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THE FAST GAUSS TRANSFORM*

LESLIE GREENGARDt AND JOHN STRAIN

Abstract. Many problems in applied mathematics require the evaluation of the sum of N
Gaussians at M points in space. The work required for direct evaluation grows like NM as N and M
increase; this makes it very expensive to carry out such calculations on a large scale. In this paper, an
algorithm is presented which evaluates the sum of N Gaussians at M arbitrarily distributed points
in C. (N + M) work, where C depends only on the precision required. When N M 100, 000,
the algorithm presented here is several thousand times faster than direct evaluation. It is based on
a divide-and-conquer strategy, combined with the manipulation of Hermite expansions and Taylor
series.
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1. Introduction. Many problems in applied mathematics involve the Gauss
transform

(1) Gf(x) r e-lx-Yl/f(Y)dy (5 > O)

of a function f defined on F C Rd. The simplest example is the heat equation. The
solution of the pure initial value problem

st(x, t) An(x, t) for t > 0

u(x, O) f(x) for x e Rd

ut(x, t) Au(x, t) fort)0

u(x,O) f(x) forxeRd

is given by

u(x, t) (4rt)-d/ Gaff(x),

with F equal to the whole space. A similar transform, with F a lower-dimensional
subset of Rd, occurs when one solves any initial/boundary value problem for the heat
equation by means of potential theory [1], [6], [9], [13], [14]. Other examples occur in
vortex methods [3], tomography [11], and nonparametri statistics [7], [15]. Finally,
a common analytical tool is mollification; one approximates an arbitrary function f
by the family of smooth, rapidly decreasing functions

I (x)
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which converge to f as 5 0.
For numerical purposes, one must discretize Gsf. Given the values of f at a set

of points sj E ad, one can approximate the integral (1) by means of a quadrature
formula. A reasonable approximation to Gf might then take the form of a discrete
Gauss transform

N

(2) G(x)
j--1

where the coefficients qj depend on the values f(sj) and the weights of the chosen
quadrature formula. This paper will focus on the problem of evaluating the sum of
Gaussians (2) as efficiently as possible. It will often be convenient to speak of (2) as
the Gaussian "field" due to sources of strengths qj at the points sj, evaluated at the
"target" x.

Suppose now that we want to evaluate (2) directly from the definition at M
targets x ti. In other words, we want to apply the rectangular matrix with entries

to the vector q (q,... ,qy)T. This requires O(NM) work, which grows rapidly as
M and N increase, and makes large scale calculations prohibitively expensive.

In this paper, we present an algorithm for evaluating sums of the form (2) at M
points in O(N + M) work. The constant in O(N + M) depends only on the dimension
d and the desired precision. The amount of memory required is also proportional
to N + M, so that the algorithm is asymptotically optimal in terms of both work
and storage. Furthermore, the sources and the targets can be placed anywhere; they
need not be restricted to a regular grid. Even if the function f were given at N
equispaced points and Gsf evaluated at N equispaced points, fast convolution by
means of the Fast Fourier ansform (FFT) would require O(NlogN) operations,
whereas our algorithm requires only O(N).

2. Hermite expansions. This section describes the properties of the Gaussian
kernel and Hermite expansions which we will need. Good references for this material
are [4], [5], [8], and particularly Hille’s paper [10].

The Hermite polynomials Ha(t) may be defined by the Rodrigues formula

H(t)=(-1)etDe-t teR,

where D d/dt. We will make use of this definition as well as the generating function
for Hermite polynomials

8n

n:O

Multiplication of each side of the preceding expression by e-t yields

Sh
where the Hermite functions h(t) are defined by

(3) h (t) e-tHn (t).
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(Note that these are not the usual orthonormal Hermite functions; the definition here
is the right one for this situation.) In practice, we will use a shifted and scaled version
of this formula: for so E R and 5 > 0, we have

e-(t-8)2/ e-(t-8o-(8-8o))2/

e_(t_so)/ 1 s- so t- so
.=o

g.

This formula tells us how to evaluate the Gaussian field e-(t-)/5 at the target t
due to the source at s, as a Hermite expansion centered at So. Thus we are shifting
Gaussian at s to a sum of Hermite polynomials times a Gaussian, 11 centered at So.

We can also interchange t and s to write

(4) -(-/

Looked at this way, the expansion expresses a Gaussian with target t as a Taylor series
about n nearby target to; the coefficients of the Taylor series are the Hermite functions
evaluated at to. Thus the same expansion serves as both a near-field (Taylor) and a
far-field (Hermite) expansion. The final one-dimensional results we will need are the
recurrence relation

h+(t) 2thn(t) 2nhn_(t), t e R,

for Hermite functions and Cramer’s inequality for Hermite polynomials:

IH(t)l <_ K2/v./

where K is a numerical constant less than 1.09 in value. Cramer’s inequality imme-
diately implies the following useful bound for Hermite functions:

n--[.1 ihn(t) <_ K2n/2 n.e_tl /2.

We will also need the straightforward extensions of these facts to higher dimen-
sions. Thus, let t and s lie in d-dimensional Euclidean space Rd, and consider the
Gaussian

We will find it convenient to make use of multi-index notation. A multi-index a

(al, a2,..’, ad) is a d-tuple of nonnegative integers, playing the role of a multidimen-
sional index. For any multi-index a and any t 6 Rd, we define

O/! O !O2 Od

t tt t,
Da 0’0... 0d
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where 0i is differentiation with respect to the ith coordinate in Rd. If p is an integer,
we say a >_ p if ci _> p for 1 _< _< d.

The multidimensional Hermite polynomials and Hermite functions are then de-
fined by

H.(t) H. (t) H..(t)

ha(t) e-’tlHa(t) hal(t1)"" had(td)

where Itl e t /... / t.
The Hermite expansion of a Gaussian in Rd is then simply

() _,_., (t- o)- .(_ o)
a>0

Cramer’s inequality generalizes to

1 Itl/2 lal/2 1
-f. lh(t)l <_ K- V-f.

where K is less than (1.09)d.
Finally, our algorithm will require the Taylor expansion of the Hermite function

ha(t) about an arbitrary point to E Rd. Since ha is defined by

_t(8) ha(t) e Ha(t)
(-1)lal Da e-t

applying Df gives immediately

(9) Dha(t)

Thus the Taylor series of ha is

(10) ha(t) E (t- to)
! (-1)1/1 ha+/(t)

_>o

We now present the three lemmas on which our algorithm relies. The first de-
scribes how to transform the field due to all sources in a box into a single rapidly
converging Hermite expansion about the center of the box.

LEMMA 2.1. Let NB sources sj lie in a box B with center ss and side length
r-, with r < 1. Then the Gaussian field due to the sources in B,

(11) G(t)
NB

E q. e-lt- l l’,
j=l

is equal to a single Hermite expansion about 8B"

a>O
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The coefficients An are given by

(12) An
j--1

The error EH(p) due to truncating the series after pd terms satisfies the bound:

where QB , Iqjl and K (1.09)d.
Proof. Use (6) to expand each Gaussian in the sum (11) into a Hermite series

about SB and interchange the sums over a and j. The truncation error bound follows
from Cramer’s inequality (7) and the formula for the tail of a geometric series.

The second lemma shows how to convert a Hermite expansion about sB into a
Taylor expansion about re. The Taylor series converges rapidly in a box of side
about tc, with r < 1.

LEMMA 2.2. The Hermite expansion

(13) G(t) Z A ha
c>O ’has the following Taylor expansion, about an arbitrary point tc

(14) G(t)= B
t

Eo
The coecients B are given by

-1) ’’ (8B--tc)B,=

ff the Aa are given by (12), then the error ET(p) in truncating the Taylor series aer
pd terms is bounded, in the box C with center tc and side length r, by

p 1 =r

Pro@ Each Hermite function in (13) can be expanded imo a Taylor series by
means of (10). The expansion (14) is then obtained by imerchanging the order of
summation. The truncation error bound is only a little more difficult: By the formula
(12) for Aa, we have

8B tc

8B tc
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But by (10), the inner sum is the Taylor expansion of h((sj to)lyre). Thus

-1) .z’N"(16) Bf /!
q h

and Cramer’s inequality implies

1
(1) B < KQ,/ < KQ,

The truncation error bound follows, as in Lemma 2.1, from summing the tail of a
geometric series.

For our algorithm, we will need a variant of Lemma 2.2 in which the Hermite
series is truncated before converting it to a Taylor series. This essentially means that
in addition to truncating the Taylor series itself, we are also truncating the infinite
sum expression (15) for the coefficients. Fortunately, however, the error due to this
approximation of the coefficients turns out to be much smaller than the truncation
error of the Taylor series.

LEMMA 2.3. A truncated Hermite expansion

p

has the following Taylor expansion about an arbitrary point re"

o
The coecients Cz are given by

gp

ff the A are given by (12), then the error ET(p) in truncating the Taylor series
pd terms is bounded, in the box C with center tc and side length r, by

where K’ K (1 + (p)-d/2) 2K gr .
Proof. The proof is an application of the triangle inequality. Write C as the

coefficient B from Lemma 2.2 plus the tail of a series

_1),, N,
1 (S--SB)

a

(SB--tc)
------1)’i’ :lqi (0 p) 1 (S--SB) h+z (SB--tc)

j=l

+
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Then

(19) IET(p)I <_
>p v

From Lemma 2.2, we know that the first sum is bounded by

(1)d/2 (rP+l)
d

KQ, . 1-r

Hence we need only bound the second sum. For this, we have

But

E(Cz-B) t

>_p

t-- tC 1 sj SB

o>p >p

SB tc

(a + Z)! < 21+1

so the lemma follows immediately. D
Remark 2.1. The alternate expression (16) for B which appears in the proof of

Lemma 2.2 has a simple meaning. Rather than using Lemma 2.1 to accumulate all
the Gaussians into a single Hermite expansion and then shifting it to re, we can use
Lemma 2.3 to shift each Gaussian individually to tc and add up the resulting Taylor
coefficients. (A Gaussian is a one-term Hermite series, after all, and can therefore be
shifted just like any other truncated Hermite series.) Thus, a Gaussian

G(t) qe-It- 1/5

has the following Taylor expansion about tc:

G(t)= E B (t tc )
z>0 v

The coefficients BZ are given by

(20) B =q (-1)11.., h (sj-tc)
and the error in truncation after pd terms is

IET(p)I
d/2 rp+

1 -r)
for r < 1.
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3. The fast Gauss transform. We now have the tools necessary to construct
and analyze a fast algorithm for evaluating the discrete Gauss transform

N

(21) G(ti)

for 1 _< _< M in O(M + N) work. By shifting the origin and rescaling 5 if necessary,
we can assume (as a convenient normalization) that the sources sj and targets ti all
lie in the unit box Bo [0, 1] d.

The algorithm is based on subdividing B0 into smaller boxes with sides of length
We can then assign each source sj torx/ parallel to the axes, with a fixed r

_ .
the box B in which it lies and each target ti to the box C where it lies. For the sake
of clarity, we maintain a notational distinction between source boxes B and target
boxes C even though they may be the same.

For each target box C, we need to evaluate the total field due to sources in all
boxes B, at each target in C. Because the range of the Gaussian e-It-812/ is O(x/)
and the boxes have side lengths rx/, only a fixed number of source boxes B can
contribute more than Qe to the field in a given target box C, where Q ’;=1 Iqjl
and e is a specified precision. Indeed, if we cut off the sum over all B after including
the (2n + 1)d nearest boxes to C, we incur an error bounded by Qe-2r2n. We can
always choose n depending only on r and e to make this less than Q. For example, if
r we get single precision accuracy relative to Q with n 6 and double precision
with n 8.

Suppose now that we want to evaluate the field due to a boxB with NB sources
at Mc targets in a box C. There are two ways in which B can transmit its influence,
and two ways in which C can handle the information it receives. B can directly send
out the strengths and centers of all NB Gaussians located in B, or it can use Lemma
2.1 to collect them into a single truncated Hermite expansion. C can then directly
evaluate all fields (Gaussians or Hermite expansions) sent to it, at the Mc target
locations in C, or it can use Lemma 2.3 to convert the fields sent to it into a single
truncated Taylor expansion about the center tc of C. Evaluation of this Taylor series
then yields the total field at each target location.

Thus, there are four possible ways in which B can influence C:
1. NB Gaussians - directly evaluated.
2. NB Gaussians - accumulated in Taylor series via (20).
3. Hermite series directly evaluated.
4. Hermite series --. accumulated in Taylor series via (18).
A fast algorithm can be based on any one of the second through fourth alterna-

tives, because they all decouple the number of sources from the number of targets.
Methods 1-4 require the following work to evaluate G(t) at M targets ti.

1. The cost of evaluating N Gaussians at M points is of the order O(NM).
2. Consider a fixed source box B. For each target box C within range, we must

compute pd Taylor series coefficients

1)1,1 (sj-tc)C (B)
s EB V/

Each coefficient requires O(NB) work to evaluate, resulting in a net cost of the order
O(pdN). Since there are at most (2n + 1)d boxes within range, the total work for
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forming all Taylor series is of the order O((2n + 1)dpdN). Now, for each target ti, we
must evaluate the pd term Taylor series corresponding to the box C in which ti lies.
The total cost of this algorithm is, therefore,

O((2n + 1)dpdN) + O(pdM)

3. In the third approach, we form a Hermite series for each box B and evaluate
it at all targets. First, using Lemma 2.1, we write

G(t) E E qje-lt-sJ 12/
B sj6B

B a>0 V / EH(p),

where IEH(p) <-- Qe and

(23) 8j 8B1E qj x/

Computing each Aa(B) costs O(NB) work, so forming all the Hermite expansions
requires O(pdN) work. Evaluating at most (2n + 1)d expansions at each target ti
costs O((2n + 1)dpd) work per target, so this approach results in a total work

O(pdN) / O((2n + 1)dpdM)

4. Finally, suppose we accumulate all sources into truncated Hermite expansions
and transform all Hermite expansions into Taylor expansions via Lemma 2.3. Thus,
we approximate G(t) in C by

where IEH(p)I / IET(p)I <_ Qe,

(24) C
8B tC IB

and the coefficients Aa(B) are given by (23). As we saw under the third approach, it
costs O(pdN) work to form all the Hermite expansions, i.e., to compute the coefficients
Aa(B) for a <_ p and all source boxes B. Because of the product form (5) of ha+z,
the computation of the pd coefficients Cz involves only O(dpd+l) operations for each
box B in range. Therefore, a total of O((2n + 1)d dpd+) work per target box C is
required. Finally, evaluating the appropriate Taylor series for each target ti requires
O(pdM) work. Hence this algorithm has net CPU requirements of the order

O((2n + 1)d dpd+Nbox) + O(pdN) + O(pdM)

where the number of boxes Nbox is bounded by min((rx/)-d/2, M). Note that the
factor (2n+ 1)d no longer multiplies either the O(N) or O(M) terms. The work is now
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decoupled into three parts: O(pdN) to form Hermite expansions, O(pdM) to evaluate
Taylor series, and a constant term depending on the number of box-box interactions
and the cost of transforming a Hermite expansion into a Taylor series.

Thus, we really have four algorithms for evaluating G(t), three of which are
asymptotically optimal. We can try to minimize the constants in the work estimate
by varying the choice of algorithm from box to box. Clearly an optimal strategy for
this choice is global, but a reasonable strategy can be constructed in which each box
decides independently what action to take. For this purpose, let NB sources in a box
B be within range of Mc targets in a box C. Choose cutoff parameters NF and ML.
Then

1. If NB < NF then B sends out NB Gaussians.
2. If NB >_ NF then B sends out a Hermite expansion.
3. If Mc < ML then C evaluates all fields sent to it immediately.
4. If Mc >_ ML then C transforms all fields sent to it into Taylor series, accumu-

lates the coefficients, and only then evaluates the Taylor series.
The work in this algorithm can be broken down as follows:
1.

to evaluate Hermite expansions;
2.

E O(pdNB)
NB_NF

E E
Mc<ML NB NF

to evaluate Gaussians;
3.

to evaluate Hermite expansions;
4.

O(NBMc)

O(pdMc)

to transform Gaussians into Taylor series;
5.

O(pdNB)

to transform Hermite series into Taylor series;
6.

O(dpd+l)

to evaluate Taylor series.

/E
Mc>_ML

O(pdMc)
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Clearly we can achieve a rough balance of work by taking NF O(pd-l) and
ML O(pd-1). The total work then has the form

O(pdN) + O(dpd+l(2n + 1)d min((rv/)-d/2, M)) + O(pdM).

This is linear in N and M, with a constant depending only on the precision. The
complexity estimate is similar to the fourth algorithm above, but the advantage here
is that when there are only a few particles in a box, the overhead associated with
transformation of Hermite series to Taylor series is avoided.

4. Formal description of the algorithm. In this section, we describe the fast
Gauss transform in a more procedural form.

ALGORITHM.
Comment [Choose the largest r _< such that 1/rx/ is an integer Nside. Subdivide the
unit box into Nsde boxes. Choose the number n of boxes to go out in each direction based
on r and the desired precision e. Each source sends to (2n + 1)d boxes. Choose the number
of terms pd based on r and e. Choose the cutoffs WE and ML.]

Step 1.
Assign sources and targets to boxes. Determine number of boxes containing more than ML
targets. For each such box, allocate storage for a Taylor series with pd terms and initialize
to zero.

Step 2.
Comment [Loop through boxes, computing interactions between sources in box and targets
within range n. For each pair of source and target boxes, one of the four options summarized
in 3 is used.]
do 1,..., Nsdide

NB number of sources in ith box B.
Form the interaction list of (2n + 1)d target boxes C within range of B.
if NB <_ NF then

do j 1,..., (2n + 1)d
Me number of targets in jth box C in interaction list.
if Me <_ ML then

Compute source/target interactions by direct evaluation of Gaussians.
else

Convert each of the NB sources into a Taylor series about the center of
box C via (20) and add to Taylor series for box C.

end if
end do

else (NB > NF)
Form Hermite expansion about center of box B due to NB sources via equation (20).
do j 1,..., (2n + 1)d

Mc number of targets in jth box C.
if Me <_ ML then

Evaluate Hermite expansion at each target location and add to accumulated
potential.

else
Convert Hermite expansion into a Taylor series about the center of box C
by means of (12) and add to Taylor series for box C.

end if
end do

end if
end do
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Step 3.
Comment [Loop through boxes evaluating Taylor series for boxes with more than ML
targets.]
do 1, dYide

Me number of targets in ith box C.
if Mc > ML then

Evaluate Taylor series for box C at each of the Mc target positions
to obtain the desired potential.

end if
end do

5. Numerical experiments. In this section, we present the results of numer-
ical experiments with the fast Gauss transform and demonstrate dramatic speedups
over the direct calculation for realistic problems. A two-dimensional version of the
algorithm was programmed in Fortran and run on a Sun-4 workstation, using up to
100,000 sources and targets and i lying in the range .0001 to 1.0.

We examined the cost of the fast algorithm as compared to the direct evaluation
of all the Gaussians, as N and M increased. Two distributions of targets and surces
were tried, uniformly distributed in the unit box and equally spaced on a circle, and
several values of i were used. For the uniform distribution, strengths were uniformly
distributed between -1 and 1. For the circle, the strengths were specified to be cos (),
where is the angle. We asked for an error relative to the total charge Q of 10-6,
which required pd 82 terms in the Hermite and Taylor expansions. The results are
given in Tables 1-4.

TABLE 1
Table o] cost and errors for 1.0, with targets and

sources distributed uniformly in the unit box. CPU times
are given in seconds for the fast and direct algorithms.
Times for the direct algorithm were estimated by evaluat-
ing G(t) at 100 targets and extrapolating. All in]ormation
was rounded to two significant digits.

Case N M
1
2
3
4
5
6
7
8
9
10
11

Fast
100 0.42 0.59
200 0.62 2.3
400 1.1 9.7
800 1.8 38
1600 3.4 150
3200 6.5 601
6400 12.8 2407
12800 26.0 9702
25600 51.9 38790
51200 103 155550
102400 205 622780

Direct Error/Q
.627E-08
.306E-08
.175E-08
.157E-08
.126E-08
.135E-08
.114E-08
.563E-09
.563E-09
.337E-09
.237E-09

With 102,400 sources and targets equispaced on a circle and 5 .01, the fast
algorithm is more than 3,000 times faster than the direct calculation. Typically the
performance of the fast algorithm improves when the source distribution is spatially
nonuniform, as it is in many practical problems. There are then more particles in
each of a smaller number of occupied boxes, reducing overhead costs.
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TABLE 2
Table of cost and errors for 0.01, with targets and

sources distributed uniformly in the unit box.

Case N M
1
2
3
4
5
6
7
8
9

10
11

Fast
100 0.65
200 1.840
400 5.8
800 20.6
1600 115
3200 349
6400 344
12800 353
25600 383
51200 431
102400 538

Direct Error/Q
0.70
2.76
10.9
43.6
174
697
2792
11173
44650
179120
716760

.115E-08

.616E-09

.478E-09

.291E-08

.274E-08

.443E-08

.249E-08

.177E-08

.144E-08

.120E-08

.501E-09

TABLE 3
Table of cost and errors for 5 0.01, with targets and

sources spaced uniformly on a circle.

Case N M
1
2
3
4
5
6
7
8
9
10
11

Fast
100 3.25 0.67
200 4.93 2.70
400 10.9 10.8
800 12.7 42.8
1600 14.5 172
3200 18.5 684
6400 26.4 2749
12800 38.7 11003
25600 65.1 43955
51200 116 176300
102400 219 705650

Direct Error/Q
.479E-09
.489E-09
.182E-06
.191E-06
.203E-06
.204E-06
.201E-06
.177E-06
.172E-06
.170E-06
.170E-06

TABLE 4
Table of cost and errors for 0.0001, with targets

and sources spaced uniformly on a circle.

Case N M
1
2
3
4
5
6
7
8
9

10
11

Fast
100 4.61
200 5.31
400 6.24
800 8.71
1600 19.6
3200 63.9
6400 79.0
12800 96.9
25600 127
51200 179
102400 287

Direct Error/Q
0.68
2.72
10.9
42.9
172
69O
2785
11132
44375
178120
713830

.539E-10

.270E-10

.140E-10

.834E-11

.298E-10

.799E-08

.469E-08

.217E-09

.757E-10

.417E-10

.385E-10
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Storage requirements for the fast algorithm are reasonable as long as N and M are
large and i is not too small. For extremely small , one should modify the algorithm
to make use of just those boxes containing targets or sources. The interaction list
for each source box can then be formed by means of an adaptive tree structure, as
is done in the fast multipole method [2]. This would avoid having to loop through

d (largely empty) boxes.Nside (2r25)-d/2
6. A generalization. The fast Gauss transform generalizes easily to sums of

the form

N

(25) (-1)I’DG(t) qjh(t s. ),
j----1

convolutions with a fixed Hermite function. One need only apply D to all the for-
mulas presented above and use (9), relating derivatives of Hermite functions. An
arbitrary multivariable polynomial P(s) can be expressed as a sum of Hermite poly-
nomials, so we can use our algorithm to evaluate sums of the form

Z qjP e-

As an extension of this remark, we can evaluate any convolutionin optimal time.
sum

(26)
N

K f (t) Z f(sj)K(t
j--1

for which the kernel K has a rapidly converging Hermite series. We approximate K
to within e by a qd-term truncated Hermite expansion and apply the fast algorithm
of this paper to carry out each convolution with a Hermite function. This would cost
O((pq)d(N + M)) to evaluate (26) at M points. A better approach, however, would
be to modify the algorithm so as to create, for each box, a single (p + q)d-term far-
field expansion which includes the effect of Hermite functions of indices up to q. The
modified algorithm would evaluate (26) at M points in O((p+q)d(N + M)) work; the
constant p + q depends only on the precision required and the smoothness of K.

Examples of convolution kernels K with rapidly converging Hermite series include
any smooth function which decays at infinity faster than any power; in particular, any
smooth function with compact support.

One application of this generalization is to the problem of evaluating the continu-
ous Gauss transform (1), rather than the discrete sum of Gaussians. Evaluation of the
continuous Gauss transform with an order of accuracy independent of 5, as would be
required to evaluate the mollification of a nonsmooth function, seems to require the
use of product integration. In other words, one replaces the density f with a piecewise
polynomial and evaluates the resulting integrals exactly. This gives a weighted sum
of values fj which cannot be evaluated by the Gauss transform, because the integral
of a Gaussian over an element is no longer a Gaussian. However, the result can be
expanded in a rapidly converging Hermite series of the form (26), and this sum can
be evaluated by the generalized Gauss transform just described.

However, if one really wants to evaluate (1) accurately, product integration fol-
lowed by Hermite expansion is unnecessarily troublesome. A more straightforward
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approach is to use the expansion on which our algorithm is based to create a "semi-
continuous Gauss transform." Rather than discretizing the integral and forming the
discrete moments due to the sources in each box, we simply form the continuous
moments due to the sources in each box. This gives a far more accurate Hermite
expansion which can then be manipulated just as in the standard Gauss transform
algorithm.

Consider, for example, the problem of evaluating

a(t) fr
where F is a hypersurface in Rd. The semicontinuous Gauss transform can be de-
scribed by the equation

1 s- SB ha
t- Ss(27) G#(t) Z #(s) ds

B

B V/

Here the moments Ma can very easily be evaluated to high accuracy. We then have
the Hermite expansion of G#(t), and can manipulate it just as any other Hermite
expansion. The utility of this algorithm is obvious; we are currently applying it to a
variety of problems in applied mathematics.

7. Conclusions. We have presented a "fast Gauss transform" algorithm for eval-
uating the sums

N

(29) G(t) Z qJe-lti-8l/e’ 1,... ,M
j--1

for 1 < M in O(M + N) work. Direct evaluation would require O(NM) work in
general, so this is a substantial improvement in computational complexity. In order
to evaluate the sum of 100,000 Gaussians at 100,000 points, for example, the fast
algorithm requires about four minutes of CPU time on a Sun-4, while direct evaluation
would take more than eight days. There are many fields of applied mathematics where
such an algorithm will be a useful tool.
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