V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

Exponential and RSA Ciphers

In the section on Fermat’s Little theorem, we proved the following, which we shall put to
use:

Fermat’s little theorem. If p is a prime number and a is any number not divisible by p,
then
a*'=1mod p

Fermat’s theorem (Two Prime version). If p and ¢ are different primes and a is any
number not divisible by p or by ¢, then

Some examples:
522 = 1 mod 23, 7 =1 mod 89, 23315%3¢ = 6499

The first two depend on your knowledge that 23 and 89 are primes. The second depends on
the factorization 6499 = 67 -97 = pq. In this case (p —1)(¢ —1) = 66 - 98 = 6336. Here 2332
is not divisible by 67 or by 97. Less obvious are

51358999 = 1 mod 81493 and 31891°%%® = 1 mod 548239

The first congruence depends on the factorization 81493 = 227 - 359 into primes. The expo-
nent 80908 is the product of 226 and 358 (each one less than the primes in the factorization
of the modulus.) The second congruence depends on the fact that 548238 is a prime (gotten
from the PrimeWizard program in the lab.)

Large numbers like the last examples are clearly difficult to handle manually, though com-
puters can deal with them by factoring into primes and by determining if a number is prime.
Such congruences are used in cryptography. However the prime numbers will have 100 to
200 digits! In this case, the above numbers will seem like chicken feed. And for such huge
primes, computers today can determine a factorization into primes only with great difficulty.
A fast computer might take 20 or so years working full time to determine if a number is
prime. And factoring tremendous numbers is even more hopeless. So if a cipher scheme can
be found which involves huge numbers and factoring them into primes, the code would be
practically unbreakable even with the best computers and smartest minds.

We first show how Fermat’s two result are used. We illustrate with 5?2 = 1 mod 23. If we
wish to find 52?3 mod 23, we write 223 = 22-10 + 3, so

5223 — 522-10+3 — (522)1053 = 11053 — 53 =125=10 mod 23
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This amounts to replacing the exponent 223 by its value mod 22. (We divided by 22 to get
the remainder 3.) In general, to compute a® mod p, where p and a are as before, we can
replace s by its value mod (p — 1). Note: The congruence is mod p but the exponents of a
can be taken mod p — 1.

Important consequence of Fermat’s little theorem. If p is a prime and a is a number
not divisible by p, then a” = a®* mod p when r = s mod (p — 1).

Example. Find 17'%% mod 67.
Answer: Working the exponent mod 66, we find 1388 = 2 mod 66. So

171388 = 172 = 189 = 25 mod 67.

In exactly the same way, we can reduce a power mod n when n is the product of different
primes p and q.

Important consequence of Fermat’s little theorem (Two Prime Version). If p and
q are different primes and a is a number not divisible by p or by ¢, then a” = a®* mod p when
r=smod (p—1)(¢—1).

Example. Find 7275 mod 143.

Answer: Note that 143 = 11 - 13. (If you didn’t see this immediately, check 143 mod 11 by
the alternating sum test.) So here p =11 and ¢ = 13,80 (p —1)(¢ — 1) = 10- 12 = 120. We
can reduce the exponent 2763 mod 120. We have 2763 = 3 mod 120 so

72763 = 73 = 343 = 57 mod 143.

Exponential Codes — One Prime. A code attempts to send a message which can be read
only by someone who has the key to the code. The message will be a stream of letters, but
this is usually coded and transmitted as a stream of numbers. The receiver then decodes
these numbers to get the original stream and hence the letters and the message. For example,
suppose we wish to sent the message

DONT COME BEFORE FIVE CLOCK
Ignoring spaces, we convert each of these letters into their number equivalent (alway using
two digits and ignoring spaces) and we try to code the number stream

041514200315130502050615180506092205150312150311
We break this into chunks depending on our coding system — say chunks of 3 — and we then
proceed to send coded version of the three digit numbers

041 514 200 315 130 502 050 615 180 506 092 205 150 312 150 311

A (one prime) exponential code is given by the formula C' = P¢ mod p where p is a fixed

prime, and e is relatively prime to (p — 1). Here, P is the plaintext (as number) and C' is
its cipher. For example, let’s take p = 947. Then p — 1 = 946 = 2 - 11 - 43. Let’s take
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e = 53 which is prime to 946 since it is not divisible by 2 or 3 or 503.! So in this case, the
exponential cipher we are using will be

C = P* mod 947

Our “message” is 041 514 200 315 .... We code this one three digit number at a time. For
P = 041, we get?
C = 041°° = 544 mod 947

Similarly, P = 514 is coded as C = 514° mod 947 giving C = 390, and the third triple
digit number 200 is coded as 200°® = 677 mod 947. Proceeding in this way, we generate the
cipher text for each part of our message and we send the message

544 390 677 ...

confident that no one will understand. The receiver knows all about the prime 947 but
she takes exponent 357. (This will be shortly explained.) So she decodes 544 to get P =
54437 mod 947. This works out to 41 or 041 since three digit number are understood.
Similarly, 390%7 = 514 mod 947 and 67737 = 200 mod 947. So the decoded message starts
as 041 514 200 .... Making a stream of digits, we get 041514200...0r 04 15 14 20 .... In
letters, the decoded message is DONT. . ..

Summarizing this technique, we chose p = 947 and e = 53 for coding three digit numbers,
and we chose d = 357 for decoding:

C = P* mod 947; P = C*7 mod 947
The coder knows exponent 53, the decoder knows exponent 357, both know the prime 947.

What is the magic use of the exponents 357 and 537 How does that work? The answer is the
357 and 53 are inverses mod 946. (Note: 946 not 947!). It works because the coded message
is C' = P% mod 947. The decoder then take C357 = P33T, But this exponent is congruent
to 1 mod 946 since that’s how 53 and 357 were chosen. Thus C3" = P! = P mod 947. Note
that we always get and code three digit numbers since that’s the size of the remainders mod
947.

Summary of exponential coding mod p. For given prime p and number e relatively
prime to p—1, choose d so that ed = 1 mod (p—1). Then the coding is given by C' = P¢ mod p
and the decoding is given by P = C? mod p. In all cases P and C are chosen between 0 and
p — 1 inclusive, namely the possible remainders when dividing by p.

!The primes and the factorizations in this discussion were all done with the PrimeWizard software in the
lab.
2This was all computed using the ModCalc software in the lab.
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Exponential Codes — Two primes. The situation here is almost the same, but it is
the basis for the RSA coding system, considered the most powerful, so far unbreakable
coding system ever. We start with two different primes p and q. Take n = pq, and take
e relatively prime to (p — 1)(¢ — 1), and take d as an inverse of e mod (p — 1)(¢ — 1).
Then ed = 1 mod (p — 1)(¢ — 1). The coder is given the exponent e and the decoder the
exponent d. Both know the number n = pq. The coder computes the code using the formula
C' = P° mod n and the decoder decodes using the formula P = C? mod n. Everything
on the surface is the same. For example, let’s choose small numbers so we can transmit
two digits (or one letter) at a time. Take p = 11 and ¢ = 17. Then n = pg = 187. Here
(p—1)(¢ — 1) = 160 with prime divisors 2 and 5. Choose e = 57, say. Then we must find
its inverse d mod 160. This calculates to (trust me) d = 73. The coder is given the number
n = 187 and exponent ¢ = 57. The decoder is given the number n = 187 and exponent
d = 73. Say the coder wants to sent the message NO, or 14 15. He computes 14°" mod 187
which works out to be 20, and 15°7 = 49 mod 187. the message is simply
20 49

The receiver gets the message 20 49. He decodes 20™ = 14 mod 187 and 49™ = 15. The
decoded message is, naturally, 14 15 or NO!

Summary of exponential coding mod pq. For given primes p and q take n = pq and
number e relatively prime to (p — 1)(¢ — 1), choose d so that ed = 1 mod (p — 1)(¢ — 1).
Then the coding is given by C' = P° mod n and the decoding is given by P = C? mod n. In
all cases P and C' are chosen between 0 and n — 1 inclusive, namely the possible remainders
when dividing by n.

Public Key Cryptography. Imagine a company or a department with lots of people who
have to send encrypted messages to one another. The person receiving the message is the
only one who is able to decode the message and anyone can send an encrypted message to
anyone else in the company. In order to do this, every person in the company is given a
modulus number n and an exponent e. These numbers are listed in a directory for all to see,
so anyone can send an encrypted message. (This makes the keys public.) But each person in
the company is also given a decoding exponent d, and this is known only to her. So if I want
to send a message to Mary, say, I look up her modulus n and her exponent e, and send the
message. Mary receives the message and uses her decoding key d and decodes. Anyone else
on the list can intercept the message but they can’t decode - they don’t have the decoding
key d — they only have the modulus n and Mary’s coding exponent e which is public. So
Mary decodes and the others are frustrated.

The system is called the RSA system in honor of the inventors, R. Rivest, A. Shamir, and
L. Adelman. It is based on the two prime system described above. Here n = pg and e is
relatively prime to (p — 1)(¢ — 1). d is the inverse of e mod (p — 1)(¢ — 1). Why, you may
ask, is d such a secret decoder. Anyone knows John’s modulus n and exponent e. So factor
n as pq, and compute p — 1)(¢ — 1). Then find d as the inverse of e mod p —1)(¢ — 1). So it
would seem that all anyone needs is a little bit of congruence mathematics. But here’s the
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problem: p and ¢ are tremendously large primes say 100 to 200 digits. Since n = pg, n has
200+ digits. How do you factor it. The fact is that this is a problem computers can do but
the fastest computer, working full time, will take years® to accomplish the factorization. So
far, after 25 or so years, this RSA system is regarded as unbreakable. Naturally, people are
trying, and if they succeed, it’s back to the drawing board!

3an estimated 4 million years for a 200 digit number!. And much more for a number with more digits.



