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POTENTIAL FLOW IN CHANNELS*

L. GREENGARDt

Abstract. A method is presented for calculating potential flows in infinite channels. Given a collection
of N sources in the channel and a zero normal flow boundary condition, the method requires an amount
of work proportional to N to evaluate the induced velocity field at each source position. It is accurate to

within machine precision and for its performance does not depend on the distribution of the sources. Like
the Fast Multipole Method developed by Greengard and Rokhlin [J. Comput. Phys., 73 (1987), pp. 325-348],
it is based on a recursive subdivision of space, knowledge of the governing Green’s function, and the use
of asymptotic representations of the potential field. Previous schemes have been based either on conformal
mapping, which experiences numerical difficulties with the domain boundary, or direct evaluation of Green’s
function. Both require O(N2) work.
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1. Introduction. The evaluation of potential fields in infinite channels arises as a
numerical problem in several areas, most notably electrostatics and fluid dynamics.
The governing equation is the Poisson equation,

(1) A=

subject to an appropriate boundary condition. In this paper, we will restrict our
attention to two-dimensional models and will consistently use the terminology of fluid
dynamics. In viscous incompressible flow, the left-hand side is the stream function,
the right-hand side is the vorticity, and the condition imposed on the boundary is that
of zero normal flow

(2) u.n=0,

where the velocity field u is given by

(3) u= xx"
In terms of the stream function, this is equivalent to specifying homogeneous Dirichlet
boundary conditions

(4)

We will concentrate on particle models, where the vorticity field is discretized,
not by a mesh, but by N point vortices,

N

(5) -- E i" l(X--Xi, Y--Yi)"
i=l

Here, $ is the Dirac -function and sci is the strength of the ith point vortex located
at (xi, yi). In vortex methods, what we would like to compute is the stream function
and/or velocity field at each particle position. In the absence of boundary effects, the
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604 L. GREENGARD

desired results can be obtained from the free-space Green’s function for the Poisson
equation (-(1/27r) In r) as follows:

(6) (x,, Yi)--- # --J" In ((x, xj )2 + (y, yj )2) for i= 1 N,
4r

(7) u(x,, y,)= E (Y’- y’ x- x,)
for i= 1, , N., 27r (x,-x)2+(y,-yj)2

Note that, using direct summation, the calculations (6) and (7) require an amount of
work proportional to N2. To overcome this obstacle, a variety of fast "N-body"
methods have been proposed in the last few years, which reduce the computational
complexity to O(N log N) or O(N). These include particle-in-cell methods 1], 15],
astrophysical tree codes [2],[3], series expansion methods [17],[20], and the fast
multipole method [5], [9], [10], [18].

Remark 1.1. It is clear from (6) and (7) that the stream function and velocity field
are unbounded in the neighborhood of a point vortex. In [7], Chorin introduced the
idea of replacing the point vortices by "vortex blobs" whose induced field is held
constant within a small neighborhood of the source. More recent work by Hald [11],
Beale and Majda [4], and others has shown that higher-order accuracy can be obtained
by using different approximations for the local field. Outside a finite-size core, however,
the velocity field due to a vortex blob in most of these methods is simply that of a
point vortex. Since we are interested in reducing the computational cost of vortex
methods, which is generally dominated by far field interactions, we will ignore the
precise nature of the local interactions and will continue to use the point vortex model.

For a straight channel, the fluid velocity cannot be obtained as in (6) and (7).
The main difficulty is that the zero normal flow condition can only be satisfied by an
infinite image system ( 2), making direct summation over a collection of point sources
impossible. The most commonly used technique for overcoming this problem in
constrained flows is that of conformal mapping. By converting the calculation to one
in the upper half plane, the boundary condition can be imposed with one image per
particle, and the potential flow computed as in (6) and (7) with only double the number
of point vortices (Fig. 1). An attractive feature of this approach is that the fast N-body
algorithms for free-space calculations may be applied directly.

There are two objections to this mathematically reasonable procedure. In a channel
with zero normal flow boundary conditions, the velocity field induced by a point source
decays exponentially along the length of the channel. But the free-space Green’s
function used in the upper half plane decays as 1! r, losing much of the physical

FIG. 1. Conformal mapping of the channel to the upper halfplane. The left-hand limit points A and C are

mapped to the origin and the four solid vertical line segments in the channel are mapped to the four semicircles

in the upper halfplane. Two representative particles are marked by the small circle and square. The zero normal

flow boundary condition is easy to apply with the method of images (each source is simply reflected across the

x-axis and given opposite strength). Unfortunately, there is much stretching and contraction of the physical
domain, which can cause practical difficulties.
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behavior of the solution. In fact, the physical behavior is expressed by the mapping
itself, which for the strip {0 <-y-< 7r} is simply e. The second objection is that a
discretization of the boundary is often required (e.g., for vorticity generation). Confor-
mal mapping, however, is well known to experience numerical difficulty when the
derivative of the map has a great dynamic range 12], 16], 19]. This is clearly observed
in Fig. 1, where the images of equispaced points along the top and bottom of the
channel are points whose separation is growing (or contracting) exponentially. It
would, on both counts, be much preferable to remain in the channel itself. To do this
we will first need to replace the infinite image system by an analytic expression for
the Green’s function. This can be obtained through elliptic function theory. In [6],
Choi and Humphrey derive expressions for both the infinite channel and a closed
rectangular domain. With this expression, the velocity field can be obtained in a manner
analogous to the N-body calculation of equation (7). Direct summation, of course,
will require O(N2) work.

In this paper, we propose a new algorithm for two-dimensional potential flow in
infinite channels. It is based on the analytically derived Green’s function, and requires
an amount of work proportional to N to evaluate all pairwise interactions. Like the
Fast Multipole Method (FMM), it makes use of the superposition principle, far-field
and local expansions, and a recursive subdivision of space. The channel algorithm
consists of two distinct parts. The first part, described in 2 and 3, is devoted to
computing distant interactions along the length of the channel. After deriving the
Green’s function, we consider its long range behavior and define certain asymptotic
representations of the far field that we refer to as stream expansions. We then carry
out an initial decomposition of the computational domain along the length of the
channel, and show how to efficiently compute interactions at a distance in the lengthwise
direction. The second part of the algorithm is described in 4, where we address the
problem of computing near neighbor interactions. We show how elementary analysis
can be used to reduce the computation to a set of uncoupled free-space problems,
each of which can be solved by repeated application of the FMM.

2. Green’s function for an infinite channel. We begin by developing an explicit
expression for the velocity field induced by a point vortex in an infinite channel. The
domain is defined to be the strip {0-<_ y-< H}. We refer to the direction x increasing
as downstream and to the direction x decreasing as upstream. We will use complex
notation, equating the points (xi, yi) with the complex numbers zi. If we define fi by

(8) E
1

ji 27r zi zj’

then

(9) u(x,, y,)= (Im ((z,)), Re ((z,)))

is the velocity field induced by a collection of point sources with strength located
at the points z (x, y). In the remainder of this paper, we consider the calculation
of 6 rather than u and will abuse notation by referring to as the velocity field.

Let us now suppose that a source of unit strength is located inside the channel
at Zo and that z is a second point inside the channel with z Zo. In order to satisfy
the zero normal flow condition along the top and bottom of the channel, we introduce
the infinite image system shown in Fig. 2.

Let us first add up the contributions from the images with positive strength, located
at Zo + 2jHi(j -,. ., c). The velocity field 61(x) induced by these images is given
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FIG. 2. Enforcing boundary conditions by the method of images. Successive reflection across the top and
bottom boundaries creates the image system shown. The images at positions o+2jHi, j =-c,..., have
strengths of opposite sign from those at positions z + 2jHi.

by the expression

(10) fi(z)=
1

=_ z Zo + 2jHi

(11)
1 +

1

Z Z0 Z Z0 + 2jHi

1
/

z Zo- 2jHi

(12)
1 +j’ 2(Z-Zo)

Z Zo Z Zo) +4HZj2"

But from ([8, p. 36]) we have

(13) coth (Trz)
1 2z . 1

=--"l"--
k’" Z

2 k2’
7rz 7r -I-

so that

(14)

where

ill(z) tr. coth (tr(z- Zo)),

(15) cr-
2H

For the images with negative strength, located at o+ 2jHi (j -c, , ), we obtain
an induced velocity field fi2, given by

(16) fi2(z) =-tr. coth (tr(z-o)).

The net velocity field is, therefore,

(17) fi(z) r. (coth (tr(z- Zo))-coth (tr(z- o))).

A simple integration yields the stream function induced by a point vortex,

( (sinh (o’(z- Zo)))(18) (z) =Re log
sinh (r(Z-eo))]
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A different derivation of W is given by Choi and Humphrey in [6]. As mentioned
previously, with this analytic expression for the pairwise interaction, the evaluation of
the velocity field at each of the N source positions can be carried out in O(N2)
operations. In order to develop a fast algorithm tailored to the channel itself, we need
to examine the properties of the Green’s function in more detail.

2.1. Upstream and downstream expansions. Let us suppose that z is downstream
of Zo (Re (z- Zo) > 0). Then

e’(Z-Zo) + e-,*’(Z-Zo)
(19) coth (o-(z- Zo)) e.Z_Zo_ e_,.Z_Zo

(20) =-1 +
1 e-2re(z-z)

(21) =--1+2" e2"zok.e-2zk.
k=0

Note that (21) can be obtained from (20) only if e-2’’(Z-Zo)< 1, which is ensured by
the condition that z be downstream of the source. From (17), then, the velocity field
downstream of a unit source at Zo has the expansion (about the origin)

(22) (z) 20". E (e2’ e2"e) e-2.
k=l

From this, it is immediately obvious that the decay in the field is exponential along
the length of the channel. The main reason for developing an expansion of this form,
however, is that it allows us to effectively use the superposition principle. By this we
mean the following.

THEOREM 2.1. Suppose that m sources with strengths {qj,j 1,. ., m} are located
at points {zj, j 1,. ., m}, with Re(zj) < r. Then for any point z further downstream
(Re (z) > r), the velocity fl(z) induced by the sources is given by

(23) fi(z) , ak" e-2"zk
k=l

where

(24) ak =2’" E q:" (e2’*zk-e2’%k)
j=l

The error in truncating the expansion (23) after p terms has the bound

(25)
p

fi(z)- E ak" e-2"k
k=l

A. X
p+I

where

(26) A 4tr , Iq and x= e-2’{Re{z}-r.
j=l

Proof. The coefficients ak are obtained directly from (22). The error bound is a
consequence of the triangle inequality and the fact that (22) expands the field due to
a single source as the sum of two geometric series.
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The upstream direction is treated in an analogous fashion. If Re (z- Zo)< O, then
the velocity due to a source at Zo can be expressed as

(27) (z) 2tr. 2 (e-2zk e-2ek) e2Zk.
k=l

THEOREM 2.2. Suppose that m sources with strengths {qj,j 1,. ., m} are located
at points {zj, j 1,. ., m}, with Re (zj) > r. Then for any point z further upstream
(Re (z) < r), the velocity (z) induced by the sources is given by

(28) (z) Y bk" e2zk
k=l

where

(29)
j=l

The error in truncating the expansion (28) after p terms has the bound

(30)
P

(z)- Y, bk" e2k
k=l

A. X
p+I

where

(31) A=4o" It:hi and x=e2"(Re(-’0.
j=l

DEFINITION 2.1. The expansions given by (28) and (23) will be referred to as
upstream and downstream expansions, respectively. For a given collection of sources,
the pair will be referred to as stream expansions.

The representation of the velocity field by means of these expansions may be
viewed as an analogue of the multipole decomposition of the field due to a collection
of sources in free space. It is important to keep in mind, however, that both their rate
of decay and region of convergence are quite different.

Before examining the properties of stream expansions any further, we demonstrate
their usefulness in computing far-field interactions with a simple example. For this,
suppose that U and U2 are two sets, each containing N point vortices, located inside
a channel of width H, and separated by a distance d (Fig. 3). To compute the velocity
at each position in U due to the sources in U2 (or the velocity at each position in U2
due to the sources in U) by means of the Green’s function would require O(N2)
operations. Let us instead form a downstream expansion due to the sources in U and
an upstream expansion due to the sources in U2. From (25) and (30), it is easy to

d

FIG 3. Two clusters of point vortices located inside a channel of width H. The distance between the two

clusters is denoted by d.
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determine a priori how many terms are needed to achieve a relative precision of e.
We simply require that

H. In (l/e)
(32) xP+I’e or p

r. d

which is independent of N. The cost of formation of the two expansions is clearly
proportional to Np. Evaluating the two expansions at all points in the relevant cluster
also requires an amount of work proportional to Np, so that the total computation
scales linearly with N, assuming that the relative precision e and separation distance
d are fixed.

2.2. The shifting lemma for stream expansions. The fast algorithm to be described
depends not only on the formation and evaluation of stream expansions, but on their
analytic manipulation. The following obvious lemma describes the necessary tools.

LEMMA 2.1. Suppose that

(33) fi(zu) Y, bk" e2zuk
k=l

and

(34) fi(Zd) Y, ak" e-2’zk
k--I

are the upstream and downstream expansions about the origin due to m sources with
strengths { cb, j 1,. , m}, which are located at points { zj, j 1, , m}, with r <
Re zj < r for some r > O. Then

(35) fi(z,,) /3g" e2(z,,-)g
k=l

and

(36) fi(za) E ag. e-2’(,-)g
k=l

are the corresponding upstream and downstream expansions about Zo, where

(37) k-- bk" e2zk

and

(38) ak ak" e-2’zk.
Furthermore, the error bounds for the shifted stream expansions are exactly the same as
those for the original stream expansions.

Note that the behavior of shifted stream expansions contrasts sharply with that
of multipole expansions in free-space (see [9], [10]). In the latter situation, the validity
and accuracy of an expansion depends not only on the source positions but on the
location of the expansion center. Note also from (24) and (29) that the coefficients of
stream expansions about the origin are pure imaginary. If the centers of the shifted
expansions are chosen to lie along the x-axis, then the coefficients in (37) and (38)
are also pure imaginary, yielding a savings in both computational cost and storage.

Remark 3.1. To this point, we have been viewing stream expansions as representa-
tions of the far field due to a distribution of sources. It is possible, however, to view
them in a different light. The expansions (33) and (34) of the preceding lemma are
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valid outside the strip -r < Re (zj)< r. By choosing a point Zo upstream of the strip
boundary (Re (Zo)<-r), the shifted expansion (35) yields a representation of the
induced field in a neighborhood of z0. The same obviously holds for shifting a
downstream expansion in the downstream direction (36). These are local representa-
tions of the field, the analogues of Taylor series in free-space, just as the far field
stream expansions are the analogues of multipole expansions.

3. The Channel Decomposition Algorithm. In this section, we describe the first
part of the fast algorithm. The basic idea is to subdivide the channel into vertical strips
and to use stream expansions to compute far-field interactions.

The "elementary" strips into which the channel is refined have an aspect ratio of
one third. The reason for not subdividing too much further is clear from equation (32).
As d approaches zero, the number of terms required to achieve a fixed precision grows
arbitrarily large. If we stop using expansions when d H/3, however, then the number
of terms required is given by

3" In (l/e) 1
(39) p= <In-.

We, somewhat arbitrarily, choose to stop subdividing the channel at this point.
We will, of course, need to compute the interactions within an elementary strip and
between nearest neighbor strips. This part of the calculation will be described in 5.
It relies on some additional analysis and the FMM for free-space problems.

The remainder of this section is devoted to a description ofthe channel decomposi-
tion algorithm. The main strategy used is that of clustering particles at a variety of
spatial length scales and computing distant interactions by means of stream expansions.
We begin by determining the locations of the extreme upstream and downstream
particles. The corresponding section of the channel is considered to be the computa-
tional domain, and a sufficient number of elementary strips are created to cover the
region (Fig. 4).

FIG 4. Decomposition of the channel into "elementary strips." The original distribution of particles is

shown in (a). In (b), a finite domain containing all particles has been subdivided into rectangular regions, each

ofwhich has an aspect ratio ofone-third. S-expansions can be used to compute the interactions between particles
contained in nonneighboring strips.

We proceed by introducing a binary tree structure that groups particles at coarser
and coarser levels (Fig. 5). Level 0 corresponds to the finest discretization of space
(the elementary strips), whereas level l+ 1 is obtained from level by the merger of
two strips. The resulting strip at the higher level is referred to as the parent, while the
two strips being merged are referred to as the children. Two strips at the same refinement
level are said to be nearest neighbors if they share a boundary, otherwise they are said
to be well separated. By construction, then, the minimum distance between well-
separated strips is HI3, and to achieve a precision of e in computing interactions via
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(b)

(d)
FIG 5. In (a), eight elementary strips are shown that cover the computational domain. This level ofspatial

refinement is referred to as level O. In (b), (c), and (d), pairs of strips are successively merged to form coarser
and coarser subdivisions of the channel. The "center" of a strip is defined to be the midpoint of the segment of
the x-axis bounded by that strip, as indicated in (d).

stream expansions we need only choose the number of terms to be p- [In (1/e)]. At
coarser levels, the number of terms can obviously be decreased.

DEFINITION 3.1. The center of a strip is defined to be the midpoint of the segment
of the x-axis bounded by that strip (Fig. 5(d)).
Other notation used in the description of the algorithm includes the following:

F,i a p-term upstream expansion about the center of strip at level l, describing
the far field due to the particles contained inside the strip.

Fld, a p-term downstream expansion about the center of strip at level l,
describing the far field due to the particles contained inside the strip.

LlU, a p-term local stream expansion (see Remark 3.1) about the center of strip
at level l, describing the field due to all particles upstream of strip i’s

nearest neighbors.
Lld, a p-term local stream expansion (see Remark 3.1) about the center of strip

at level l, describing the field due to all particles downstream of strip i’s
nearest neighbors.

Interaction list for strip at level l, it is the set of strips that are children of the
nearest neighbors of i’s parent and that are well separated from strip (Fig.
6).

The channel decomposition algorithm is a two-pass procedure. In the first (upward)
pass, we form the far-field stream expansions FI, and Fld, for all strips at all levels,
beginning at the level of elementary strips. In the second (downward) pass, we form
the local stream expansions LlU, and Lld, for all strips at all levels, beginning at the
coarsest level.

To see how the latter part is accomplished, suppose that at level l+ 1, the local
expansions L and Ld have been obtained for each strip i. Then, by using Lemma 2.1
to shift these expansions to the centers of strip i’s children, we obtain upstream and
downstream expansions for each child strip at level l, describing the velocity field due
to all particles upstream and downstream of strip i’s nearest neighbors. For each strip
j at level l, then, the interaction list is precisely that set of strips whose contribution

FIG 6. The interaction list for strip at level Strips marked with a "u" are upstream members of the
list, whereas those marked with a "d" are downstream members of the list. Note that thick lines correspond to

mesh level + 1.
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to the potential must be added to create LlU,j and Ll, (Fig. 6). For each upstream
member of the list, we use Lemma 2.1 to shift the center of the corresponding far-field
expansion F to the center of strip j and add the result to the upstream expansion
obtained from the parent. Similarly, for each downstream member of the list, we use
Lemma 2.1 to shift the center of the corresponding far-field expansion Fd to the center
of strip j and add the result to the downstream expansion obtained from the parent.
Note that at the coarsest level, Ld and L are equal to zero, since there are no
well-separated strips to consider.

Finally, for each strip j at the finest level, we evaluate the local expansions Loa,j
and L,j at the position of each particle contained in the strip.

ALGORITHM 1.
Comment [Set number of terms to be used in expansions.]

Choose the precision e to be achieved. Set the number of terms
in all expansions to p [In(l/e)].

Upward Pass
Step 1.
Comment [Decompose the channel into elementary strips.]

Define elementary strip width to be Swid H/3.
Compute Xmin x-coordinate of extreme upstream particle position.
Compute Xma --x-coordinate of extreme downstream particle position.
Compute number of elementary strips K r(X,max--Xmin)/Swid ].
Compute height of binary tree nlev [log2 K ].

Step 2.
Comment [Form far-field stream expansions at finest level.]

do i=l,...,K
Form p-term upstream and downstream expansions Fg, and Foa,
by using Theorems 2.1 and 2.2.

end do
Step 3.
Comment [Form far-field stream expansions at all coarser refinement levels.]

do l= 1,. ., nlev
Form p-term upstream and downstream expansions F, and Ftd,
for each strip at level by using Lemma 2.1
to shift the center of each child strip’s expansions to the current
strip center and adding them together.

end do
Downward Pass

Step 4.
Comment [Form local stream expansions at all refinement levels. Recall that L and
La are zero at level nlev since there are no well-separated strips to consider.]

dol=nlev-1,...,0
For each strip at level l, initialize Ll,i and Lla,
by shifting the L and La expansions of strip i’s parent to the
center of strip i. For each strip in i’s interaction list, determine
whether it is upstream or downstream of strip i. If upstream, shift the
center of the corresponding F expansion to i’s center and add to
Ll,i. If downstream, shift the center of the corresponding
Fa expansion to i’s center and add to Lla, (Fig. 6).

end do
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Step 5.
Comment [Local stream expansions are now available at the finest mesh level. They
can be used to compute the velocity field due to all particles outside the nearest-neighbor
elementary strips.]

do i=l,...,K
For each particle located in elementary strip i, evaluate
L,i and Ld

o,i. Add results together.
end do

A brief operation count of the channel decomposition algorithm follows in
Table 1. The estimate for the running time is therefore

(40) N. (4p+ 1)+ K. 6p.

4. The evaluation of near-neighbor interactions. The channel decomposition
algorithm has left us with a sequence of uncoupled problems to consider. For each
elementary strip, we must compute the internal interactions as well as the effects of
the sources contained in that strip on the particles in the nearest neighbors (Fig. 7).

Because of their poor convergence rates in this regime, stream expansions are of
limited use. We could proceed by direct evaluation of the remaining interactions
through the use of the Green’s function, but the asymptotic complexity of such an
algorithm would be O(N2). Let us instead examine one of the subproblems in more
detail.

We begin by reconsidering the method of images used to impose the zero normal
flow condition in Fig. 2. Successive reflection across the top and bottom of the channel
yields a one-dimensional array of squares (Fig. 8). These are either copies of the
channel section itself or of its reflection across the bottom boundary, offset by 2jHi
for some integer j. Note that we are only acting on the sources contained within the
central elementary strip, but that we will compute the velocity field at particle positions
within all three elementary strips of which the square is composed. In this manner,
all interactions will have been accounted for exactly once.

TABLE

Step number Operation count Explanation

Step order N

Step 2 order 2Np
Step 3 order K.p

Step 4 order 5p. K

Step 5 order 2Np

Examine each particle position to determine extreme upstream and
downstream coordinates.
Each particle contributes to an upstream and a downstream expansion.
The number of nodes in a binary tree is less than twice the number
of leaves, so that the total number of nodes is of the order K. For
each node, an amount of work of the order p is performed.
For each strip at each level, there are at most three entries in the
interaction list. For each entry, the amount of work is proportional
to p. In addition, two p-term expansions must be obtained from the
parent.
Two p-term stream expansions are evaluated for each particle.

FIG 7. In the second part of the algorithm, interactions are computed within each elementary strip and
between nearest neighbors. This is accomplished by marching along the channel, considering one strip at a time,
and accounting for its influence on all relevant particles..
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::

::

:: 6"0_
FIG. 8. The channel section and its translated images are represented by boxes labeled C. The square

obtained by reflection across the bottom boundary and its translates are labeled C.

The problem, again, is how to account for the sources in all images squares. We
present a solution based on multipole expansions.

4.1. Multipole expansions. We will require two results. For the first, suppose that
m point vortices with strengths qi and positions zi are located within a disk of radius
r centered at the origin. Then, for a point z with Izl > r, the velocity field v(z) induced
by the sources is given by a multipole expansion of the form

ak(41) v(z)= E -,
k=l

where

(42) ak E qi" Zi -1.
i=1

The error in truncating the sum after s terms is

(43) Iv(z) a-l (_A1) (-lc)
where

(44) A= E Iq, and c=
i=1

Z

For a proof, see [9].
Note that to obtain a relative precision of e (with respect to the total charge), the

number of terms required in the series representation of v is approximately -logc (e),
independent of m, the number of source charges.

The second result we need is contained in the following lemma, which describes
the conversion of a multipole expansion into a local (Taylor) expansion inside a
circular region of analyticity.

LEMMA 4.1 (Conversion of a Multipole Expansion into a Local Expansion). Sup-
pose that m sources ofstrengths ql, q2, ", q,, are located inside the circle D with radius
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R and center at Zo, and that [Zo} > (c + 1)R with c > 1. Then the corresponding multipole
expansion

ak(45) v(z)=
k:l (Z-- Zo) k’

converges inside the circle D_ ofradius R centered about the origin. Inside 02, the potential
due to the charges is described by a power series"

(46) v(z) Y b" z 1,
/=0

where

(47) bl-- ak (l+k-1):1 a/- k-1
(--1)k"

Furthermore, for any s_->max (2, 2c/(c-1)), an error bound for the truncated series is
given by

(48) v(z)- bl" z
/=0 c(c- 1)

where A is defined in (44) and e is the base of natural logarithms.
Proof. See [9] for the proof.
DEFINITION 4.1. TWO squares with sides of length 2d are said to be well separated

if they are separated by a distance 2d.
Remark 5.1. Let A and B be well-separated squares with sides of length 2d, and

let DA and DB be the smallest disks containing the boxes A and B, respectively. Then
the disks have radii ,,/. d, and the distance from the center of one disk to the closest
point in the other disk is at least (4-/) d. Letting c (4-)/x/= 1.828, the error
bound (48) applies with a truncation error using s-term expansions of the order c-s.

Remark 5.2. In this section, the center of a square refers to its geometric center
and not to its strip center (Definition 4.1.).

4.2. Reduction to a free-space problem. We will use Lemma 4.1 to account for all
image sources outside the nearest-neighbor squares. The remaining calculation can
then be carried using the free-space Green’s function (see (6), (7)). We begin by
choosing a coordinate system with the origin lying at the center of Co. For each square
C, the multipole expansion induced by the contained sources is of the form

(49) v(z)= ak

:, (Z--Z)’
where

(50) zj 2jHi

is the square’s center. Note that the coefficients ak of such a multipole expansion are
translation invariant; i.e., they are identical for all integer j. Moreover, for j 0, C is
well separated from Co, and the field induced inside the channel is accurately represent-
able by an s-term local expansion, where s I-logo (e) is the number of terms needed
to achieve a relative precision e (see Remark 5.1.). This local representation is given
by Lemma 4.1 as

p

(51) j(z)= b,. z
m=0
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with

k

p

m/kak (m+k-1)(52) b,, (-1) k.
=1Zj k-1

Let S be the set ofnonzero integers. To account for the field due to all well-separated
images C, we compute the coefficients of a local representation by adding together
the shifted expansions of the form (52) for all z with j S to obtain

P

(53) (z)= E btmtal" Zm
m=0

where

(54) httal ak (--1) k
k=l k-1 ;+

The summation over S for each inverse power of z can be precomputed and
stored. For powers greater than one, the series is absolutely convergent. For (rn + k) 1,
however, the series is not absolutely convergent, and the computed value depends on
the order of addition. Choosing a reasonable value for the sum of the series requires
consideration of the physical model. For this, suppose that the only particle in the
simulation is a source of unit strength located at the origin. Then the image system
corresponds to a uniform one-dimensional lattice, and by symmetry considerations,
the induced velocity at any lattice point must be zero. But the net velocity of the
particle at the origin corresponds to the summation over S of 1/z, so that we set

(55) 21=0.sz
For powers k > 1, the summation over S of 1/z can be expressed in closed form by
making use of the Riemann zeta function.

DEFNn’ON 4.2. The Riemann zeta function if(z) is defined by

(56) ’(z)= 2 n-Z.
rl=l

LEMMA 4.2. For k > 1,

O ifk is odd,
(57) 1= (_1)

s z --i- (k) ifk is even.

Proof. The result follows immediately from the definitions of S and z.
To account for the well-separated images of Co, we will require the corresponding

multipole expansion. It is easy to verify, however, that for such squares, centered at
a point wj, the expansion is of the form

’)/k
(58) v(z)=

(z )k=l Wj

where

(59) 3/k --k"
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Except for Co and C1, all of these images are separated from Co, and as above,
the fields they induce inside the channel section are accurately representable by a local
expansion,

p

(60) (z) Y 6,,. z
m=0

with

k--1 k-1

The well-separated images C clearly have centers

(62) ., 5Hi, 3 Hi, 3 Hi, 5Hi,. ..
Let T be the set of integers of the form

(63) {+(2j+ 1),j 1, 2,...,}.
We again account for the field due to all well-separated images by forming the
coefficients of a local representation

p
ttotal(64) (z)= Y z

m=O

where

(65) total__ ? Yk (--1) k
=1 k-1 w’+k

The summation over T for (m + k) > 1 is absolutely convergent. For (m + k) 1,
the series is not absolutely convergent, but symmetry considerations again dictate the
choice

(66) L
1

0.
wj

For higher powers of k, a closed-form expression for the summation over T of w can
be obtained through the use of Bernoulli numbers.

DEFINITION 4.3. The Bernoulli numbers B, are given by the coefficients of t"/n!
in the expansion

in
(67) y B,..e’-I ,=o n!

They satisfy the equation (see [8, p. 7])

(68) , 1 (22k 1)Tr2k

j=o (2j+ 1)2k-- 2" (2k)! IB= l.

LEMMA 4.3. For k > 1,

O ifk is odd,
(69)

1 k k/2 !(_ k/2

7" W---f"k= (2k 1)Tr Bkl(--1) -2k 1)
ifk is even,Hkk!

where Bk is the kth Bernoulli number.
Proof The result follows immediately from the definitions of T and wj.
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If we add the computed coefficients otal from (65) to the coefficients btai from
(54), we obtain a single local expansion that describes the field due to all sources
outside the nearest neighbor squares of Co. This local expansion can then be evaluated
at all particle positions in Co.

The final step in the algorithm is to compute the velocity field due to the free-spaces
sources within Co, Co, and C1. This problem is handled by the FMM, which requires
an amount of work proportional to n + m to evaluate the field induced by n sources
at rn points.

ALGORITHM 2.
Comment [Set number of terms to be used in expansions.]

Choose the precision e to be achieved. Set the number of terms
in all expansions to s [log (1/e) ].

Comment [From Algorithm 1, we are given that the number of elementary strips is K.]
Define n to be the number of particles in the ith strip.
Clearly, nl + n+. + n: N, the total number of particles.

Comment [Process each elementary strip.]
do i=l,...,K

Define Co to be the square whose central third is strip i.
Step 1.

Form coefficients ak of s-term multipole expansion about center
of Co induced by sources in strip i.
Form coefficients /k of s-term multipole expansion for square Co
via equation (59).

Step 2.

Step 3.

Step 4.

Form coefficients bk d-tk of s-term local expansion about the
center of Co, which describes the field induced by all reflected
sources outside the nearest-neighbor squares.

Evaluate local expansion at all particle positions in strips i- 1, and + 1.

Compute velocity field induced by sources in Co, Co, and C
at all particle positions in strips i- 1, and + 1 via the FMM.

end do

A brief operation count of Algorithm 2 follows in Table 2. The estimate for the
running time is therefore

(70) N. (4s + 3a) + K. s2.

TABLE 2

Step number Operation count Explanation

Step order Ns

Step 2 order Ks

Step 3 order 3Ns
Step 4 order 3aN

Each particle contributes to an s-term multipole expansion when its
elementary strip is being processed.
The creation of a local expansion requires order work and is carried
out once for each elementary strip.
Three local expansions are evaluated for each particle.
K free-space problems are solved, each of dimension ni, with a factor
of three included to account for the extra image sources and evaluation
locations. The factor a represents the constant for the linear time
FMM.
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To summarize, then, the full algorithm consists of the following"
(1) Decomposition of the channel into elementary strips,
(2) Algorithm 1 to compute distant interactions, leaving a sequence of uncoupled

nearest-neighbor problems to consider,
Algorithm 2 to compute nearest-neighbor interactions.

5. Numerical results. A computer program has been implemented using the chan-
nel decomposition and nearest-neighbor algorithms of this paper. For testing purposes,
we randomly assigned particles to positions within a channel section of length 5H,
where H was the channel width (Fig. 4), with source strengths between zero and one.
Five-digit accuracy was requested from the expansions. In the first part ofthe algorithm,
stream expansions were computed to 10 terms, while in the second part ofthe algorithm,
multipole and Taylor expansions were computed to about 20 terms. We performed the
calculations in four ways: (1) through the algorithm of this paper in single precision;
(2) directly from the Green’s function in single precision; (3) directly from the Green’s
function in double precision; (4) via conformal mapping in single precision. The direct
evaluation from the Green’s function in double precision was used as a standard for
comparing the relative accuracies of the other three methods in a least squares sense.
Calculations were carried out on a SUN 3/50 workstation using the 68881 coprocessor.

The following observations can be made from Table 3.
(1) The accuracies of the results obtained by the fast algorithm are in agreement

with the error bounds given in this paper. In fact, the results are consistently more
accurate than either of the direct calculations.

TABLE 3
Table of CPU times in seconds required by the fast algorithm (alg), the direct Green’s function method

(DIR), and conformal mapping with direct evaluation of the resulting N-body problem (cm). The least squares
errors for the three methods are shown in the last three columns. Timings in parentheses are estimated by
computing the results for only a subset of 100 of the particles. The corresponding errors are computedfrom that
smaller data set.

N Tatg Tdi T,,, Eatg Edir Ecru

100 8.38 34.8 14.0 4.5.10-7 7.2" 10-7 1.1" 10-6

400 53.1 551 223 2.7" 10-7 4.1 10-7 1.2" 10-6

1600 398 (8820) (3550) 4.3" 10-7 1.3" 10-6 1.1" 10-6

6400 1890 (141000) (56800) 6.9’ 10 -7 5.2" 10-6 3.4" 10-6

(2) The CPU time requirements of the fast algorithm appear to grow somewhat
superlinearly. The reason for this is that there are two constants associated with the
algorithm, a small one for the channel decomposition and a larger one for the FMM.
The observed timings are dominated by the first constant for 100 and 400 particles,
and by the second constant for the larger tests. When there are a small number of
particles per strip, the FMM with its associated overhead is simply not invoked.

(3) By the time the number of particles reaches 6400, the fast algorithm is about
75 times more efficient than the direct Green’s function method.

(4) Even for as few as 100 particles, the fast algorithm is about four times faster
than the direct calculation.

6. Conclusions. A fast algorithm for potential flow in channels has been developed.
It is based on asymptotic expansions that we refer to as stream expansions, some
analytic observations concerning classical multipole expansions and Taylor series, and
the fast multipole method. The asymptotic CPU time requirements for the algorithm
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grow linearly with the number of sources and, despite its complex structure, numerical
experiments demonstrate that dramatic speedups can be obtained for evern moderate
size particle systems.

In its current form, the algorithm requires that the channel boundaries be straight.
A method applicable to channels with smoothly perturbed boundaries will be described
in a subsequent paper. For polygonal (piecewise linear) perturbations of the channel,
an attractive approach would be to conformally map the problem domain into an
infinite strip. Howell and Trefethen 14] have recently developed a conformal mapping
algorithm that can be used for just such purposes. A combination of their scheme with
the method described in this paper should allow for large-scale simulations of practical
interest in fluid dynamics and electrostatics.

A somewhat different generalization of obvious interest is that in which obstacles
are present in the interior of the channel. For such calculations, the channel algorithm
can be combined with the integral equation technique due to Rokhlin [18] to provide
a fast method for computing potential flow around arbitrarily-shaped objects.

Acknowledgments. The author thanks V. Rokhlin for several useful discussions
and the referees for suggestions that improved the presentation of the paper.
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