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Abstract. We present an adaptive fast multipole method for inverting the square root of the
Laplacian in two dimensions. Solving this problem is the dominant computational cost in many
applications arising in electrical engineering, geophysical fluid dynamics, and the study of thin films.
It corresponds to the evaluation of the field induced by a planar distribution of charge or vorticity.
Our algorithm is direct and assumes only that the source distribution is discretized using an adaptive
quad-tree. The amount of work grows linearly with the number of mesh points.
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1. Introduction. In this paper, we present a fast, adaptive, numerical method
for solving the pseudodifferential equation

(−∆)1/2ψ = ω(1.1)

in the plane, where ∆ denotes the Laplacian operator. This equation appears in
a variety of different mathematical models for problems in surface physics, some of
which are described below. We assume that ω(x) ∈ L2(R2), with Fourier transform

ω̂(k) =

∫
R2

ω(x)e−2πik·xdx.

The symbol of −∆ is 1/(2π|k|)2, so that the solution to (1.1) can be written as

ψ(x) =

∫
R2

ˆω(k)

2π|k| e
2πik·xdk.(1.2)

Alternatively, we can seek a Green’s function for this operator by solving the equation

(−∆)1/2G(x) = δ(x).

A straightforward calculation yields

G(x) =

∫
R2

1

2π|k|e
2πik·xdk =

1

2π|x| ,(1.3)
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from which the inversion formula

ψ(x) =

∫
R2

ω(y)

2π|x− y| dy(1.4)

follows.
Since the function G(x) obtained in (1.3) is the Green’s function for the three-

dimensional Laplacian, we can think of (1.1) and (1.4) as describing a three-dimensional
Poisson equation for which ω(x) is a singular density lying entirely on the plane z = 0.
Applications involving such surface interactions include the study of planar circuits
in electrical engineering, a variety of problems in thin films [5, 19, 20], and certain
problems in tomography [7]. In quasi-geostrophic fluid dynamic models [17], one en-
counters an equation analogous to the incompressible Navier–Stokes equations which
take the form

ωt + (U · ∇)ω = ν∆ω,

U = ∇⊥ψ,(1.5)

(−∆1/2)(−ψ) = ω,

where U is a velocity field, ω is a vorticity-like variable, and ψ is a stream func-
tion. In the past three years, these equations have seen a new wave of interest
stemming, in part, from observations made in [6] which draw interesting analogies
between the quasi-geostrophic equations and the three-dimensional incompressible
Euler equations. Another interesting application is a two-fluid model system which
supports internal waves and which can be applied to a variety of geophysical model
systems [3]. One specific example is a vertically stratified fluid in which one layer is
much thinner than the other, and in which the square root of the Laplacian plays a
fundamental role.

All of the preceding application areas would benefit from adaptive numerical
simulation tools in order to resolve complex solution features. Most existing numerical
methods for solving (1.1), however, rely on the spectral form of the solution given in
(1.2) and are implemented via the fast Fourier transform. This approach precludes
the use of adaptivity and constrains the computational domain to be periodic.

Direct evaluation of the convolution integral (1.4) involves interactions between
all pairs of grid points. Hence, with N points in the discretization, the work involved
would require O(N2) operations. In this paper, we describe two special purpose fast
multipole methods (FMMs) for the computation of the integral transform (1.4) for
which the work required grows linearly with the number of grids points. This approach
allows for adaptive mesh refinement and the imposition of either free-space or periodic
boundary conditions. Related methods have been developed in [2, 14, 16].

2. Data structures and the FMM. We assume that the source distribution
ω in (1.1) is supported inside the unit square D, centered at the origin, on which is
superimposed a hierarchy of refinements (a quad-tree). Grid level 0 is defined to be
D itself, and grid level l+1 is obtained recursively by subdividing each square at level
l into four equal parts. Using standard terminology, if d is a fixed square at level l,
the four squares at level l + 1 obtained by its subdivision will be referred to as its
children. In order to allow for adaptivity, we do not use the same number of levels
in all regions of D. We do, however, assume that the quad-tree satisfies one fairly
standard restriction, namely, that two leaf nodes which share a boundary point must
be no more than one refinement level apart (Figure 1).
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Fig. 1. For the childless node B, colleagues are labeled by n, coarse neighbors are labeled n+,
and fine neighbors are labeled n−. The interaction list for B consists of the boxes marked by i
as well as those marked by Q. The boxes marked by s are children of B’s colleagues which are
separated from B, so they are not fine neighbors. They constitute the s-list for B (see Definition
2.1).

The leaf nodes on which the source distribution is given will be denoted by Di.
Thus, D = ∪M

i=1Di and we rewrite (1.4) in the form

ψ(x) = −
M∑
i=1

∫
Di

ω(y)

2π|x− y| dy.(2.1)

Definition 2.1. The colleagues of a square B are squares at the same refinement
level which share a boundary point with B. (B is considered to be a colleague of itself.)
The coarse neighbors of B are leaf nodes at the level of B’s parent which share a
boundary point with B. The fine neighbors of B are leaf nodes one level finer than
B which share a boundary point with B. Together, the union of the colleagues and
coarse and fine neighbors of B will be referred to as B’s neighbors. The s-list of a box
B consists of those children of B’s colleagues which are not fine neighbors of B.

The interaction region for B consists of the area covered by the neighbors of
B’s parent, excluding the area covered by B’s colleagues and coarse neighbors. The
interaction list for B consists of those squares in the interaction region which are at
the same refinement level, as well as leaf nodes in the interaction region which are at
coarser levels. When the distinction is important, the squares at the same refinement
level will be referred to as the standard interaction list, while the squares at coarser
levels will be referred to as the coarse interaction list.

In our FMM, following [4, 11, 12], terms in the convolution integral (2.1) from
neighbor leaf nodes are computed directly. More distant interactions are accounted
for on coarser levels through the use of a hierarchy of far-field and local multipole
expansions. We consider the local interactions first.



2096 Z. GIMBUTAS, L. GREENGARD, AND M. MINION

x x x

xxxx

x

x

x

x x x x

xx x
B

Fig. 2. The source distribution ω is given on a cell-centered 4× 4 grid in the central square B.
The field induced by the distribution on B’s neighbors can be tabulated and stored. In the adaptive
grid, neighbors can be at the same refinement level as B, one coarser or one finer.

2.1. Local interactions. We assume that we are given ω on a cell-centered 4×4
grid for each leaf node B. We can, therefore, take these 16 data points and construct
a fourth-order polynomial approximation to ω of the form

ωB(x, y) ≈
10∑
j=1

cB(j) bj(x− xB , y − yB),

where (xB , yB) denotes the center of B. The basis functions bj(x, y) are given by

1, x, y, x2, xy, y2, x3, x2y, xy2, y3

for j = 1, . . . , 10, respectively. If we let �ωB ∈ R16 denote the discrete function
values in standard ordering, then the calculation of the coefficient vector �cB is clearly
overdetermined. We obtain it through a least squares fit based on the singular value
decomposition. The pseudoinverse matrix P ∈ R10×16, such that

�cB = P �ωB

can be precomputed and stored.
Consider now a target point Q, which lies in a neighbor of B (Figure 2). Then,

the field induced by ωB is approximated by

ψB(Q) =

10∑
j=0

cB(j)w(Q, j),(2.2)
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where

w(Q, j) =

∫
B

bj(x− xB , y − yB)

2π|Q− (x, y)| dxdy.(2.3)

Since the target points Q are regularly spaced in each neighboring square, we can
precompute the weights (2.3) for each of the sixteen possible locations at each of 9
possible colleagues, 12 possible fine neighbors, and 8 possible coarse neighbors. To
be more precise, we can precompute the weights assuming that B is the unit square
[−0.5, 0.5]2, because of the following straightforward lemma.

Lemma 2.2. Let B be a leaf node at level l and let Q denote a target point in
one of B’s neighbors. Let Q∗ denote the scaled target point for the unit cell centered
at the origin

Q∗ = 2l · (Q− (xB , yB)),

and let

w∗(Q∗, j) =
∫ 1/2

−1/2

∫ 1/2

−1/2

bj(x, y)

2π|Q∗ − (x, y)| dxdy.(2.4)

Then the integral w(Q, j) defined in (2.3) is given by

w(Q, j) = w∗(Q∗, j) · 2−[d+1]l,

where d is the degree of the polynomial basis function bj.
Thus, we need only obtain weights for a box of unit area. Elementary counting

arguments show that the storage required for this precomputation is

16 · 10 · 9 real numbers for colleagues,

16 · 10 · 12 real numbers for fine neighbors,

16 · 10 · 8 real numbers for coarse neighbors,

for a total of 4640 real numbers.

2.2. Far-field interactions. We turn now to the calculation of far-field inter-
actions, which are computed by means of multipole expansions. We refer the reader
to [9, 15, 18] for more detailed discussions of potential theory. Our starting point is
the usual multipole expansion for a charge distribution, which we state formally as a
theorem.

Theorem 2.3 (multipole expansion). Let σ(T ) be a charge distribution contained
within S, a sphere of radius a centered at the origin, and let Q = (r, θ, φ) ∈ R

3 with
r > a. Then the field at Q induced by the charge distribution

Φ(Q) =

∫
S

σ(T )

2π|T −Q| dT

can be described by the multipole expansion

Φ(Q) =
∞∑

n=0

n∑
m=−n

Mm
n

rn+1
· Pm

n (cos θ)eimφ ,(2.5)
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where Pm
n denotes the standard associated Legendre function and

Mm
n =

(n− |m|)!
(n+ |m|)!

∫
S

1

2π
σ(T ) · ρn · P |m|

n (cosα)eimβdT.(2.6)

In the preceding expression, (ρ, α, β) are the spherical coordinates of T . Furthermore,
for any p ≥ 1,∣∣∣∣∣Φ(Q)−

p∑
n=0

n∑
m=−n

Mm
n

rn+1
· Pm

n (cos θ)eimφ

∣∣∣∣∣ ≤ 1

2π

(∫
S
|σ(T )| dT
r − a

)(a
r

)p+1

.(2.7)

In the setting of the present paper, the sources and targets are restricted to the
plane z = 0, so that in the preceding formulas, Q = (r, π/2, φ) and T = (ρ, π/2, β)
when expressed in spherical coordinates. Thus, for a charge distribution σ supported
in a square D centered at the origin and a target point Q lying in the interaction list
for B, Φ(Q) can be expressed as a multipole expansion of the form

Φ(Q) =
∞∑

n=0

n∑
m=−n

Mm
n · e

imφ

rn+1
,(2.8)

with

Mm
n =

(n− |m|)!
(n+ |m|)! [P

m
n (0)]2

∫
B

1

2π
σ(T )ρneimβ dT,(2.9)

where (ρ, β) are the polar coordinates of T (Figure 3). The error estimate (2.7) takes
the special form∣∣∣∣∣Φ(Q)−

p∑
n=0

n∑
m=−n

Mm
n · e

imφ

rn+1

∣∣∣∣∣ ≤ 1

2π

(∫
D
|σ(T )| dT
2a

)(√
2

3

)p+1

,(2.10)

where a2 is the area of D.
Within the FMM, it is convenient to be able to describe the field within a region

due to sources which are far away. For this, suppose that Q lies in D and that

Ψ(Q) =

∫
S

σ(P )

2π|P −Q| dP,

where the region S lies outside the nine colleagues of D (Figure 3). Then

Ψ(Q) =
∞∑

n=0

n∑
m=−n

Lm
n · rn eimφ,(2.11)

with

Lm
n =

(n− |m|)!
(n+ |m|)! [P

m
n (0)]2

∫
S

1

2π
σ(P )

eimθ

ρn+1
dP,(2.12)

where (ρ, θ) are the polar coordinates of P . Furthermore,∣∣∣∣∣Ψ(Q)−
p∑

n=0

n∑
m=−n

Lm
n · rn eimφ

∣∣∣∣∣ ≤ 1

2π

(‖σ(P )‖L1

a

)(√
2

3

)p+1

.(2.13)
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D

R

Fig. 3. For the box D, the interaction region is contained within the outer shaded region.

The FMM relies on the ability to manipulate multipole and local expansions for
every box in the tree hierarchy. We omit the technical details and refer the reader to
the original papers [4, 9, 11, 12].

Definition 2.4. We denote by Sl,k the kth square at refinement level l.
We denote by Φl,k the multipole expansion describing the far field due to the source

distribution supported inside Sl,k.
We denote by Ψl,k the local expansion describing the field due to the source dis-

tribution outside the neighbors of Sl,k.

We denote by Ψ̃l,k the local expansion describing the field due to the source dis-
tribution outside the neighbors of the parent of Sl,k.

Remark 2.1. Let Sl,k be a square in the quad-tree hierarchy and let Sl′,k′ be a
square in its interaction list. Then there is a linear operator TMM for which

Φl,k = TMM [Φ(C1),Φ(C2),Φ(C3),Φ(C4)],(2.14)

where Φ(Cj) denotes the multipole expansion for the jth child of Sl,k. In other words,
we can merge the expansions for four children into a single expansion for the parent.
Similarly, there is a linear operator TLL for which

[Ψ̃(C1), Ψ̃(C2), Ψ̃(C3), Ψ̃(C4)] = TLLΨl,k,(2.15)

where Cj denotes the jth child of Sl,k. In other words, we can shift the local expansion

Ψ for a box to the corresponding expansion Ψ̃ for each of its children. Finally, there
is a linear operator TML for which the field in Sl,k due to the source distribution in
Sl′,k′ is described by Ψ = TMLΦl′,k′ . It is easy to verify that

Ψl,k = Ψ̃l,k +
∑
i∈IL

TMLΦi,(2.16)

where IL denotes the interaction list for square Sl,k.
Remark 2.2. One slight complication in the adaptive algorithm concerns the

interaction between boxes of different sizes. Referring to Figure 1, we need to ac-
count for the influence of a childless square B on each box marked s and vice versa.
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(This interaction clearly doesn’t arise if B undergoes further refinement.) For the box
marked s, its multipole expansion is rapidly convergent at each of the sixteen target
points in B. Thus, its influence can be computed by direct evaluation of the truncated
series. For the reverse, however, note that B’s multipole expansion is not so rapidly
convergent. In this case, we directly compute the coefficients of the local expansion in
s from the formula (2.12). A more precise statement than (2.16) is

Ψl,k = Ψ̃l,k +
∑

i∈SIL

TMLΦi,+
∑

i∈CIL

Ldirect(�ωi),(2.17)

where SIL denotes the standard interaction list and CIL denotes the coarse interac-
tion list. The operator Ldirect, which maps the coefficients of the polynomial approx-
imation of the density in the coarse box onto the p2 coefficients of the local expansion
can be precomputed and stored.

The bulk of the work in the FMM involves the application of the operators
TMM , TML, TLL in a systematic fashion. Unfortunately, these operators are dense.
Using multipole and local expansions truncated after p2 terms, the naive cost of ap-
plication is proportional to p4. Modern versions of the FMM have reduced this cost
to O(p3) or O(p2) [12].

Algorithm.
Initialization

Comment [We assume we are given a square domain D = S0,0, on which is superim-
posed an adaptive hierarchical quad-tree structure. We let M be the number of leaf
nodes and denote them by Di, i = 1, . . . ,M . The number of grid points is, therefore,
N = 16M . We let p denote the order of the multipole expansion (p ≈ log2 ε, where ε
is the desired accuracy). We let lmax denote the maximum refinement level.]

Step I: Multipole sweep
Upward pass

for l = levmax, . . . , 0
for all boxes j on level l

if j is childless then
form the multipole expansion Φl,j from (2.9)

else
form the multipole expansion Φl,j by merging the expansions of
its children using the operator TMM (see (2.14))

end
end

Downward pass
Initialize the local expansion Ψ0,0 = 0.
for l = 1, . . . , levmax

for all squares j on level l

Compute Ψ̃l,j by shifting its parent’s Ψ expansion using the operator TLL

Compute Ψl,j by adding in the contributions from all squares in j’s
interaction list according to (2.17).

if j is childless then
for all boxes k in the s-list of j:

evaluate the multipole expansion Φk at each
target in square j.

end
Evaluate the local expansion Ψl,j at each
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target in square j.
endif

end
end

Cost [The upward pass requires approximately Mp2 work, where M is the number
of leaf nodes. The downward pass requires approximately 12Mp2 + 4Mp3 work (see
Remark 2.3 below).]

Step II: Local interactions
Comment [At this point, for each leaf node Di, we have computed the influence of
the source distribution ω over all leaf nodes Dj outside the neighbors of Di.]

do i = 1, . . . ,M
For each target point in Di, evaluate the influence of each

neighbor according to (2.2) using the precomputed
tables of coefficients (2.4).

end
Cost [The maximum number of neighbors a square can have is thirteen (twelve fine
neighbors and itself). Thus the local work is bounded by 12 · 10 ·N operations.]

Remark 2.3. It is somewhat difficult to determine the cost of Step I precisely,
since it depends on the actual structure of the adaptive quad-tree. A reasonable esti-
mate for the total work is

N

(
120 +

12

16
p2 +

4

16
p3

)
.

2.3. The generalized FMM. One drawback of the preceding scheme is that it
relies on spherical harmonic expansions. These are particularly efficient tools for fully
three-dimensional calculations, but they make no use of the fact that we are restricted
to a two-dimensional domain. In fact, a two-dimensional Taylor series would have
served equally well. In the last few years, methods related to the FMM have been
developed which are based only on the fact that the far field is smooth [1, 2, 8, 14].
The paper [8] presents a generalized FMM based on “compressing” operators with the
singular value decomposition (SVD). To understand this approach, let us reconsider
the situation depicted in Figure 3.

Definition 2.5. Let C denote the space of real analytic charge distributions
defined on a square D and let P denote the space of real analytic functions defined on
the outer shaded region R depicted in Figure 3. We define the operator O : C → P
according to O(σ) = Φσ, where

Φσ(Q) =

∫
D

σ(P )

2π|P −Q| dP.

We also define the dual operator S : P → C according to S(σ) = Ψσ, where σ is a
charge distribution defined on R, P ∈ D, and

Ψσ(P ) =
1

2π

∫
R

σ(Q)

2π|P −Q| dQ.

Remark 2.4. The spaces C and P are infinite-dimensional, but both σ ∈ C and
Φσ ∈ P can be approximated arbitrarily well by a finite tensor-product Legendre series

σ(x, y) ≈
N∑

n=0

N∑
m=0

αm
n Pn(x)Pm(y),(2.18)
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Φσ(ξ, η) ≈
N∑

n=0

N∑
m=0

βm
n Pn(ξ)Pm(η),(2.19)

where Pn is the Legendre polynomial of degree n scaled to the dimensions of D. More
precisely, we suppose that there is an expansion of the form (2.19) for each of the 40
squares comprising the region R.

For N sufficiently large, we can approximate the operator O by the finite-dimen-
sional matrix

ON : R
N 2 → R

40N 2

,

mapping the coefficients {αm
n } in the expansion of the charge density σ to the 40 sets

of coefficients {βm
n } in the expansions of Φσ. If we let the SVD of ON be given by

ON = UNΣNV T
N ,

then ON can be compressed by retaining only the first k terms in the decomposition:

ON ≈ UN (k) ΣN (k)VN (k)T ,(2.20)

where VN (k) ∈ R
N 2×k, where UN (k) ∈ R

40N 2×k, and ΣN (k) ∈ R
k×k. This leaves

one open question: for a given precision ε, how large must N and k be so that

‖O(σ)− UN (k) ΣN (k)VN (k)T PNσ‖ < ε,(2.21)

where PN is the operator projecting σ onto its truncated Legendre series? Similarly,
S has an approximate SVD

SN = WN (k)ΩN (k)YN (k)T ,

where YN (k) ∈ R
40N 2×k, where WN (k) ∈ R

N 2×k, and ΩN (k) ∈ R
k×k. It remains

also to determine N and k so that

‖S(σ)− WN (k) ΩN (k)YN (k)T PNσ‖ < ε.(2.22)

This is a rather complicated matter to handle analytically [8, 13] but straightforward
to determine computationally. One can simply increaseN and k until the desired level
of accuracy is achieved, and we summarize the results in Table 1. The generalized
FMM then proceeds as above with the following changes.

1. Φl,j is used to denote the projection of the charge density in box j at level
l onto the first k right-singular vectors VN (k) of O scaled to that level.
Φl,j is stored as a k-vector, which we refer to as the “outgoing” coefficients.
The right-singular vectors correspond, in some sense, to the multipole terms
eimφ/rn+1.

2. Ψl,j and Ψ̃l,j are defined as before, except that we describe the field due to
distant sources in terms of its projections onto the left singular vectors WN (k)
of S. These fields are stored as k-vectors of “incoming” coefficients.

3. In Step I: Upward pass, if box j is childless, we compute Φl,j = VN (k)Tσ.
Since σ is described by ten polynomial coefficients, this requires 10k opera-
tions; the inner product of each of the k singular vectors with each of the ten
basis functions can be precomputed and stored.
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Table 1
Degree of Legendre expansions N and number of terms in the SVD k required to approximate

the operators O and S to the indicated precision.

ε k(O) N (O) k(S) N (S)
10−3 9 4 9 4
10−6 36 8 36 8
10−8 49 10 49 10
10−11 144 14 144 14

4. In Step I: Upward pass, if box j has children, we project the “outgoing coeffi-
cients” of the four children onto the first k right singular vectors at j’s level.
This merging operator requires k2 operations per square, since each matrix
entry in the transformation can be precomputed and stored.

5. In Step I: Downward pass, where we had made use of the operator TLL, we
now project the “incoming” field of the parent’s Ψ expansion to form Ψ̃l,j

using left singular vectors.
This requires k2 operations, since each matrix entry in the transformation
can be precomputed and stored.

6. In Step I: Downward pass, we compute Ψl,j by analogy with (2.17). We need
to convert the “outgoing” coefficients for a box in the interaction list of square
j to the corresponding “incoming” coefficients. Each entry in the conversion
matrix is rather complicated, coupling the right-singular vectors of O to the
left-singular vectors of S. This matrix, however, can be precomputed and
stored, so that the total cost is at most 27k2 operations per square.

7. In Step I: Downward pass, we also need to evaluate the “local expansion.”
This information is now encoded in the left singular vector coefficients and a
naive method would require access of each left singular vector (of dimension
N 2).
Fortunately, we can precompute the influence of each singular vector at each
of the sixteen target points, so that only 16k operations are required at this
stage.

Remark 2.5. A reasonable estimate for the total work of the generalized FMM
is

N

(
120 +

27

16
k2 + 2k

)
.

The first term corresponds to the local work, the second term to the expansion
shifting work, and the third term to the work involved in forming and evaluating
expansions at leaf nodes.

2.4. Periodic boundary conditions. The inversion formula (1.4) and the fast
algorithm described above assume that the right-hand side ω is supported within
a unit square. In certain applications, however, one would like to consider ω to
be periodically extended to cover the entire x − y plane. This requires a modest
modification of the FMM, following the ideas presented in [11]. At the end of the
upward pass of the algorithm, we have a net multipole expansion

Φ(Q) =
∞∑

n=0

n∑
m=−n

Mm
n · e

imφ

rn+1
(2.23)
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Table 2
Timing results for the two FMMs for 3-digit accuracy. The time for the generalized FMM using

9 singular functions is denoted by Talg, while the L2 error of the result is denoted by Ealg. The
time and L2 error for the classical FMM using 8th-order spherical harmonics are denoted by Tsh

and Esh, respectively. The time for direct calculation is denoted by Tdir.

N Talg Tsh Tdir E2(alg) E2(sh)
200 0.01 – 0.02 .11 · 10−3 .10 · 10−3

400 0.02 0.10 0.08 .14 · 10−3 .93 · 10−4

800 0.08 0.22 0.34 .19 · 10−3 .11 · 10−3

1600 0.12 0.47 1.40 .20 · 10−3 .19 · 10−3

3200 0.28 1.13 5.77 .26 · 10−3 .21 · 10−3

6400 0.51 2.14 22.98 .28 · 10−3 .26 · 10−3

for the whole unit square. This is also the expansion for each periodic image of the
square (with respect to its own center). If we imagine that D represents the unit
square in Figure 3, then all such images except for the nearest (unshaded) neighbors
are separated from D. Thus, the totality of the field they induce inside D is accurately
representable as a single local expansion of the form

Ψ(Q) =
∞∑

n=0

n∑
m=−n

Lm
n · rn eimφ.(2.24)

It remains only to obtain the operator mapping the coefficients {Mm
n } to the coeffi-

cients {Lm
n }. We refer the reader to [10] for a discussion of this operator, which is

based on the precomputation of certain lattice sums. The local expansion which de-
scribes the field due to all squares outside the neighbors of D can be denoted by Ψ0,0

within the context of the FMM described above. In the rest of the algorithm, only
two slight modifications are required; the interaction list and the local computations
must be adjusted for boxes near the boundary to account for periodic images. This
involves no significant increase in the amount of work.

3. Numerical results. The two algorithms described above have been imple-
mented using a combination of Fortran 77 and C. All of the timings listed below
correspond to calculations performed on an UltraSparc-I/167 with 128Mb RAM.

Example 1. In our first experiment, we consider the discrete N -body problem

φ(xj) =

N∑
i=1
i�=j

qi
2π‖xi − xj‖

with source locations {xi} randomly but uniformly distributed in the unit square and
source strengths randomly distributed in [−1, 1]. We compare the performance of the
two FMMs at 3-, 6-, and 12-digit accuracy (Tables 2, 3, and 4).

Remark 3.1. Subsequent calculations will rely on the generalized FMM, since
our numerical experiments show it to be three to four times faster than the spherical
harmonic-based code.

Example 2. We consider a smooth distribution of charge:

f(x, y) = x exp(−500x2).

In Table 5, we show the results of inverting the square root of the Laplacian on a
uniform N1 × N1 grid using the generalized FMM with 24 singular functions, the
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Table 3
Timing results for the two FMMs for 6-digit accuracy. The generalized FMM uses 36 singular

functions, while the classical FMM uses 18th-order spherical harmonics. The columns are defined
as in Table 2.

N Talg Tsh Tdir E2(alg) E2(sh)
200 0.03 – 0.02 .77 · 10−7 –
400 0.04 – 0.08 .60 · 10−7 –
800 0.19 0.67 0.34 .72 · 10−7 .25 · 10−7

1600 0.32 1.42 1.50 .79 · 10−7 .24 · 10−7

3200 1.10 3.21 6.04 .15 · 10−6 .30 · 10−7

6400 1.72 6.63 24.21 .15 · 10−6 .33 · 10−7

Table 4
Timing results for the two FMMs for 12-digit accuracy. The generalized FMM uses 144 singular

functions, while the spherical harmonic FMM uses 32nd-order spherical harmonics. The columns
are defined as in Table 2.

N Talg Tsh Tdir E2(alg) E2(sh)
1600 0.85 4.32 1.41 .81 · 10−12 .37 · 10−12

3200 3.36 6.43 5.69 .98 · 10−12 .49 · 10−12

6400 5.30 14.61 22.81 .78 · 10−12 .46 · 10−12

Table 5
Timing results for the uniform mesh of Example 2. The first column shows the value of N1

defining the grid. T24 denotes the time required by the FMM using 24 singular functions, and E24

denotes the L2 error incurred by the method. T36 and E36 are similarly defined. TFFT denotes the
time required by the FFT, and EFFT denotes the corresponding error.

N1 TFMM(24) EFMM(24) TFMM(36) EFMM(36) TFFT EFFT

32 0.034 .59 · 10−1 0.057 .59 · 10−1 0.002 .41 · 10−3

64 0.132 .21 · 10−2 0.232 .21 · 10−2 0.006 .17 · 10−10

128 0.548 .12 · 10−3 0.889 .12 · 10−3 0.025 .28 · 10−13

256 1.912 .12 · 10−4 3.599 .10 · 10−4 0.133 .28 · 10−13

512 7.527 .73 · 10−5 14.240 .10 · 10−5 0.704 .28 · 10−13

Table 6
Performance measures for the generalized FMM. The first column shows the value of N1 defin-

ing the grid. P24 and P36 denote the number of grid points processed per second by the generalized
FMM using 24 and 36 singular functions, respectively. PFFT denotes the number of grid points
processed per second by the FFT.

N1 P24 P36 PFFT P24/PFFT P36/PFFT

64 31030 17655 682667 22.0 38.7
128 29898 18430 655360 21.9 35.6
256 34276 18210 492752 14.4 27.1
512 34827 18409 372364 10.7 20.2

generalized FMM with 36 singular functions, and the FFT. To compare the perfor-
mance of the FMM with the FFT, we also compute the number of points processed
per second by both schemes and a ratio of their timings (Table 6).

The following observations can be made from the data:
1. The generalized FMMs converge (more or less) as expected for a fourth-order

accurate method. The 24 singular function and 36 singular function versions
yield the same accuracy until N1 = 512, at which point the 24 singular
function FMM is dominated by the FMM precision rather than the error in
polynomial approximation. The FFT is, of course, rapidly convergent for this
right-hand side, since it is effectively smooth and periodic.
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Table 7
Performance of the adaptive FMM using 24 singular functions for Example 3. The first column

shows the tolerance in discretizing the right-hand side. The second, third, and fourth columns show
the maximum number of levels, the total number of boxes, and the total number of discretization
points used in the FMM at that tolerance. The fifth column shows the number of points that would
be required by a uniform grid at the finest level using an FFT-based scheme. The sixth column shows
the time required (secs.), and the last column shows the number of points processed per second.

Tol Level Nboxes Npts Nuni Talg P24
10−3 7 889 10672 (262144) 0.328 32537
10−4 7 1489 17872 (262144) 0.523 34172
10−5 8 3265 39184 (1048576) 1.128 34736
10−6 9 5369 64432 (4194304) 1.868 34493
10−7 9 12977 155728 (4194304) 4.414 35280

2. The timings for the FMMs grow linearly with the number of unknowns, while
the timings for the FFT grow like N2

1 logN1. By the time there are 250,000
unknowns, the 5-digit FMM (24 singular functions) is about 10 times as costly
as the FFT. The 7-digit FMM (36 singular functions) is about 20 times as
costly.

Example 3. We next consider a more complex distribution of charge

f(x, y) = g(x− 0.25, y − 0.25) + g(x+ .15, y − .15) + g(x− .05, y + .25),

where

g(x, y) = xy exp(−2000x2) exp(−2000y2).

There are three sharply peaked contributions to the total charge, and the right-hand
side is discretized adaptively. Our refinement strategy is straightforward. Let B be
a leaf node with 16 grid points, as discussed in section 2.1, and let fB(x, y) denote
the fourth-order polynomial used to approximate the right-hand side on B. We then
evaluate fB(x, y) on an 8 × 8 grid covering B and compute the discrete L2 error
E2 = ‖f(x, y) − fB(x, y)‖2 over these target points. If E2 > tol, the leaf node B is
subdivided. Our results are summarized in Table 7.

Example 4. In our last example, we consider a discontinuous right-hand side

f(x, y) =

{
3 |x+ y| > 1/2,
−1 otherwise.

Figure 4 shows the function f(x, y) and the adaptive mesh generated by the discretiza-
tion technique outlined in Example 3. Figure 5 shows the computed solution. Timing
results are summarized in Table 8.

4. Conclusions. We have developed an adaptive direct solver for inverting the
square root of the Laplacian in two dimensions. While our first implementation relied
on a classical spherical-harmonic-based FMM, a faster scheme uses a generalized FMM
[8], which constructs optimal representations for the far field using an SVD. The
method can be used in free space or with periodic boundary conditions, and the
amount of work scales linearly with the number of grid points in the computational
domain. The method is an order of magnitude slower than an FFT-based scheme
on uniform grids, but quickly surpasses such schemes once adaptive refinement is
required. Applications of the method to some problems in fluid dynamics will be
reported at a later date.
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Fig. 4. The discontinuous right-hand side f for Example 4.
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Fig. 5. The potential induced by inverting the square root of the Laplacian using the right-hand
side f in Figure 4.

Table 8
Performance of the adaptive FMM using 24 singular functions for Example 4. The columns

are defined as in Table 7.

Tol Level Nboxes Npts Nuni Talg P24
10−3 7 1205 14464 (262144) 0.434 33327
10−4 9 5045 60544 (4194304) 1.725 35098
10−5 10 10165 121984 (16777216) 3.473 35124
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