows the empirical distribution function of the V;.
Using the 100th and 500th order statistic for the respective levels of Value at Risk gives v g1 = 26,654 and
v.05 = 27,510. The confidence intervals associated with v g1 is (27437, 27560) for a relative error of .26%. In
this case the relative error was taken to be % For v g1, the confidence interval is (26410, 26660) for
a relative error of .47%.

Another way of estimating quantiles is the Robbins-Monro stochastic approximation method [16]. Without
going into details, this method is not very suitable for the problems in this thesis. It is better for problems
where data is scarce which is not our case. It is has problems with extreme quantiles. However, in Tierney

[18] a method is laid out that does work for quantiles in the tails of a density as well as providing error bars.
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FIGURE 10. Empirical Distribution of of Vi1, (S5(.0822))
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