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A FAST ADAPTIVE MULTIPOLE ALGORITHM
FOR PARTICLE SIMULATIONS*
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Abstract. This paper describes an algorithm for the rapid evaluation of the potential and force fields
in systems involving large numbers of particles whose interactions are described by Coulomb’s law. Unlike
previously published schemes, the algorithm of this paper has an asymptotic CPU time estimate of O(N),
where N is the number of particles in the simulation, and does not depend on the statistics of the distribution
for its efficient performance. The numerical examples we present indicate that it should be an algorithm of
choice in many situations of practical interest.
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1. Introduction. The evaluation of Coulombic and gravitational interactions in
large-scale ensembles of particles is an integral part of the numerical simulation of a
large number of physical processes. Typical examples include celestial mechanics,
plasma simulations, the vortex method in fluid dynamics, and the solution of the
Laplace equation via potential theory (see 1]-[3], [8], 10]). In such cases, the potential
has the form

(1) (I) external + (I) local "" (I)far,

where Cloca is a rapidly decaying function of distance (such as the Van der Waals
potential in chemical physics), (I) external is a function which is independent of the
number and relative positions of the particles (such as an external gravitational field)
and (I)fa is Coulombic or gravitational.

In the numerical evaluation of fields of the form (1), the cost of computing the
terms (I) external and @ocal is of the order O(N), where N is the number of particles in
the ensemble. Indeed, (I) external is evaluated separately for each particle, and @oca
decays rapidly, involving the interactions of each particle with a small number of
nearest neighbors. Unfortunately, evaluation of the term far, if done directly, requires
order O(N2) operations, since the Coulombic potential decays slowly, and the interac-
tions between each pair of particles have to be taken into account. In many situations,
in order to be of physical interest, the simulation has to involve thousands of particles
(or more), making the estimate O(N2) excessive in some cases, and prohibitive in others.

Several different approaches have been used to reduce the cost of the Coulombic
part of the computation. For a detailed discussion of these algorithms, we refer the
reader to [7] and to the original papers [1], [2], [8], [10]. Here, we just observe that
each of the algorithms [1], [2], [7], [8], [10] imposes strong requirements on the
statistics of the charge distribution. In particular, the methods of [1], [7], and [8]
require that the distribution be reasonably uniform in a square-shaped region of interest,
the algorithm of [10] assumes that the charges are located on a curve in R2, and the
algorithm of[2] works fairly well for highly clustered distributions, but fails for uniform
ones.
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In this paper, we introduce an algorithm for the rapid evaluation of the potential
and force fields of large-scale ensembles of particles. To evaluate all Coulombic
interactions of N particles in R2, the algorithm requires an amount of work of the
order O(N), and this estimate does not depend on the statistics of the distribution.

The procedure described here is an adaptive version of the algorithm of [7]. In
the following section, we introduce the analytical apparatus to be used. Section 3
contains a detailed description of the algorithm and its complexity analysis, and in
4 we present numerical experiments demonstrating the actual performance of the

scheme.
Remark 1.1. Given a collection of points Zl,’", z, in C, the Hilbert matrix

associated with the points {zi} is defined as follows:

1
A0 for j, A, 0.

Z Zj

It immediately follows from Lemma 2.1 and formula (3) that evaluating the fields of
a set of charges of strengths q, , q located at the points z, , z at these same
points is equivalent to applying the associated Hilbert matrix to the vector (q, , q,).
Therefore, the algorithm ofthe present paper may be viewed as an order O(n) procedure
for applying an n x n Hilbert matrix to an arbitrary v.ector. Recently, several papers
have been published on this subject, also referred to as the Trummer problem (see
[6], [4], [5], [9]).

2. Analytical tools. We consider a two-dimensional physical model consisting of
a set of particles whose pairwise interactions are described by Coulomb’s law. More
precisely, suppose that a point charge of unit strength is located at the point Xo
(Xo, Yo) R. Then, for any x (x, y) Z\{Xo}, the potential and electrostatic field due
to this charge are described by the expressions

(2) - og (llx- XoH)
and

(X Xo)
(3) Exo(X)--iix_ xoll =,

respectively.
It is well known that the function bxo is harmonic in any region not containing

Xo, and that for every harmonic function u, there exists an analytic function w:C C
such that u is the real part of w. In particular, we have

(4) bx0(x) Re (-log (z- Zo)).
In the remainder of this paper we shall work with analytic functions in C, making no
distinction between a point (x, y)R2 and a point x/iyC. Following standard
practice, we will refer to the analytic function log (z) as the potential due to a charge.
For more complicated charge distributions, we will use other analytic functions and
we will also refer to them as potentials.

Detailed proofs of Lemmas 2.1-2.4 and Theorem 2.1 below can be found in [7].
LEMMA 2.1. If u(x, y) Re (w(x, y)) describes the potentialfield at (x, y), then the

force field is given by
Vu (Ux, Uy) (Re (w’), -Im (w’)),

where w’ is the derivative of w.
The following theorem gives the expression for the multipole expansion of the

potential due to a set of charges and an estimate for the remainder of this expansion
after k terms.
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THEOREM 2.1. Suppose that m charges of strengths qi, 1,- ., m are located at
points zi, i= 1,..., m, with [zil<r. Then, for any zC with Izl> r, the potential qb(z)
is given by

(5) akb(z) Q log (z)+ k -,
=1

where

_qiZk(6) Q q, and ak
i--1 i=1 k

Furthermore, for any p >-_ 1,

(7) b(z) Q log (z)- ak--k=lZ

p+l

Z

where

(8) c
Z

We will use a simple example to demonstrate how multipole expansions can be
used to speed up calculations with potentials. Suppose that X {xl, x2, , x,} and
Y {Yl, Y2,"" ", Yn} are two finite sets of points in C. We say that the sets X and Y
are well separated (Fig. 1) if there exist two points Xo, yo C and a real number r > 0
such that

Ix xol < r for all 1,. , m,

ly-yol < r for all i= 1,. ., n,

IXo- yol > 3 r.

Suppose now that charges of strengths {ql, q2,"’, q,} are located at the points
{x, x2,’", Xm} and that we wish to evaluate the sum

(9)
i=1

for all j 1, 2,. ., n. Clearly, this requires order n. m work (evaluating m fields at n
points). Now suppose that we first evaluate the coefficients of a p-term multipole

FIG. 1. Well-separated sets in the plane.



672 J. CARRIER, L. GREENGARD, AND V. ROKHLIN

expansion due to the charges {ql, q2,’’’, q,,} about Xo, using Theorem 2.1. This
requires a number of operations proportional to m.p. Evaluating the resulting multipole
expansion at all points yj requires order n.p work, and the total computational effort
is of the order O(m.p+ n.p). Furthermore, due to (7),

P ak [! p

(10) E b,, (yj) Q log (y Xo) E < A
,=1 k=l (Y Xo) k -]

and in order to obtain a relative precision e, p must be of the order -log2 (e). Once
the precision is specified, the amount of computation is reduced to O(n + m), which
is significantly smaller than m.n for large m and n.

The following three lemmas describe translation operators for multipole and power
series expansions in N, and provide error bounds allowing the manipulation of these
expansions in the manner required by the algorithm. The first, Lemma 2.2, supplies a
mechanism for shifting the center of a multipole expansion.

LEMMA 2.2. Suppose that

(11) ak(z) ao log (z- Zo)+
=1 (Z- ZO) k

is a multipole expansion of the potential due to a set of m charges of strengths
ql, q:, qm, all of which are located inside the circle D of radius R with center at Zo.
Then for z outside the circle D1 of radius (R + [Zol) and centered at the origin,

(12)

where

qb(z) ao log (z)+ --ZT,/=1

(13)
k--1 k 1 -ao--

with lk) the binomial coefficients. Furthermore, for any p >= 1,

(14) ck(z)-aolog(z)-
l=lZ

IZol + R
Z

p+l

where

(16)

and

I. Zo k=l Zo
k k- 1

(--1)k for >- 1.

akbo ao log (-Zo) +
k=1 ZO

k (- 1)k

(15) c(z) Y’. b. z l,
/=0

with A defined in Theorem 2.1.
Lemma 2.3 describes the conversion of a multipole expansion into a local (Taylor)

expansion in a circular region of analyticity.
LEMMA 2.3. Suppose that m charges ofstrengths ql, q2, q,,, are located inside

the circle D1 with radius R and center at Zo, and that Izol > c / 1 )R with c > 1. Then the
corresponding multipole expansion (11) converges inside the circle D2 ofradius R centered
about the origin. Inside D2, the potential due to the charges is described by a power series"
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Furthermore, for any p->max (2, 2c/(c-1)), an error bound for the truncated series is
given by

(18)
p

4(z)- Z b," z’
1=0

A(4e(p+ c)(c+ l)+ c2) () p+I

c(c- 1)

where A is defined in Theorem 2.1 and e is the base of natural logarithms.
Remark 2.1. In Theorem 2.1, the charges {ql, q2,"" ", q,,} can be replaced with

dipoles, or with finite linear combinations of multipoles of the form

(19) aolog (z)+ i"
i=lZ

In this case, the form of the expressions (5)-(8) is unchanged. However, the coefficients
Q, A, a, {ak}, k= 1, 2,’-’, now depend on ao, a1,"’, am, and can be easily deter-
mined by repeated differentiation of (6) with respect to zi, i= 1, 2,. ., m.

Remark 2.2. If in Lemma 2.3, the field b(z) is generated by a single charge located
at Zo, then the only nonzero term in the expansion (11) is ao, and ao ql. Similarly,
if the field b(z) is generated by a single dipole located at Zo, then the only nonzero
term in the expansion (11) is al, and a ql.

Lemma 2.4 provides a formula for shifting the center of a local expansion. The
expression (20) below is an exact one, and no error bound is needed.

LEMMA 2.4. For any complex Zo, z, and {ak}, k 1, 2,’’’, n,

(20) k=O ak(Z--Zo)k=l=O ( ak()(--zo)k-t)
Remark 2.3. One of the advantages of using expansions of the forms (5) and (15)

for representing potential fields is the fact that these expansions possess simple
analytical derivatives. This permits the force fields to be obtained from the potentials
by Lemma 2.1, without the use of numerical differentiation and the attendant loss of
accuracy.

3. The adaptive multipole algorithm.
3.1. General strategy. In this section, we describe an adaptive algorithm for the

rapid evaluation of the potential and electrostatic fields due to arbitrary distributions
of charges and/or dipoles. The main strategy is similar to that described in [7]. It
consists of clustering particles at different spatial lengths and using multipole
expansions to evaluate the interactions between clusters that are sufficiently far away
from each other. The interactions between nearby particles are computed directly.

To be more specific, consider the domain depicted in Fig. 2. N charges are
arbitrarily distributed in R2, and, without loss of generality, we can assume that all of
them are located inside a square with sides of length one, centered about the origin
of the coordinate system. This square will be referred to as the computational box.

Given a machine precision e, we set the number of terms in all expansions to
p [log2 (e)[, and specify that no interactions be evaluated via multipole expansions
for groups of particles that are not well separated. This is precisely the condition
needed for the error bounds (7), (14), (18) to apply with c-2. In order to impose
such a condition, we introduce a hierarchy of meshes which refine the computational
box into smaller and smaller regions (Fig. 3). Mesh level 0 corresponds to the entire
computational box, while mesh level + 1 is obtained from mesh level by subdividing
each region into four equal parts. A tree structure is imposed on this mesh hierarchy,
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FIG. 2. Nonuniform distribution of charges in the computational cell

FiG. 3. The hierarchy of meshes partitioning the computational cell

so that if b is a fixed box at level l, the four boxes at level + 1 obtained by subdividing
b are considered its children. The four children of the same box will be referred to as
brothers.

However, unlike the algorithm of [7], we do not use the same number of levels
for all parts of the computational box. Instead, some integer s > 0 is fixed, and at every
level of refinement we subdivide only those boxes that contain more than s charges.
Generally, this results in a large number of empty boxes at finer levels of the procedure.
At every level of refinement, a table of nonempty boxes is maintained, so that once
an empty box is encountered, its existence is immediately forgotten and it is completely
ignored by the subsequent process.

OBSERVATION 3.1. It should be noted that for a fixed machine precision e, only
certain classes of particle distributions can be modeled, independently of the algorithm
used. Namely, suppose that two charges c, c in a distribution have positions x, x2
and that [[x- x2[[ < e/2. IIx / x211. Obviously, under these conditions the particles c, c2
cannot be discerned, and no meaningful simulation is possible. Since the smallest
discernible distance between two particles depends on the position of these particles



MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS 675

in the computational cell, such position-dependent condition cannot be imposed a
priori. In order to make the simulation possible, we will simply require that rmi > e,
where /’min is the smallest distance between any two particles in the simulation, and e
is the machine precision. Therefore, the maximum number of ancestors for any box
in the computational cell is p Ilog2 (e) I.

3.2. Notation. In this section, we introduce several definitions to be used in the
description of the algorithm below.

For any subset A of the computational box, T(A) will denote the set of particles
that are contained in A.

Bt is the set of nonempty boxes at level /. Bo consists of only the computational
box itself. We will denote by nlev the highest level of refinement at any point.

If a box contains more than s particles, it is called a parent box. Otherwise, the
box is said to be childless.

A child box is a nonempty box resulting from the division of a parent box into four.
Colleagues are adjacent boxes of the same size (at the same level). A given box

has at most eight colleagues (Fig. 4).

FlG. 4. Box (b) and its colleagues (c).

With each box b at level we will associate five lists of other boxes, determined
by their positions with respect to b. Following are the definitions of these lists (Fig. 5).

List 1 of a box b will be denoted by Ub; it is empty if b is a parent box. If b is
childless, Ub consists of b and all childless boxes adjacent to b.

List 2 of a box b will be denoted Vb and is formed by all the children of the
colleagues of b’s parent that are well separated from b.

List 3 of a box b will be denoted by Wb. Wb is empty if b is a parent box, and
consists of all descendants of b’s colleagues whose parents are adjacent to b, but who
are not adjacent to b themselves, if b is a childless box. Note that b is separated from
each box w in Wb by a distance greater than or equal to the length of the side of w.

List 4 of a box b will be denoted by Xb and is formed by all boxes c such that
b We. Note that all boxes in List 4 are childless and larger than b.

List 5 of a box b will be denoted by Yb and consists of all boxes that are well
separated from b’s parent.
b will denote the p-term multipole expansion about the center of b of the field

created by all particles in T(b).
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FG. 5. Box (b) and the associated Lists 1-5.

b will denote the p-term local expansion about the center of box b of the field
created by all particles located outside T(Ub)LJ T(Wb). b(r) is the result of the
evaluation of the expansion b at a particle r in T(b).

Ib will denote the local expansion about the center of b of the field due to all
particles in T(Vb).

Ab will denote the local expansion about the center of b representing the field
due to all charges located in T(Xb).

ab(r) will denote the field at r T(b) due to all particles in T(Ub).
fib(r) will denote the field at r T(b) due to all particles in T(Wb).

3.3. Informal description of the algorithm. The algorithm can be viewed as a
recursive process of subdividing the computational cell into increasingly finer meshes
(see Figs. 2-3). For a fixed box b at level l, the computational cell is partitioned into
five subsets, Ub, Vb, Wb, Xb, and Yb, and the following procedure is applied to the
sets of particles T(Ub), T(Vb), T(Wb), T(Xb), and T(Yb).

(1) For each childless box b we combine the particles in T(b) by means of
Theorem 2.1 to form a multipole expansion b. For each parent box B we use Lemma
2.2 to merge the multipole expansions of its children bl, b2, b3, b4 into the expansion

(2) The interactions between particles in T(b) and T(Ub) are computed directly.
For each particle r T(b), the result of these calculations is ab(r).

(3) We use Lemma 2.3 to convert the multipole expansion of each box in Vb into
a local expansion about the center of b, and add the resulting expansions to obtain Fb.

(4) For every particle r in b, we compute the field b(r) due to all particles in
T(Wb) by evaluating the p-term multipole expansions w of each box w in Wb at r,
and adding them up.

(5) We convert the field of each particle in T(Xb) into a local expansion about
the center of box b (see Remark 2.1), and add up the resulting expansions to obtain

(6) We shift the center of the local expansion Fn of b’s parent B to the centers
of b and the other children of B by means of Lemma 2.4. We add the local expansion
obtained to Fb.

(7) For each box b, we evaluate the sum of the local expansions Fb and Ab at
every particle r in b and add the result to Otb(r and fib(r) obtaining the field at r.
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Remark 3.1. Note that in the above procedure we never explicitly evaluate the
interactions between particles in T(b) and those in T(Yb). Indeed, since all boxes in
Yb are well separated from b’s parent, the interaction between T(Yb) and T(b) have
been accounted for during steps (3) and (5) at a coarser level.

3.4. Formal description of the algorithm.

ALGORITHM.
Comment [Choose main parameters.]

Choose precision e to be achieved. Set the number of terms in all expansions to
p log: (e).

Choose the maximum number s of particles in a childless box.

Stage 1

Comment [Refine the computational cell into a hierarchy of meshes.]
do 1= 1,2,
do bi B

if bi contains more than s particles then
subdivide bi into four boxes, ignore the empty boxes formed,
add the nonempty boxes formed to Bl+l.

end if
end do

end do

Comment [We denote by nlev the highest level of refinement, and by nbox the total
number of boxes formed in Stage 1.]

Stage 2

Comment [For every box b at every level l, form a multipole expansion representing
the field outside b due to all the particles contained in b.]

Step 2.1
Comment [For each childless box b, use Theorem 2.1 to combine all charges inside b

to obtain the multipole expansion about the center of b.]
do = l,nbox

if b is a childless box, use Theorem 2.1 to form a p-term expansion b,
representing the field outside b due to all charges located in bi.

end do

Step 2.2
Comment [For each parent box b, use Lemma 2.2 to obtain the multipole expansion

b by shifting the centers of the expansions of b’s children to b’s center,
and adding the resulting expansions together.]

do = nlev-l,l,-I
do b B

if b is a parent box then
use Lemma 2.2 to shift the center of each of bi’s child box’s expansion to
b’s center. Add the resulting expansions together to obtain the expansion
(I)bi

end if
end do

end do
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Stage 3
Comment [For all particles in each childless box b, compute the interactions with all

particles in T(Ub) directly.]
do l,nbox

if bi is childless then
for each particle r in bi, compute the sum ab(r) of the interactions between
r and all particles in T(

end if
end do

Stage 4

Comment [For each box b, use Lemma 2.3 to convert the multipole expansions of all
boxes in Vb into local expansions about the center of box b.]

do l,nhox
do bjE Vbi

Convert multipole expansion bj about bj’s center into a local expansion
about bi’s center using Lemma 2.3. Add the resulting expansions to obtain Fb,.

end do
end do

Stage 5

Comment [For each childless box b, evaluate the multipole expansions of all boxes
in Wb at every particle position in b.]

do l,nbox
if bi is childless then

Evaluate the multipole expansion bj of each box bj Wb, to obtain
for every particle r in box hi.

end if
end do

Stage 6

Comment [For each box b, use Lemma 2.3 and Remark 2.2 to form local expansions
about the center b representing the field due to all particles in T(Xb).

do l,nbox
Convert the field of every particle in T(Xbi into a local expansion about the
center of b.

end do

Stage 7

Comment [Use Lemma 2.4 to shift the centers of local expansions of parent boxes to
the centers of their children.]

do 1,nlev-I
do bi BI

if bi is a parent box then
by using Lemma 2.4, shift the center of expansion Fbi to the center of each
of bi’s children b. Add the resulting expansion to Fbj.

end if
end do

end do
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Stage 8

Comment [For each childless box b, obtain b as the sum of local expansions Fb and
Ab. For each particle r in a childless box b, evaluate xIb(r and obtain the
field at r by adding b(r), ab(r), and fib(r) together.]

do l,nbox
if bi is childless then
Compute b, Fb, d- Ab,.
For each particle r in bi, evaluate xIb,(r).
Add b,(r), ab,(r), and flb,(r) to obtain the field at r’s position.

end if
end do

3.5. Complexity analysis.

Stage
number

Stage 1

Stage 2
Step 2.1

Step 2.2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Operation
count

p3N/s

22pNs

80p3N/s

32p2N

32p2N

lOp3N/s

Np+ N

Explanation

Each particle is assigned to a box at every level. There are at
most p levels of refinement.

Each particle contributes to the p-term expansion of one
childless box.

The center of the expansion of each box is shifted to the
center of the parent box. The number of boxes is bounded
by 5pN/s (see Lemma A.5), and each shift requires p2/2 work
(see Lemma 2.2).

Each childless box b contains less than s particles and the
work required to compute all interactions between particles
in two boxes is s2/2 when Newton’s third law is used. The
number of boxes in all List l’s is bounded by 44pN/s (see
Lemmas A.1 and A.4).

For each box, List 2 has no more than 32 entries (Lemma
A.2). There are at most 5pN/s boxes (Lemma A.5) and each
shift requires p2/2 work (Lemma 2.3).

Each childless box b contains less than s particles. The interac-
tions of all particles in b and a box in Wb require ps work.
The total number of boxes in List 3 is bounded by 32pN/s
(Lemmas A.3 and A.4).

Each box in Xb contains less than s particles. The interactions
between all particles in a box in Xb and box b require ps
work. The total number of boxes in List 4 is bounded by
32pN/s (Lemmas A.3 and A.4).

Each box has at most four children. There are less than 5pN/s
boxes (Lemma A.5) and a shift requires p2/2 work (Lemma
2.4).

A p-term expansion is evaluated at each particle position. The
sums require an extra N work.
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Summing up the CPU times for all stages above, we obtain the following time
estimate:

(21) T= N(92.5ap3/s+64bp2+22cps+3dp+e),
where the coefficients a, b, c, d, e depend on the computer system, language,
implementation, etc. However, the parameter s (maximum permitted number of parti-
cles in a childless box) in (21) is not determined by the problem and can be chosen
so as to minimize the resulting CPU time estimate. Differentiating (21) with respect
to s, we obtain

(22) Smin x/92.5a/18c p
and

(23) Tmin N(ap2+p+),) N(a log] (e)+fl[log2
with the constants a, fl, ), determined by the computer system, language, implementa-
tion, etc.

The storage requirements of the algorithm are determined by the number of
nonempty boxes which is bounded by 5pN/s. For each box we store the coefficients
of a p-term multipole expansion and a p-term local expansion. The positions and
charges of each particle also have to be stored. Therefore, the storage requirements
are of the form

(24) S= N(lOfp/s+3g)= N(10fllog2 (e)l/s+3g),
where the coefficients f, g depend on the computer system, language, implementation,
etc.

4. Numerical results. A computer program using the algorithm described in the
preceding section has been implemented, and numerical experiments have been per-
formed on a VAX-8600.

To evaluate the robustness of the adaptive scheme, we considered a variety of
particle distributions. For each distribution, the corresponding fields were computed
in four ways: by the algorithm of the present paper, by the algorithm described in [7],
and directly in single and double precision. The direct calculation of the field in double
precision was used as a standard for comparing the relative accuracies of the other
three methods. In these experiments, the number of particles varied between 100 and
25,600, with charge strengths randomly assigned between 0 and 1.

The results are summarized in Tables 1-4. The first column of each table contains
the number ofparticles N for which calculations have been performed. In the remaining

TABLE
Uniformly distributed particles, p 20 and s 30.

N Talg Tun Tdi Ealg Eun Edi Salg Sun

100 0.15 0.47 0.15 1.7 10-6 4.0 10-7 1.7 10-6 866 4179
200 0.43 0.65 0.61 9.3 10-7 4.3 10-7 4.4 10-7 2503 5479
400 1.01 1.94 2.47 7.0 10-7 6.4 10-7 6.4 10-7 3763 16847
800 2.45 2.78 10.27 4.1 10-7 4.0 10-7 4.7 10-7 11203 22047
1600 5.37 8.56 42.35 3.7 10-7 4.2 10-7 5.4 10-7 15923 67519
3200 10.60 11.80 152.95 5.0 10-7 5.3 10-7 8.7 10-7 44423 88319
6400 23.38 33.49 601.18 7.0 10-7 5.4 10-7 1.3 10-6 65907 270207
12800 45.34 48.02 2433.20 6.0 10-7 4.9 10-7 1.6 10-6 176631 353407
25600 96.72 137.68 9694.45 8.3 10-7 8.9 10-7 2.2 10-6 268723 1080959
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TABLE 2
Particles distributed on a curve, p 17 and 30.

N Tmg Tun Tdi Ealg Eun Edi Salg Sun

100 0.11 0.38
200 0.30 0.54
400 0.64 1.31
800 1.46 3.13
1600 2.66 5.94
3200 5.93 12.50
6400 12.42 29.66
12800 25.11 79.47
25600 47.53 152.07

0.16 3.4 10-5 3.2X 10-5 3.4x 10-5 1149
0.57 8.9 X 10-6 9.3 x 10-6 8.9 x 10-6 2694
2.29 5.6x10-5 5.6x10-5 5.6x10-5 5103
9.30 9.4 10-5 9.5 10-5 9.5x 10-5 10133

37.41 2.0 10-5 2.0x 10-5 2.0 10-5 19241
149.21 7.8 10-6 8.7 10-6 8.8 10-6 40055
597.95 4.2 10-5 4.2 10-5 4.2 10-5 84429

2425.48 8.7 10-5 8.7 10-5 8.8 10-5 167421
9581.20 8.9 10-5 9.1 10-5 8.9 10-5 332927

3927
5227
15827
21027
63427
84227

253827
337027
1015427

TABLE 3
Highly nonuniform distribution ofparticles, p 17 and s 30.

N Tang Tun Tdi Ealg Eun Edi Salg Sun

100 0.19 0.45 0.15 2.710-6 1.0xl0-5 2.810-6 2508
200 0.48 0.74 0.57 6.9 10-6 7.6 10-6 6.9 10-6 4014
400 1.13 2.26 2.33 1.9 10-6 9.0 10-6 1.9 10-6 8307
800 2.25 5.15 9.34 4.3 10-6 6.0 10-6 3.7 10-6 13353
1600 5.09 16.17 37.74 2.4 10-6 1.6 10-6 2.1 10-6 25588
3200 9.98 50.23 149.86 3.7 10-6 1.4 10-6 1.7 10-6 46806
6400 21.80 177.13 606.14 5.8 10-6 4.0 10-6 5.9 10-6 90505
12800 41.93 663.21 2420.33 4.0 10-6 4.0 10-6 4.2 10-6 186226
25600 90.05 2317.93 9622.63 2.9 10-6 3.0 10-6 4.0 10-6 373639

3927
5227
15827
21027
63427
84227

253827
337027
1015427

TABLE 4

Nonuniform distribution ofparticles in a region of complicated shape, p 17 and s 30.

N Tang Tun Tdi Ealg Eun Edi Salg Sun

100 0.15 0.43 0.15 4.3 10-5 5.5 x 10-5 5.0x 10-5 1145
200 0.39 0.68 0.59 3.3 10-5 3.9x 10-5 3.3 10-5 3224
400 0.84 1.69 2.31 8.1 10-5 7.1 10-6 8.1 x 10-5 6939
800 2.11 5.03 9.39 4.3 x 10-5 4.3 x 10-5 4.3 10-5 13406
1600 4.35 11.34 37.74 9.2 10-5 9.2 10-5 9.2 10-5 24913
3200 9.16 30.85 153.76 1.1x 10-5 1.1x 10-5 1.1 x 10-5 48902
6400 19.22 48.62 611.82 5.4 10-6 5.5 10-6 5.4 10-6 96153
12800 37.92 155.75 2440.90 2.1 10-5 2.0 10-5 2.1X 10-5 194377
25600 80.02 248.90 9798.34 4.4 10-5 4.4X 10-5 4.5 10-5 388624

3927
5227
15827
21027
63427
84227

253827
337027
1015427

columns, the upper case letters T, E, and S are used to denote the corresponding
computational time, error, and storage, with the subscripts alg, uni, and dir referring
to the adaptive algorithm, the algorithm described in [7], and the direct (single-
precision) calculation, respectively. More specifically, columns 2 through 4 show the
times, in seconds, required to compute the field by the three methods. The errors Ealg
Eun and Edi for the adaptive, nonadaptive and direct methods, respectively, are
presented in the next three columns. They are defined by the formula

E= Ei= 12 1/2
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wheref is the value ofthe field at the ith particle position obtained by direct calculation
in double precision and f is the result obtained by one of the three methods being
studied. The last two columns of the tables contain the storage requirements Sang and
Suni, in single-precision words, for the two methods based on multipole expansions.

Remark 4.1. For the tests involving 12,800 and 25,600 particles, it was not con-
sidered practical to use the direct method to calculate the fields at all particle positions,
since this would require prohibitive amounts of CPU time without providing much
useful information. Therefore, we have performed the direct calculations in double
precision for only 100 of the particles, and used these results to evaluate the relative
accuracies. The corresponding values of Tdi were estimated by extrapolation.

For the first set of tests, the positions of the charged particles were randomly
distributed in a square, and the resulting particle density was roughly uniform (Fig.
6). The number of terms in the expansions was set to 20, and the maximum number
of particles in a childless box was set to 30.

In the second set of experiments, the charged particles were distributed along a
curve (Fig. 7). The number of terms in the expansions was set to 17 and the maximum
number of particles in a childless box was set to 30.

FIG. 7. 6400 particles distributed on a curve.
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The third set of numerical experiments was performed on extremely nonuniform
distributions of particles (Fig. 8). A fifth of the N particles were randomly assigned
in a square of area 1. Two-fifths were randomly distributed about the center of the
square in a circle of radius 0.003. The rest of the particles were assigned positions
inside a circle of radius 0.5 with a density inversely proportional to the square of the
distance from the center. The number of terms in the expansions was set to 17 and
the maximum number of particles per childless box was set to 30.

In the last set of experiments, half of the particles were distributed along a curve
similar to that of the second set of experiments and the rest of the particles were
distributed inside four circles with a density inversely proportional to the square of
the distance to the centers of the circles (Fig. 9). The number ofterms in the expansions
was set to 17 and the maximum number of particles per childless box was set to 30.

The following observations can be made from Tables 1-4, where the results of
the experiments described above are summarized.

(1) The accuracies of the results obtained by the algorithms using multipole
expansions are in agreement with the error bounds given in (7), (14), and (18). For
the most part, the fast methods are slightly more accurate than the direct calculation.

FIG. 8. Highly nonuniform distribution of 25,600 charges.
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(2) In all cases, the actual CPU time requirements of the adaptive algorithm grow
linearly with N. The CPU time requirements of the nonadaptive counterpart grow
linearly, except for extremely nonuniform distributions (see Tables 3 and 4).

(3) Even for uniform distributions of charges, the adaptive algorithm is about 30
percent faster than the nonadaptive one.

(4) The storage requirements of both fast algorithms are roughly proportional to
the number of particles involved in the simulations. The storage requirements of the
adaptive algorithm are about four times less than those of the nonadaptive version.

(5) By the time the number of particles reaches 25,600, the adaptive algorithm is
about 100 times faster than the direct version for the case of the uniform distribution
(see Table 1). When the charges are situated on a curve, the adaptive scheme is roughly
200 times faster than the direct algorithm, and about three times faster than the fast
nonadaptive scheme (see Table 2). For the highly nonuniform case (see Table 3), the
adaptive algorithm is slightly more efficient than for the uniform distribution. The
nonadaptive scheme displays an almost quadratic growth of CPU time with N, and is
about 25 times slower than its adaptive counterpart by the time N 25,600.

(6) Even for as few as 1600 particles, the adaptive algorithm is about ten times
faster than the direct calculation.

(7) The performance of the algorithm does not depend on the shape of the region
where the charges are distributed (see Table 4).

5. Conclusions. An adaptive algorithm has been constructed for the rapid evalu-
ation of the potentials and force fields due to large-scale ensembles of particles of the
type encountered in plasma physics, molecular dynamics, fluid dynamics (the vortex
method), and celestial mechanics. The algorithm is applicable whenever the fields to
be evaluated are Coulombic or gravitational in nature, and it yields the potentials to
within round-off error.

The asymptotic CPU time estimate for the algorithm is of the order O(N), where
N is the number of particles in the simulation, and this estimate is independent of the
statistics of the charge distribution. Our numerical experiments indicate a tendency of
the scheme to be more efficient for nonuniform distributions than for uniform ones.
The storage requirements of the algorithm are of the order O(N), do not depend on
the statistics of the distribution, and tend to be quite acceptable even for very large
numbers of particles.

In the present paper, a two-dimensional version of the algorithm is described.
Generalizing it to the three-dimensional case is fairly straightforward, and will be
reported at a later date.

Appendix. In this Appendix, we prove several combinatorial lemmas that are used
in 3.5 to estimate the complexity of the algorithm described in 3.3 and 3.4. We
begin by introducing some additional notation.

Given a subdivision S of the computational cell and a childless box b in S, we
will denote by Sb the subdivision obtained from S by subdividing b into four equal
boxes, and refer to the process of obtaining Sb from S as an elementary refinement
of S.

For a subdivision S of the computational cell, we will denote by Bs the set of all
boxes in S.

Cs will denote the subset of Bs consisting of all childless boxes, i.e., boxes that
are nonempty and not subdivided.

Fs will denote the subset of Bs consisting of all nonempty boxes.
Ds is the subset of Bs consisting of all empty boxes that have a childless brother.
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Gs Cs t_J Ds is the subset of Bs consisting of all boxes b such that b is either
childless or has a childless brother.

For any set of boxes A, N(A) will denote the number of boxes in A.
LEMMA A.1. For any subdivision S of the computational cell

(25) , N(Ub)<=llN(Gs).
bCs

Proofi We will prove the lemma by combining the following three observations"
(a) Inequality (25) holds for the undivided computational cell.
(b) Any subdivision of the computational cell can be obtained by a sequence of

elementary refinements of the computational cell.
(c) If an elementary refinement is applied to a subdivision for which (25) holds,

it also holds in the refined subdivision.
The statements (a) and (b) above are obvious, and following is a proof of (c).
Consider a subdivision S of the computational cell such that (25) is true for S,

and a box b such that b Cs. Obviously

(26) N(Gsb)=N(Gs)+3,
and we will denote by Ub and Ug the List l’s of b with respect to S and Sb, respectively.
The following obvious observations can be made about the List l’s of b and its children:

(1) For any box c Cs, if b Uc then c Ub.
(2) Each child of b has its three brothers in its List 1.
(3) In the subdivision Sb, b is not childless and U, is empty.
(4) Each box c in Ub is in the List 1 of at least one child of b.
(5) The number of boxes of Ub that are in the List l’s of two children of b is

bounded by eight.
It immediately follows from observations (1)-(5) above that

(27) E N(Uv)- E N(Uq)=(4.4)+2[-N(Ub)+(N(Ub)+8)]=32,
pCs qCs

and combining (26) and (27) we obtain

(28) E N(Up)<- llN(Gsb)
pc CSb

LEMMA A.2. For any subdivision S of the computational cell

(29) E N(Vb)<=32N(Fs)
bFs

Proof. Consider an arbitrary subdivision S of the computational cell, a box c Fs,
and its parent box b. Vc is a subset of the children of b’s colleagues, the maximum
number of colleagues of c (or any other box) is eight, and each colleague can have
four children. Therefore, the number of elements in V is bounded by 32.

LEMMA A.3. For any subdivision S of the computational cell

(30) E N(W)= E N(Xb)<-8N(Gs)
Cs b Fs

Proof. The first part of the lemma is a direct consequence of the definition of List
4 (see 3.2): If a box b belongs to W, then c belongs to Xb. NOW, consider an arbitrary
box c Is, and its parent box b. The number of colleagues of b is certainly bounded
by eight. We will denote by Zb the set of all childless boxes which are adjacent to b
and whose size is greater than or equal to that of b. The number of boxes in Zb is
bounded by eight, since each box in Zb contains at least one of the eight colleagues
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of b, and no two such boxes can contain the same colleague. The second part of the
lemma now follows from the obvious observation that Wc c Zb.

LEMMA A.4. For any subdivision S of the computational cell produced by the
algorithm of 3,

N
(31) S( Cs) <= N( Gs) <= 4p-.

s

Proof. Each parent box b at level contains more than s particles (otherwise, it
would not have been subdivided any further). Therefore, the total number of parent
boxes at level is bounded by N/s. Each of these boxes cannot have more than four
children, and consequently the number of boxes in Gs at any level is bounded by
4N/s. Now, the conclusion of the lemma follows from Observation 3.1 and the obvious
fact that S(Cs) <-- S(Gs).

LEMMA A.5. For any subdivision S of the computational cell,

N
(32) N(Fs)<-Sp-.

s

Proof The number of parent boxes at any level is bounded by N/s, and each
of them cannot have more than four childless boxes at level + 1. Therefore, the sum
of the numbers of nonempty boxes (all childless and parent boxes) at all levels is
bounded by p(N/s + 4N/s).
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