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Fermat’s Little Theorem

Fermat’s little theorem is so called to distinguish it from the famous “Fermat’s Last Theo-
rem,” aresult which has intrigued mathematicians for over 300 years. Fermat’s Last Theorem
was only recently proved, with great difficulty, in 1994.> Before proving the little theorem,
we need the following result on binomial coefficients.

Theorem: If pis a prime, then (p) is divisible by p for 0 < ¢ < p. Otherwise put, <p ) =
i 1

mod p for 0 < i < p.

For example, the 7th row of Pascal’s triangle is 1 7 21 35 35 21 7 1. Here, p = 7 and the row
itself consist of 7 for 0 < ¢ < 7. Other than these, the numbers are 7) for 0 <1 <7,
1 1

and we see that they are all divisible by 7, as predicted by the theorem.

!
The idea behind the proof is to notice that (p) = ﬁ The numerator has a factor
i il(p —1)!
p and it cannot be canceled by any factor in the denominator. To prove the result mor

formally for any prime p, we have
Py__ P
7 il(p —1)!

il(p —4)! divides p! = p(p — 1)L

But i!(p — ¢)! is relatively prime to p since all of its factors are smaller than p.? Tt follows
that

This shows that

il(p —9)! divides (p — 1)!.
—1)!
<]Z> - iE](Jp—i))!

We can now state and prove Fermat’s Little Theorem.

So

This proves the result.

'See the Koshy text, pp 544-550.
2Here is where we use 0 < i < p.



Theorem: (Fermat). If p is a prime and a is any number not divisible by p, then
a®'=1mod p
For example, we know from this, without calculating, that 3*2 = 1 mod 23.

It’s more convenient to prove
a? = a mod p for all a.

This clearly follows from the above congruence by multiplying it by a. And Fermat’s little
theorem follows from this congruence by canceling a which is allowed if p does not divide a.

The proof uses the binomial theorem. Clearly, 1”7 = 1 mod p. Now

2p:(1+1)p:1+<11)>+(g)—i-“-—i-( p1)+1El+0+0+~-~+0+1:2modp.
p_

Once we have 2P = 2 mod p, we use the binomial theorem again to find 37:

3 = (1+2) = 1+<719>2+<729)22+---+< b 1)21”—1+2p = 14+0+0+---+0+2 =3 mod p.
p_

This process can be continued indefinitely to prove the result. (Technically, the result a? = a
mod p is found by induction on a.)

An important use of this result is the following:
Theorem: If a is not divisible by p, the inverse of @ mod p is a?~2.

This is clearly true since 1 = a?~! = a - a2 mod p.

Why is this useful? If we want to find, say the inverse of 17 mod 101, this result says to find
17%. Tt doesn’t seem too useful to multiply 17 by itself 99 times, mod 101. Isn’t it better to
solve the congruence 17z = 1 mod 1017 Perhaps so. But with large numbers, a computer
can crunch out a power of a number mod another number in a very short time. For example,
the program in the lab which does computing modulo a prime finds the inverse of a number
very simply by repeated multiplications. In another section we shall show how this is done
for large primes.

An interesting consequence of Fermat’s little theorem is the following.

Theorem: Let p be a prime and let a be a number not divisible by p. Then if r =
s mod (p — 1) we have a” = a® mod p. In brief, when we work mod p, exponents can be
taken mod (p — 1).

We’ve seen this used in calculations. For example to find 2492 mod 11, we start with Fermat’s

theorem: 2'° = 1 mod 11. Raise to the 40th power to get 24° = 1 mod 11. Now multiply



by 22 = 4 to get 2*2 = 4 mod 11. In the language of the above theorem, p = 11, and so
p —1=10. We can thus take the exponent 402 mod 10 to get 2°? = 22 mod 11. Thus

402 = 2 mod 10, so 2192 = 22 mod 11

The following is a useful corollary of Fermat’s little theorem, which is used today in cryp-
tography.

Theorem: . Suppose n = pq where p and ¢ are distinct primes, and a is not divisible by p
or by ¢q. Then
a? V=N =1 mod n

To see this, we note that
a® ' =1mod p, and a? ' =1 mod ¢

Raise the first congruence to the (¢ — 1) power, and the second to the (p — 1) power. We
then get
a®?™ DD =1 mod p, and a® V@D =1 mod ¢

But this means that =@ — 1 is divisible by p and by ¢, and so by pg = n. This is the
result.

For example, taking primes 67 and 97, and computing 67 - 97 = 6499, and 66 - 98 = 6468, we
get
a®% =1 mod 6499

if a is not divisible by 67 or 97. In this case, we see that an inverse of a mod 6499 is
a%%" mod 6499.

Note: Euler’s ¢ function is defined as follows: If n = pi*p5? - - - pi* is the factorization of n

into distinct prime powers, the

o(n) =pi7'pe T T = D2 = 1) (e — 1)
The above result is a special case of Euler’s Theorem (which we do not prove):
Theorem: If a and n are relatively prime, then a®™ =1 mod n.

Fermat’s little theorem is a special case here, when n is a prime.



