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Fermat’s Little Theorem

Fermat’s little theorem is so called to distinguish it from the famous “Fermat’s Last Theo-
rem,” a result which has intrigued mathematicians for over 300 years. Fermat’s Last Theorem
was only recently proved, with great difficulty, in 1994.1 Before proving the little theorem,
we need the following result on binomial coefficients.

Theorem: If p is a prime, then

(
p

i

)
is divisible by p for 0 < i < p. Otherwise put,

(
p

i

)
≡ 0

mod p for 0 < i < p.

For example, the 7th row of Pascal’s triangle is 1 7 21 35 35 21 7 1. Here, p = 7 and the row

itself consist of

(
7

i

)
for 0 ≤ i ≤ 7. Other than these, the numbers are

(
7

i

)
for 0 < i < 7,

and we see that they are all divisible by 7, as predicted by the theorem.

The idea behind the proof is to notice that

(
p

i

)
=

p!

i!(p− i)!
. The numerator has a factor

p and it cannot be canceled by any factor in the denominator. To prove the result mor
formally for any prime p, we have

(
p

i

)
=

p!

i!(p− i)!

This shows that
i!(p− i)! divides p! = p(p− 1)!.

But i!(p − i)! is relatively prime to p since all of its factors are smaller than p.2 It follows
that

i!(p− i)! divides (p− 1)!.

So (
p

i

)
= p · (p− 1)!

i!(p− i)!

This proves the result.

We can now state and prove Fermat’s Little Theorem.

1See the Koshy text, pp 544–550.
2Here is where we use 0 < i < p.
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Theorem: (Fermat). If p is a prime and a is any number not divisible by p, then

ap−1 ≡ 1 mod p

For example, we know from this, without calculating, that 322 ≡ 1 mod 23.

It’s more convenient to prove
ap ≡ a mod p for all a.

This clearly follows from the above congruence by multiplying it by a. And Fermat’s little
theorem follows from this congruence by canceling a which is allowed if p does not divide a.

The proof uses the binomial theorem. Clearly, 1p ≡ 1 mod p. Now

2p = (1 + 1)p = 1 +

(
p

1

)
+

(
p

2

)
+ · · ·+

(
p

p− 1

)
+ 1 ≡ 1 + 0 + 0 + · · ·+ 0 + 1 = 2 mod p.

Once we have 2p ≡ 2 mod p, we use the binomial theorem again to find 3p:

3p = (1+2)p = 1+

(
p

1

)
2+

(
p

2

)
22+ · · ·+

(
p

p− 1

)
2p−1+2p ≡ 1+0+0+ · · ·+0+2 = 3 mod p.

This process can be continued indefinitely to prove the result. (Technically, the result ap ≡ a
mod p is found by induction on a.)

An important use of this result is the following:
Theorem: If a is not divisible by p, the inverse of a mod p is ap−2.

This is clearly true since 1 ≡ ap−1 ≡ a · ap−2 mod p.

Why is this useful? If we want to find, say the inverse of 17 mod 101, this result says to find
1799. It doesn’t seem too useful to multiply 17 by itself 99 times, mod 101. Isn’t it better to
solve the congruence 17x ≡ 1 mod 101? Perhaps so. But with large numbers, a computer
can crunch out a power of a number mod another number in a very short time. For example,
the program in the lab which does computing modulo a prime finds the inverse of a number
very simply by repeated multiplications. In another section we shall show how this is done
for large primes.

An interesting consequence of Fermat’s little theorem is the following.
Theorem: Let p be a prime and let a be a number not divisible by p. Then if r ≡
s mod (p − 1) we have ar ≡ as mod p. In brief, when we work mod p, exponents can be
taken mod (p− 1).

We’ve seen this used in calculations. For example to find 2402 mod 11, we start with Fermat’s
theorem: 210 ≡ 1 mod 11. Raise to the 40th power to get 2400 ≡ 1 mod 11. Now multiply
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by 22 = 4 to get 2402 ≡ 4 mod 11. In the language of the above theorem, p = 11, and so
p− 1 = 10. We can thus take the exponent 402 mod 10 to get 2402 ≡ 22 mod 11. Thus

402 ≡ 2 mod 10, so 2402 ≡ 22 mod 11

The following is a useful corollary of Fermat’s little theorem, which is used today in cryp-
tography.

Theorem: . Suppose n = pq where p and q are distinct primes, and a is not divisible by p
or by q. Then

a(p−1)(q−1) ≡ 1 mod n

To see this, we note that

ap−1 ≡ 1 mod p, and aq−1 ≡ 1 mod q

Raise the first congruence to the (q − 1) power, and the second to the (p − 1) power. We
then get

a(p−1)(q−1) ≡ 1 mod p, and a(p−1)(q−1) ≡ 1 mod q

But this means that a(p−1)(q−1) − 1 is divisible by p and by q, and so by pq = n. This is the
result.

For example, taking primes 67 and 97, and computing 67 · 97 = 6499, and 66 · 98 = 6468, we
get

a6468 ≡ 1 mod 6499

if a is not divisible by 67 or 97. In this case, we see that an inverse of a mod 6499 is
a6467 mod 6499.

Note: Euler’s φ function is defined as follows: If n = pa1
1 pa2

2 · · · pak
k is the factorization of n

into distinct prime powers, the

φ(n) = pa1−1
1 pa2−1

2 · · · pak−1
k (p1 − 1)(p2 − 1) · · · (pk − 1)

The above result is a special case of Euler’s Theorem (which we do not prove):

Theorem: If a and n are relatively prime, then aφ(n) ≡ 1 mod n.

Fermat’s little theorem is a special case here, when n is a prime.
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