Fermat's Little Theorem

Fermat's little theorem is so called to distinguish it from the famous "Fermat's Last Theorem," a result which has intrigued mathematicians for over 300 years. Fermat's Last Theorem was only recently proved, with great difficulty, in 1994. ${ }^{1}$ Before proving the little theorem, we need the following result on binomial coefficients.

Theorem: If p is a prime, then $\binom{p}{i}$ is divisible by p for $0<i<p$. Otherwise put, $\binom{p}{i} \equiv 0$ $\bmod p$ for $0<i<p$.

For example, the 7th row of Pascal's triangle is 172135352171 . Here, $p=7$ and the row itself consist of $\binom{7}{i}$ for $0 \leq i \leq 7$. Other than these, the numbers are $\binom{7}{i}$ for $0<i<7$, and we see that they are all divisible by 7, as predicted by the theorem.

The idea behind the proof is to notice that $\binom{p}{i}=\frac{p!}{i!(p-i)!}$. The numerator has a factor p and it cannot be canceled by any factor in the denominator. To prove the result mor formally for any prime p, we have

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!}
$$

This shows that

$$
i!(p-i)!\text { divides } p!=p(p-1)!
$$

But $i!(p-i)$! is relatively prime to p since all of its factors are smaller than $p .^{2}$ It follows that

$$
i!(p-i)!\text { divides }(p-1)!
$$

So

$$
\binom{p}{i}=p \cdot \frac{(p-1)!}{i!(p-i)!}
$$

This proves the result.
We can now state and prove Fermat's Little Theorem.

[^0]Theorem: (Fermat). If p is a prime and a is any number not divisible by p, then

$$
a^{p-1} \equiv 1 \bmod p
$$

For example, we know from this, without calculating, that $3^{22} \equiv 1 \bmod 23$.
It's more convenient to prove

$$
a^{p} \equiv a \bmod p \text { for all } a .
$$

This clearly follows from the above congruence by multiplying it by a. And Fermat's little theorem follows from this congruence by canceling a which is allowed if p does not divide a.

The proof uses the binomial theorem. Clearly, $1^{p} \equiv 1 \bmod p$. Now

$$
2^{p}=(1+1)^{p}=1+\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{p-1}+1 \equiv 1+0+0+\cdots+0+1=2 \bmod p .
$$

Once we have $2^{p} \equiv 2 \bmod p$, we use the binomial theorem again to find 3^{p} :
$3^{p}=(1+2)^{p}=1+\binom{p}{1} 2+\binom{p}{2} 2^{2}+\cdots+\binom{p}{p-1} 2^{p-1}+2^{p} \equiv 1+0+0+\cdots+0+2=3 \bmod p$.
This process can be continued indefinitely to prove the result. (Technically, the result $a^{p} \equiv a$ $\bmod p$ is found by induction on a.)

An important use of this result is the following:
Theorem: If a is not divisible by p, the inverse of $a \bmod p$ is a^{p-2}.
This is clearly true since $1 \equiv a^{p-1} \equiv a \cdot a^{p-2} \bmod p$.
Why is this useful? If we want to find, say the inverse of $17 \bmod 101$, this result says to find 17^{99}. It doesn't seem too useful to multiply 17 by itself 99 times, mod 101. Isn't it better to solve the congruence $17 x \equiv 1 \bmod 101$? Perhaps so. But with large numbers, a computer can crunch out a power of a number mod another number in a very short time. For example, the program in the lab which does computing modulo a prime finds the inverse of a number very simply by repeated multiplications. In another section we shall show how this is done for large primes.

An interesting consequence of Fermat's little theorem is the following.
Theorem: Let p be a prime and let a be a number not divisible by p. Then if $r \equiv$ $s \bmod (p-1)$ we have $a^{r} \equiv a^{s} \bmod p$. In brief, when we work $\bmod p$, exponents can be taken $\bmod (p-1)$.

We've seen this used in calculations. For example to find $2^{402} \bmod 11$, we start with Fermat's theorem: $2^{10} \equiv 1 \bmod 11$. Raise to the 40 th power to get $2^{400} \equiv 1 \bmod 11$. Now multiply
by $2^{2}=4$ to get $2^{402} \equiv 4 \bmod 11$. In the language of the above theorem, $p=11$, and so $p-1=10$. We can thus take the exponent $402 \bmod 10$ to get $2^{402} \equiv 2^{2} \bmod 11$. Thus

$$
402 \equiv 2 \bmod 10, \text { so } 2^{402} \equiv 2^{2} \bmod 11
$$

The following is a useful corollary of Fermat's little theorem, which is used today in cryptography.

Theorem: . Suppose $n=p q$ where p and q are distinct primes, and a is not divisible by p or by q. Then

$$
a^{(p-1)(q-1)} \equiv 1 \bmod n
$$

To see this, we note that

$$
a^{p-1} \equiv 1 \bmod p, \text { and } a^{q-1} \equiv 1 \bmod q
$$

Raise the first congruence to the $(q-1)$ power, and the second to the $(p-1)$ power. We then get

$$
a^{(p-1)(q-1)} \equiv 1 \bmod p, \text { and } a^{(p-1)(q-1)} \equiv 1 \bmod q
$$

But this means that $a^{(p-1)(q-1)}-1$ is divisible by p and by q, and so by $p q=n$. This is the result.

For example, taking primes 67 and 97 , and computing $67 \cdot 97=6499$, and $66 \cdot 98=6468$, we get

$$
a^{6468} \equiv 1 \bmod 6499
$$

if a is not divisible by 67 or 97 . In this case, we see that an inverse of $a \bmod 6499$ is $a^{6467} \bmod 6499$.

Note: Euler's ϕ function is defined as follows: If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ is the factorization of n into distinct prime powers, the

$$
\phi(n)=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \cdots p_{k}^{a_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)
$$

The above result is a special case of Euler's Theorem (which we do not prove):
Theorem: If a and n are relatively prime, then $a^{\phi(n)} \equiv 1 \bmod n$.
Fermat's little theorem is a special case here, when n is a prime.

[^0]: ${ }^{1}$ See the Koshy text, pp 544-550.
 ${ }^{2}$ Here is where we use $0<i<p$.

