Fermat's Little Theorem

Fermat's little theorem is so called to distinguish it from the famous "Fermat's Last Theorem," a result which has intrigued mathematicians for over 300 years. Fermat's Last Theorem was only recently proved, with great difficulty, in 1994.¹ Before proving the little theorem, we need the following result on binomial coefficients.

Theorem: If p is a prime, then $\binom{p}{i}$ is divisible by p for 0 < i < p. Otherwise put, $\binom{p}{i} \equiv 0$ mod p for 0 < i < p.

For example, the 7th row of Pascal's triangle is 1 7 21 35 35 21 7 1. Here, p = 7 and the row itself consist of $\binom{7}{i}$ for $0 \le i \le 7$. Other than these, the numbers are $\binom{7}{i}$ for 0 < i < 7, and we see that they are all divisible by 7, as predicted by the theorem.

The idea behind the proof is to notice that $\binom{p}{i} = \frac{p!}{i!(p-i)!}$. The numerator has a factor p and it cannot be canceled by any factor in the denominator. To prove the result mor formally for any prime p, we have

$$\binom{p}{i} = \frac{p!}{i!(p-i)!}$$

This shows that

$$i!(p-i)!$$
 divides $p! = p(p-1)!$.

But i!(p-i)! is relatively prime to p since all of its factors are smaller than $p.^2$ It follows that

$$i!(p-i)!$$
 divides $(p-1)!$.

So

$$\binom{p}{i} = p \cdot \frac{(p-1)!}{i!(p-i)!}$$

This proves the result.

We can now state and prove Fermat's Little Theorem.

¹See the Koshy text, pp 544-550.

²Here is where we use 0 < i < p.

Theorem: (Fermat). If p is a prime and a is any number not divisible by p, then

$$a^{p-1} \equiv 1 \mod p$$

For example, we know from this, without calculating, that $3^{22} \equiv 1 \mod 23$.

It's more convenient to prove

$$a^p \equiv a \mod p$$
 for all a .

This clearly follows from the above congruence by multiplying it by a. And Fermat's little theorem follows from this congruence by canceling a which is allowed if p does not divide a.

The proof uses the binomial theorem. Clearly, $1^p \equiv 1 \mod p$. Now

$$2^{p} = (1+1)^{p} = 1 + {\binom{p}{1}} + {\binom{p}{2}} + \dots + {\binom{p}{p-1}} + 1 \equiv 1 + 0 + 0 + \dots + 0 + 1 = 2 \mod p.$$

Once we have $2^p \equiv 2 \mod p$, we use the binomial theorem again to find 3^p :

$$3^{p} = (1+2)^{p} = 1 + \binom{p}{1}2 + \binom{p}{2}2^{2} + \dots + \binom{p}{p-1}2^{p-1} + 2^{p} \equiv 1 + 0 + 0 + \dots + 0 + 2 = 3 \mod p.$$

This process can be continued indefinitely to prove the result. (Technically, the result $a^p \equiv a \mod p$ is found by induction on a.)

An important use of this result is the following:

Theorem: If a is not divisible by p, the inverse of a mod p is a^{p-2} .

This is clearly true since $1 \equiv a^{p-1} \equiv a \cdot a^{p-2} \mod p$.

Why is this useful? If we want to find, say the inverse of 17 mod 101, this result says to find 17^{99} . It doesn't seem too useful to multiply 17 by itself 99 times, mod 101. Isn't it better to solve the congruence $17x \equiv 1 \mod 101$? Perhaps so. But with large numbers, a computer can crunch out a power of a number mod another number in a very short time. For example, the program in the lab which does computing modulo a prime finds the inverse of a number very simply by repeated multiplications. In another section we shall show how this is done for large primes.

An interesting consequence of Fermat's little theorem is the following.

Theorem: Let p be a prime and let a be a number not divisible by p. Then if $r \equiv s \mod (p-1)$ we have $a^r \equiv a^s \mod p$. In brief, when we work mod p, exponents can be taken mod (p-1).

We've seen this used in calculations. For example to find $2^{402} \mod 11$, we start with Fermat's theorem: $2^{10} \equiv 1 \mod 11$. Raise to the 40th power to get $2^{400} \equiv 1 \mod 11$. Now multiply

by $2^2 = 4$ to get $2^{402} \equiv 4 \mod 11$. In the language of the above theorem, p = 11, and so p - 1 = 10. We can thus take the exponent 402 mod 10 to get $2^{402} \equiv 2^2 \mod 11$. Thus

$$402 \equiv 2 \mod 10$$
, so $2^{402} \equiv 2^2 \mod 11$

The following is a useful corollary of Fermat's little theorem, which is used today in cryptography.

Theorem: . Suppose n = pq where p and q are distinct primes, and a is not divisible by p or by q. Then

$$a^{(p-1)(q-1)} \equiv 1 \mod n$$

To see this, we note that

$$a^{p-1} \equiv 1 \mod p$$
, and $a^{q-1} \equiv 1 \mod q$

Raise the first congruence to the (q-1) power, and the second to the (p-1) power. We then get

$$a^{(p-1)(q-1)} \equiv 1 \mod p$$
, and $a^{(p-1)(q-1)} \equiv 1 \mod q$

But this means that $a^{(p-1)(q-1)} - 1$ is divisible by p and by q, and so by pq = n. This is the result.

For example, taking primes 67 and 97, and computing $67 \cdot 97 = 6499$, and $66 \cdot 98 = 6468$, we get

$$a^{6468} \equiv 1 \mod 6499$$

if a is not divisible by 67 or 97. In this case, we see that an inverse of a mod 6499 is $a^{6467} \mod 6499$.

Note: Euler's ϕ function is defined as follows: If $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ is the factorization of n into distinct prime powers, the

$$\phi(n) = p_1^{a_1-1} p_2^{a_2-1} \cdots p_k^{a_k-1} (p_1-1)(p_2-1) \cdots (p_k-1)$$

The above result is a special case of Euler's Theorem (which we do not prove):

Theorem: If a and n are relatively prime, then $a^{\phi(n)} \equiv 1 \mod n$.

Fermat's little theorem is a special case here, when n is a prime.