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We introduce a low-order dynamical system to describe thermal convection in an annular
domain. The model derives systematically from a Fourier-Laurent truncation of the
governing Navier-Stokes Boussinesq equations and accounts for spatial dependence of the
flow and temperature fields. Comparison with fully-resolved direct numerical simulations
(DNS) shows that the model captures parameter bifurcations and reversals of the large-
scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC
reversals, and (iii) periodic LSC reversals. Casting the system in terms of the fluid’s
angular momentum and center of mass (CoM) reveals equivalence to a damped pendulum
with forcing that raises the CoM above the fulcrum. This formulation offers a transparent
mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and
it yields an explicit formula for the frequency f∗ of regular LSC reversals in the high
Rayleigh-number limit. This formula is shown to be in excellent agreement with DNS
and produces the scaling law f∗ ∼ Ra0.5.
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1. Introduction

Thermal convection and the associated large-scale circulation (LSC) play an instrumen-
tal role in applications diverse as atmospheric and oceanic flows (Salmon 1998; Zhong
et al. 2009), mantle and liquid-core convection (Whitehead 1972; Zhang & Libchaber
2000; Zhong & Zhang 2005; Whitehead & Behn 2015; Huang et al. 2018), and solar
magneto-hydrodynamics (de Wit et al. 2020). In these settings, it is known that the LSC
can spontaneously reverse direction (Ahlers et al. 2009), manifesting, for example, as a
sudden change in wind direction (van Doorn et al. 2000) or potentially a reversal of the
Earth’s magnetic dipole (Glatzmaier et al. 1999).
LSC reversals have been observed in controlled laboratory experiments (Creveling et al.

1975; Gorman et al. 1984, 1986; Castaing et al. 1989; Brown & Ahlers 2007; Xi & Xia
2007; Sugiyama et al. 2010; Song et al. 2011; Wang et al. 2018; Chen et al. 2019) and
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numerical simulations (Sugiyama et al. 2010; Xu et al. 2021), where a progressive increase
of the Rayleigh number Ra triggers a sequence of transitions. Depending on underlying
conditions, this sequence can include: (1) the onset of fluid motion giving rise to steady
circulation; (2) the destabilization of this circulatory state giving rise to chaotic reversals
of the LSC; (3) a return to order at high Ra in which LSC reversals recur periodically
despite small-scale turbulence.
Despite much progress, LSC reversals remain poorly understood. Current theory can

be broadly categorized as application of the Lorenz equations or phenomenological
models. The Lorenz equations, originally derived in the context of planar upper and
lower boundaries with unbounded horizontal periodicity (Lorenz 1963), captures many
of the transitions listed above. However, when applied to the finite geometries accessible
to experiments, the Lorenz system only describes the spatially-averaged flow (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann et al. 1989; Ehrhard & Müller 1990;
Singer et al. 1991), resulting in substantial quantitative differences with experiments
(Gorman et al. 1986). More recent phenomenological models account for additional
physical effects, such as detached thermal plumes or corner rolls, by supplementing
fundamental conservation laws with nonlinear or stochastic terms (Araujo et al. 2005;
Brown & Ahlers 2007; Ni et al. 2015). While these models lend great physical insight,
the connection to first principles may not be self-evident due to the ad hoc nature of the
extra terms. In rectangular and cylindrical domains, it has been suggested that corner
vortices and the associated turbulent fluctuations can perturb the LSC structure, causing
it to switch between two bistable states (Brown & Ahlers 2007; Sugiyama et al. 2010).
Switching may occur irregularly, partly due to intermittent heat accumulation and release
(Wang et al. 2018).

In this article, we discuss one physical scenario in which a first-principled and precise
understanding of LSC reversals can be gained. The scenario is thermal convection in
a narrow annulus, closely related to a so-called closed-loop thermosyphon (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann et al. 1989; Ehrhard & Müller 1990;
Singer et al. 1991; Basu et al. 2014). The annular geometry reinforces the dominant
circular structure of natural convection, while eliminating corner-induced effects that
tend to introduce greater complexity and tend to be geometric specific. The confined
nature of the annular flow is more amenable to low-dimensional characterization, while
also exhibiting sufficiently complex behavior, such as chaotic and periodic LSC reversals,
to be useful for understanding convection. The results of our study complement those
conducted in rectangular geometries, where domain corners impact convective behavior
(Brown & Ahlers 2007; Sugiyama et al. 2010; Ni et al. 2015; Chen et al. 2019).

Rather than beginning with the Lorenz equations and making adjustments to suit the
annulus, we derive a low-order system directly from a Fourier-Laurent truncation of the
governing Navier-Stokes Boussinesq (NSB) equations. The resulting system resembles the
Lorenz equations, but differs in a few important ways. Notably, the Laurent expansion
accounts for spatial dependence of the flow [see also Yorke et al. (1987)], permitting exact
enforcement of boundary conditions without the need for empirically estimated friction
or heat-transfer coefficients. Comparison to direct numerical simulations (DNS) shows
this system captures the entire sequence of transitions, including regimes of chaotic and
periodic LSC reversals.
Importantly, we show equivalence between this low-order system and an externally-

driven mechanical pendulum. Two lengthscales naturally emerge from this correspon-
dence: the fulcrum y1 of the pendulum and the point y0 towards which the fluid center
of mass (CoM) is externally driven, both given by explicit formulas. Knowledge of these
quantities yields a simple formula for the frequency of periodic LSC reversals in the high-
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Figure 1. Direct numerical simulations of natural convection in an annulus. (a) Schematic of
an annular fluid domain heated from below. (b) At low Ra (3.9 × 105), the conductive state is
stable, resulting in a raised CoM (green dot). Any initial angular momentum quickly dissipates
as shown in the plot of L(t) below. (c) At higher Ra (3.1 × 106) the system transitions to
steady circulation with offset CoM and non-zero L. (d) At yet higher Ra (5× 107), the LSC can
spontaneously reverse direction. The fluid CoM wanders erratically (green trajectory) and L(t)
reverses chaotically. (e) At the highest Ra (1.6×109), the LSC reversals recur periodically, even
though the small-scale flow is turbulent. (f) The temperature power spectrum of (e) peaks at
frequency f∗, corresponding to the LSC reversal frequency. At higher frequency, the decay rate
is consistent with a −1.4 power law. Movies of (b)–(e) are available in Supplemental Material.
In all cases, Pr = 4 and r0 = 0.4.

Ra regime, shown to be in excellent agreement with DNS. Further, this correspondence
reveals a transparent mechanism for reversals, namely the inertial overshoot of the fluid
CoM as equivalent to a forced pendulum. The clean characterization afforded by annular
convection may offer a new point of approach for understanding convection in other
geometries.

2. Convective states revealed by DNS

Figure 1(a) depicts the problem setup in which a 2D annular fluid domain is heated
from below. Thermal exchange occurs along the outer boundary with an imposed tem-
perature that decreases linearly with height, while the inner boundary remains adiabatic.
Dimensionless temperature T , velocity u, and pressure p fields are governed by the
incompressible NSB equations

∂u

∂t
+ u · ∇u = −∇p+ Pr∇2u+RaPrTey, (2.1)

∂T

∂t
+ u · ∇T = ∇2T, (2.2)

∇ · u = 0, (2.3)

holding in the dimensionless annulus, r0 < r < 1/2. Both the inner and outer rings are
no-slip boundaries. Parameters include the Rayleigh number Ra = βT∆Th

3g/(νκ) and
Prandtl number Pr = ν/κ (Appendix A), where h is the dimensional outer boundary
diameter and ∆T is the temperature difference between the bottom and top points of the
outer boundary. Other physical parameters include βT , g, ν, κ, which are the thermal
expansion coefficient, acceleration due to gravity, kinematic viscosity, and thermal dif-
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fusivity, respectively. When Ra is sufficiently high, the destabilizing action of buoyancy
can give rise to natural convection.

To quantify different convective states, we will examine the spatially-averaged fluid
angular momentum L(t) and the fluid CoM coordinates (X(t), Y (t)), given by:

L(t) =
1

A0

∫
Ω

ru dA, (2.4)

X(t) = − 1

A0

∫
Ω

xT dA, (2.5)

Y (t) = − 1

A0

∫
Ω

y T dA. (2.6)

Here, A0 = π(1−4r20)/4 is the area of the annulus Ω and dA = r drdθ is the area element.
The fluid CoM coordinates above are expressed in terms of the temperature field owing
to the fact that fluid density varies as the negative of T . We note that L > 0 corresponds
to a counter-clockwise rotating flow.

The range of convective states are revealed by direct numerical simulations (DNS)
of the NSB system as shown in Fig. 1. Simulations are based on a Chebyshev-Fourier
pseudo-spectral discretization (Appendix B) of Eqs. (2.1) to (2.3) in streamfunction-
vorticity form with implicit-explicit time stepping (Peyret 2002; Huang et al. 2021; Huang
& Zhang 2022). At low Ra, Fig. 1(b) shows the existence of a stable conductive state with
no fluid motion and with raised CoM (green dot). In this regime, perturbations to the
conductive state decay rapidly, as seen in the plot below showing L(t) → 0. Increasing Ra
eventually destabilizes the system, leading to the state shown in Fig. 1(c), where the fluid
circulates either clockwise (CW) or counterclockwise (CCW) at a constant rate. In this
state, the fluid CoM is fixed and offset from center. By further increasing Ra, this steady
circulating state also destabilizes; the direction of circulation now alternates over time
and the flow reverses chaotically, as shown in the time series of L in Fig. 1(d). The fluid
CoM wanders erratically in this regime. Interestingly, large-scale chaos disappears when
Ra becomes sufficiently high, and Fig. 1(e) reveals an oscillating state with periodic LSC
reversals. Here, the oscillatory CoM trajectory resembles pendulum motion. Although
the reversals are periodic, the small-scale flow is turbulent and resolved by the DNS.
The turbulent fluctuations are characterized by the frequency power spectrum of the
temperature field, shown in Fig. 1(f) to follow the turbulent Bolgiano-Obukhov power
law of natural convection (Wu et al. 1990; Lohse & Xia 2010).

3. Low-order model for LSC reversals

All of these states can be recovered by a low-dimensional system that arises directly
from the governing NSB equations. As further detailed in Appendix C, the brief derivation
is as follows. In polar coordinates, u = u(r, θ, t)eθ+v(r, θ, t)er and T = T (r, θ, t), consider
a Fourier expansion in θ and a Laurent expansion in r, and truncate each to a desired
order while enforcing all boundary conditions (BCs). The choice of Laurent expansion
is guided by the form of the conductive-state solution and recovers this basic state with
no approximation made. Inserting the truncated variables into Eqs. (2.1) to (2.3) and
projecting onto the Fourier-Laurent basis yields a finite-dimensional system.

Truncating the combined Fourier-Laurent expansion at the lowest order capable of
satisyfing all BCs and casting in terms of the physically relevant variables L(t), X(t), Y (t)
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produces the dynamical system:

L̇ = −RaPrX − αPrL, (3.1)

Ẋ = −kL(Y − y1)− βX, (3.2)

Ẏ = kLX − β(Y − y0). (3.3)

This system governs the evolution of the fluid angular momentum L(t) and fluid CoM
coordinates (X(t), Y (t)) defined in Eqs. (2.4) to (2.6). The coefficients α, β, k, y0, y1 > 0
are purely geometric in that they depend on r0 only. Formulas for these coefficients are
given in Appendix C. Though no assumption is made on the width of the annulus, the
low-order truncation is most accurate for a relatively narrow annulus. We therefore set
r0 = 0.4 in all numerical examples. Higher-order truncations could be used for a wider
annulus.

The above system exhibits the same quadratic nonlinearity as the Lorenz equations.
The parameter structure, however, arises directly from the annular geometry and differs
from that of Lorenz. Differences, therefore, exist in the parameter regimes accessible by
each system and especially in the threshold values separating different states.

While the comparison to the Lorenz equations can be illuminating, even more physical
insight can be gained by recognizing how Eqs. (3.1) to (3.3) relate to a mechanical
pendulum. In particular, if one artificially sets β = 0, then Eqs. (3.1) to (3.3) are
identical to those of a pendulum with fulcrum y1, length l =

√
X2 + (Y − y1)2, effective

gravitational constant geff = kl2 RaPr, and damping rate αPr. The system is simply
written in terms of the pendulum CoM and angular momentum rather than the more
familiar angular displacement. In this equivalence, the pendulum CoM corresponds
exactly to the fluid CoM (X,Y ) as defined in Eqs. (2.5) and (2.6), and the pendulum
angular momentum corresponds exactly to the fluid angular momentum L as defined in
Eq. (2.4). Note that the effective gravitational constant geff of the pendulum system is
unrelated to the actual gravitational constant g of the thermal convection system. Also
note that if β ̸= 0, the two additional driving terms present in Eqs. (3.2) and (3.3)
can cause the pendulum length l =

√
X2 + (Y − y1)2 to vary dynamically, opening the

possibility of chaotic dynamics.

The driving terms involving β arise from the interaction of boundary heating and
buoyancy. As seen in Eqs. (3.1) to (3.3), these terms drive the CoM towards the point
(0, y0), which Appendix A shows is the CoM of the conductive state. Thus, (L,X, Y ) =
(0, 0, y0) corresponds to the conductive-state solution that is given explicitly by Eq. (A 4)
and depicted in Fig. 1(b). Stability analysis discussed in Section 4 shows that this state
is stable up to a critical Rayleigh number.

The most important parameters in the pendulum correspondence of Eqs. (3.1) to (3.3)
are y0 and y1, corresponding to the height of the conductive-state CoM and the pendulum
fulcrum respectively. Appendices A and C give explicit formulas for these two length
scales in terms of the geometric parameter r0. When the fluid CoM lies at the pendulum
fulcrum, (X,Y ) = (0, y1), the restoring torque in Eqs. (3.1) to (3.3) vanishes but the
driving terms that push (X,Y ) towards (0, y0) do not vanish. The state (L,X, Y ) =
(0, 0, y1) is therefore not an equilibrium of the system due to the continual injection of
thermal energy from the boundary. Appendix C further shows that y0 > y1 > 0 for any
choice of r0, implying that the thermal injection always acts to raise the CoM above the
fulcrum and, hence, tends to destabilize the system.
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Figure 2. Trajectories of ODE system (3.1)–(3.3) in comparison to fully-resolved DNS. The
trajectories of (L,X, Y ) are remarkably similar across the range of Rayleigh numbers, showing
(a) convergence to a stable circulating state for Ra = 3.1× 106, (b) strange-attractor dynamics
for Ra = 5×107, and (c) periodic dynamics for Ra = 1.1×109. In all cases, Pr = 4 and r0 = 0.4.

4. Bifurcations and comparison with DNS

How well does this simple ODE system describe the dynamics of convection? Fig-
ure 2 shows trajectories of (L,X, Y ) computed by fully-resolved DNS (top) versus those
computed by the ODE model (bottom) for the same Rayleigh numbers as Fig. 1(c)–(e).
Figure 2(a)–(c) shows that the trajectories from DNS and the ODE model are remarkably
similar across the range of Ra, exhibiting (a) convergence to a stable circulating state,
(b) chaotic dynamics near a strange attractor, and (c) periodic orbits at the highest Ra.
The trajectories in Fig. 2(b)-(c) indicate reversals of the LSC, as can be seen by the sign
change of L. The LSC reversals are chaotic in Fig. 2(b) and periodic in Fig. 2(c).
The bifurcation diagram in Fig. 3 shows that a pitchfork bifurcation occurs at a critical

value Ra∗1. At this value, the conductive state loses stability, and, simultaneously, the
bistable circulating states appear (CW and CCW circulation). At a second critical value,
Ra∗2, these circulating states lose stability through a Hopf bifurcation. Immediately past
Ra∗2, the dynamics are fractal-like and chaotic, characteristic of a strange attractor. These
observations are further supported by measurements of the fractal dimension D2 (Ott
2002) and Lyapunov exponent λ shown in the inset. At much higher Ra, order reemerges
and trajectories resemble the arc-like path of a pendulum.
The ODE model yields exact formulas for both critical values (Appendix D):

Ra∗1 =
αβ

k∆y
, Ra∗2 =

α2 Pr

k∆y

(
αPr + 4β

αPr− 2β

)
, (4.1)

where ∆y = y0 − y1 > 0 is the distance between the conductive-state CoM and the
pendulum fulcrum. Briefly, the value Ra∗1 is found through linear stability analysis of
the conductive state (L,X, Y ) = (0, 0, y0). As Ra crosses Ra∗1, the conductive state loses
stability and the circulating states appear. Immediately past Ra∗1, the Jacobian of each
circulating state possesses three real, negative eigenvalues. As Ra increases further, two
eigenvalues become complex, z2,3 = σ ± iω, with σ < 0 initially. As Ra crosses Ra∗2, σ
becomes positive and thus the circulating states lose stability, giving way to the strange
attractor seen in Fig. 2(b). This analysis is similar to that conducted for the Lorenz
equations (Welander 1967; Creveling et al. 1975; Gorman et al. 1986; Ehrhard & Müller
1990), the main difference being that modelling choices made early on (e.g. accounting
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Figure 4. Phase diagram of different convective states. Colored dots are from DNS, where blue
indicates a stable conductive state, green indicates bistable circulating states, orange indicates
chaotic LSC reversals, and red indicates periodic LSC reversals. Formulas for Ra∗1 and Ra∗2 from
the ODE model predict the boundaries between the regions well.

for the flow’s spatial dependence) enable greater accuracy in predicting the bifurcation
parameters than obtained previously (Gorman et al. 1986).
The phase diagram in Fig. 4 gives a bird’s-eye view of the different convective states.

In the figure, colored dots correspond to fully-resolved DNS, showing regions of a stable
conductive state (blue), bistable circulating states (green), and LSC reversals, both
chaotic (orange) and periodic (red). The boundaries between these regions are well
predicted by the formulas for Ra∗1 and Ra∗2 given in Eq. (4.1). In particular, Ra∗1 is
independent of the Prandtl number, giving the vertical green line. The predicted value
of Ra∗1 agrees with DNS in all cases to within the grid resolution of Fig. 4. Meanwhile,
the orange curve shows the Pr dependence of Ra∗2. For the important case of water,
4 < Pr < 8, this threshold is also predicted to within the grid resolution. While some
discrepancy is visible for other values of Pr, the curve captures the qualitative shape of
the boundary, in particular the horizontal asymptote Pr∗ = 2β/α obtained by setting
the denominator of Ra∗2 equal to zero. We note that, even though it is a very different
geometry, thermal convection in a rectangular domain yields a phase diagram with the
same states and with similar orders of magnitude for the thresholds (Araujo et al. 2005).



8 N. J. Moore and J. M. Huang

5. Periodic LSC reversals at high Ra

As Ra increases well beyond Ra∗2, large-scale chaos subsides and gives way to the nearly
periodic trajectories seen in Fig. 2(c). While the bifurcations discussed in the previous
section have been qualitatively described by related models, the periodic regime has
received less attention and, so far, has resisted clean characterization. It is precisely this
regime where the novel mechanical-pendulum correspondence becomes most valuable.

As seen in Fig. 3 inset, the return to order at high Ra is indicated by the fractal
dimension dropping to one and the Lyapunov exponent dropping to zero at the same
Rayleigh number, roughly Ra = 109. At this value, a stable limit cycle emerges in the
ODE system, giving CoM orbits that resemble pendulum motion. Figure 5(a) shows
four such orbits of the fluid CoM (X(t), Y (t)) for Rayleigh numbers in the range 1/4 ×
1010 < Ra < 16 × 1010. At the lowest Ra, the corresponding pendulum length l(t) =√
X2 + (Y − y1)2 varies somewhat over the period. At higher Ra, though, the orbit

tightens and l remains nearly constant throughout. Recall that, even though the large-
scale dynamics of the fluid angular momentum L(t) and CoM (X(t), Y (t)) are regular
in this regime, the DNS shows that turbulent fluctuations inhabit the small scales [see
Fig. 1(e)].

Each swing of the pendulum seen in Fig. 5(a) corresponds to a sign-change of the
fluid angular momentum L and, therefore, a reversal of the large-scale circulation. This
simple observation offers a way to predict the dominant frequency f∗ of LSC reversals.
In the pendulum correspondence of Eqs. (3.1) to (3.3), the gravitational constant is
geff = kl2 RaPr, giving a small-amplitude frequency of

√
klRaPr/(2π). The amplitudes

seen in Fig. 5(a), however, are not small, implying that the frequency depends on both
the pendulum length l and the maximum swing angle ϕmax.

As detailed in the Appendix E, both of these quantities can be estimated through
an energy balance with Eeff = 1

2kL
2 + RaPr (Y − y1) representing the sum of kinetic

and potential energy of the mechanical pendulum system. This quantity is an effective
energy of the pendulum system and does not directly represent the actual energy of the
thermal convection system. Although Eeff is not necessarily conserved over the dynamics,
it does satisfy a precise energy law with energy injection (from boundary heating) and
dissipation (from fluid viscosity). In the case of a limit cycle, the total energy injected
must balance that dissipated, and the period-averaged Eeff is conserved. With a few
additional approximations made, this principle allows one to solve for pendulum length
and maximum swing angle that arise in the case of a limit cycle. The resulting values of
l and ϕmax depend on geometry and Pr, but not on Ra (see Appendix E). With these
values known, the (dimensionless) frequency of high-Ra LSC reversals is given by

f∗ =

√
klRaPr

4K(sin2(ϕmax/2))
, (5.1)

where K is the complete elliptic integral of the first kind.

Figure 5(b) shows a comparison between this simple formula and the reversal frequency
measured in the fully-resolved DNS. In the DNS, the reversal frequency is measured as the
peak location in the temperature power spectrum [see Fig. 1(f)]. Figure 5(b) shows that
Equation (5.1) predicts the reversal frequency measured in DNS remarkably well over the
largest decade of Ra run (roughly Ra = 2× 108 to 2× 109). At higher Ra, DNS becomes
computationally prohibitive but numerical solution of the ODE model is feasible, and
the corresponding measurements of f∗ also agree with Eq. (5.1). The close agreement
between DNS, the ODE model, and Eq. (5.1) suggests the primary mechanism for LSC
reversals has been properly accounted for by the mechanical pendulum correspondence.
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In dimensional terms, Eq. (5.1) gives a reversal frequency of F ∗ = cN∗, where N∗ =√
βT∆Tg/h is the Brunt–Väisälä frequency, i.e. the inverse of the free-fall timescale, and

c is a constant that depends on geometry and Pr, but not Ra (Appendix E). We note
that c = 0.04 for the case of Fig. 5, indicating roughly 25 free-fall timescales per reversal
event. Other geometries may yield different values of this ratio.

6. Discussion

The low-order system given by Eqs. (3.1) to (3.3) arises from systematic analysis of the
governing NSB equations and has been shown to accurately describe a range of convective
states in the annular domain. In contrast with related Lorenz-type models (Welander
1967; Gorman et al. 1986; Tritton 1988; Widmann et al. 1989; Ehrhard & Müller 1990;
Singer et al. 1991; Araujo et al. 2005), the Laurent expansion underlying Eqs. (3.1)
to (3.3) accounts for spatial dependence of the flow and temperature fields, precluding the
need for empirically estimated friction or heat-transfer coefficients. This modeling choice
enables greater accuracy in predicting parameter bifurcations, as demonstrated by direct
comparison with fully-resolved DNS. Many of these related models have been used as the
foundation for control (Singer et al. 1991; Wang et al. 1992), data assimilation (Harris
et al. 2012; Chen & Majda 2018), and machine learning (Chen 2020). The accuracy and
conceptually transparency afforded by Eqs. (3.1) to (3.3) could further such endeavors.
Importantly, this low-order system reveals a previously unrecognized pendulum struc-

ture underlying natural convection. In particular, Eqs. (3.1) to (3.3) correspond to a
damped pendulum with CoM driven upwards towards the conductive-state CoM. In
addition to its physical elegance, this equivalence enables accurate predictions for the
frequency of regular LSC reversals observed at high Ra. Furthermore, it provides a
transparent mechanism for the reversals. Just like a mechanical pendulum, inertia causes
the fluid CoM to overshoot equilibrium. The CoM eventual reaches a zenith, at which
point the restoring torque reverses the system’s angular momentum, thereby creating a
LSC reversal. The driving terms in Eqs. (3.1) to (3.3) are necessary to counteract the
damping from viscous dissipation; it is the interplay between these two terms that selects
the effective pendulum length, the swing angle, and thus the frequency of reversals.

This low-order model is closely related to the Lorenz equations; indeed, a change
of variables can map Eqs. (3.1) to (3.3) to a system with the same variable structure
but a different parameter structure as Lorenz. A corollary of this fact is that the Lorenz
system too could be usefully regarded as an externally-driven mechanical pendulum. This
observation may lend new insights into the study of the Lorenz equations. We note that,
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although periodic solutions of the Lorenz equations have been explored mathematically
(Robbins 1979; Sparrow 2012), the physical connection to LSC reversals was not made.
A benefit of the annular domain is that it accentuates the dominant circulating pattern

of natural convection, while suppressing other, geometric-specific effects. Related to this
fact, we have found that the annulus yields a simple law for the Ra-dependence of the
periodic LSC reversal frequency f∗, described by an explicit formula, Eq. (5.1), and
corroborated by comparison with DNS. Previous theoretical analysis in a rectangular
geometry suggests the power law f∗ ∼ Ra0.44 (Araujo et al. 2005), and laboratory
experiments with cryogenic helium gas in a cylindrical container suggest f∗ ∼ Ra0.71

(Araujo et al. 2005). In the present case of an annulus, the modeling prediction and
DNS are in agreement, both unambiguously showing a scaling of f∗ ∼ Ra0.5. Therefore,
annular convection may be considered an ideal ‘ground-state’ that yields a precisely
determined scaling law for the frequency of reversals. Perhaps future studies could build
upon this model to determine how the scaling law is modified by various geometric effects.
Curiously, the scaling law f∗ ∼ Ra0.5 is seen in experimental measurements of thermal

convection in a disk (Song et al. 2011), but for the frequency of oscillations in the strength
of the LSC. The period of this oscillation is much shorter than the average reversal time
seen in the experiments (Wang et al. 2018), suggesting differences in the LSC reversals
that occur in disk convection. In the annular domain, the inner boundary at r = r0 serves
as a confinement that regulates the flow. The recent study of Li et al. (2024) demonstrates
this concept experimentally, as the inclusion of a central obstruction in Rayleigh-Bénard
convection substantially modifies the flow structures and enhances heat transfer.
Here, we have focused on the lowest-order system capable of satisfying the BCs on

the annulus, but the truncation procedure can in principle be carried out to any order.
At extremely high Ra, turbulent effects (Lohse & Xia 2010) are associated with fine-
scale structures, which could potentially be captured by retaining higher-order terms in
the Fourier-Laurent expansion, either directly or through stochastic parameterization.
Moreover, extension of the model into three dimensions could account for azimuthal
rotations of the LSC plane, which experiments have shown take a stochastic character
(Brown et al. 2005). Finally, we hope to couple the model to slowly-moving boundaries
to examine phase-change processes, such as melting or dissolution, that couple to the
action of natural convection (Huang et al. 2015; Moore 2017; Huang et al. 2020; Huang
& Moore 2022; Weady et al. 2022).
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Appendix A. Formulation and background

To obtain the dimensionless Eqs. (2.1) to (2.3), space has been rescaled on h (the
diameter of the outer annulus boundary), time on h2/κ (the thermal diffusive timescale),
velocity on κ/h, and density variations on∆ρ = ρ0βT∆T . The prescribed temperature on
the outer boundary, r = 1/2, decreases linearly with height, while the inner boundary,
r = r0, remains adiabatic. The velocity field, expressed as u = ueθ + ver in polar
coordinates, satisfies no-slip conditions on both boundaries. The boundary conditions
(BCs) are thus:

u = v = 0 at r = r0 and r = 1/2, (A 1)

∂T

∂r
= 0 at r = r0, (A 2)

T =
1− sin θ

2
at r = 1/2. (A 3)

Equations (2.1) to (2.3) support a conductive-state solution with no fluid motion
(u, v) = (0, 0). The corresponding temperature field that satisfies BCs (A 2)–(A 3) is
given by

T =
1

2
− r0
1 + 4r20

(
r

r0
+
r0
r

)
sin θ. (A 4)

The fluid angular moment L and fluid CoM coordinates (see Eqs. (2.4) to (2.6))
associated with the conductive-state solution are

L = 0, X = 0, Y = y0 =
1 + 12r20

16(1 + 4r20)
. (A 5)

That is, y0 represents the CoM of the conductive state. As seen above, y0 > 0 for any
value of r0, indicating that the conductive-state CoM always lies above the annulus
center.

Appendix B. Numerical methods

Equations (2.1) to (2.3) can be written in the streamfunction-vorticity form:

∂ω

∂t
+u · ∇ω = Pr∇2ω + PrRa

(
∂T

∂r
cos θ − 1

r

∂T

∂θ
sin θ

)
, (B 1)

∂T

∂t
+ u · ∇T = ∇2T, (B 2)

−∇2ψ = ω, u = ∇⊥ψ. (B 3)

Where the vorticity is ω = r−1 [∂r(ru)− ∂θv], and the stream function ψ recovers the
flow velocity through u = ∇⊥ψ = r−1ψθer − ψreθ.

Discretizing time with the second-order Adam-Bashforth Backward Differentiation
method (ABBD2), Eqs. (B 1) to (B 3) become

∇2ω(n) − σ1ω
(n) = f (n), (B 4)

∇2T (n) − σ2T
(n) = g(n), (B 5)

−∇2ψ(n) = ω(n), (B 6)
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Figure 6. Convergence of the numerical solver. (a) Spatial convergence test shows the error
decays spectrally. (b) Temporal convergence test demonstrates a second order convergence in
time stepping.

at time step t = n∆t. Here

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, (B 7)

σ1 =
3

2Pr∆t
, σ2 =

3

2∆t
, (B 8)

f (n) = Pr−1
[
2(u · ∇ω)(n−1) − (u · ∇ω)(n−2)

]
(B 9)

− (2Pr∆t)−1
(
4ω(n−1) − ω(n−2)

)
− Ra

(
Tr cos θ − r−1Tθ sin θ

)(n)
,

g(n) =
[
2(u · ∇T )(n−1) − (u · ∇T )(n−2)

]
(B 10)

− (2∆t)−1
(
4T (n−1) − T (n−2)

)
.

Explicit and nonlinear terms in f (n) and g(n) are computed pseudo-spectrally with an
efficient anti-aliasing filter (Hou & Li 2007). Equations (B 4) to (B 6) are then solved by
Fourier-Chebyshev method detailed in Peyret (2002); Huang & Zhang (2022); Huang &
Moore (2023). There are typically 1024 Fourier modes and 128 Chebyshev nodes in each

DNS of this article. The time step is ∆t = 5× 10−4 Ra−1/2, considering the flow velocity
|u| ∼

√
Ra. These parameters are tested to yield resolved and accurate solutions. For the

ODE model, we use the ode45 package of MATLAB.

Figure 6 shows the convergence test of the DNS scheme. In the spatial convergence
test Fig. 6(a), the time step ∆t = 10−4 is fixed and Nr = Nθ = N . A high-resolution
solution with N = 1024 is computed first and the convergence towards this solution
is tested by letting N progressively increase. Figure 6(a) shows the results of this test
and demonstrates spectral convergence. That is, the error decreases exponentially with N
until a limiting error of roughly 10−9 is reached. In the temporal convergence test shown
in Fig. 6(b), Nr = Nθ = 100 is fixed and ∆t is decreased by half during each test and
then the error between each refinement is compared. Shown in Fig. 6(b), the refinement
error decays as O(∆t2), demonstrating a second order temporal convergence.
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Appendix C. Derivation of the ODE model

In polar coordinates, the θ components of Eqs. (2.1) to (2.3) are given by

ut + vur+
1

r
uuθ +

1

r
uv = −1

r
pθ +RaPrT cos θ (C 1)

+ Pr

(
urr +

1

r
ur +

1

r2
uθθ −

1

r2
u+

2

r2
vθ

)
,

Tt +
u

r
Tθ + vTr =

1

r

∂

∂r
(rTr) +

1

r2
Tθθ , (C 2)

vr +
1

r
v+

1

r
uθ = 0 . (C 3)

Multiplying Eq. (C 1) by r2, integrating over the fluid domain, applying incompressibility
(C 3) and the no-slip condition (A 1), and using the CoM definition (2.5)–(2.6) gives

L̇ = −RaPrX +
Pr

A0

∫ 2π

0

(
r2ur

) ∣∣∣r1
r0
dθ. (C 4)

This evolution equation for the fluid angular momentum is exact within the NSB
framework.

The temperature and velocity fields T (r, θ, t), u(r, θ, t), v(r, θ, t) are each periodic in θ
and so can be written as Fourier series,

T (r, θ, t) = a0(r, t) +

∞∑
n=1

an(r, t) cosnθ + bn(r, t) sinnθ, (C 5)

u(r, θ, t) =

∞∑
n=−∞

ûn(r, t)e
inθ, (C 6)

v(r, θ, t) =

∞∑
n=−∞

v̂n(r, t)e
inθ.

The temperature BCs (A 2)–(A 3) imply

∂ran = ∂rbn = 0 at r = r0, (C 7)

a0 = 1/2, b1 = −1/2, all others vanish at r = 1/2. (C 8)

The no-slip BC (A1) and incompressibility (C 3) yield conditions

ûn(r, t) = v̂n(r, t) = 0 at r = r0 and r = 1/2, (C 9)

inûn + v̂n + r∂rv̂n = 0 for r ∈ (r0, 1/2). (C 10)

Given the constraints Eqs. (C 9) and (C 10), the lowest-order truncation of Eqs. (C 5)
and (C 6) possible is

u(r, t) = û0(r, t), v(r, t) = 0, (C 11)

T (r, θ, t) = a0(r, t) + a1(r, t) cos θ + b1(r, t) sin θ, (C 12)

where a0, a1, b1, û0 satisfy the boundary conditions Eqs. (C 7) to (C 9).

Inserting Eqs. (C 11) and (C 12) into Eq. (C 2), multiplying by r2 and projecting onto
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respective Fourier mode gives

ȧ0 = r−1∂r (r∂ra0) , (C 13)

r2ȧ1 = −r û0 b1 − a1 + r∂r (r∂ra1) , (C 14)

r2ḃ1 = +r û0 a1 − b1 + r∂r (r∂rb1) . (C 15)

Boundary conditions (C 7)–(C 8) then imply limt→∞ a0(r, t) = 1/2 irrespective of the
initial condition. We therefore set a0 = 1/2, since variations from this value simply
reflect transient dynamics that are decoupled from the rest of the system.
From Eqs. (2.4) to (2.6), L, X, Y can be evaluated as

L(t) =
2π

A0

∫ 1/2

r0

r2û0(r, t) dr, (C 16)

X(t) = − π

A0

∫ 1/2

r0

r2a1(r, t) dr, (C 17)

Y (t) = − π

A0

∫ 1/2

r0

r2b1(r, t) dr. (C 18)

Differentiating Eqs. (C 17) and (C 18) with respect to time and inserting Eqs. (C 14)
and (C 15) gives

Ẋ =
π

A0

∫ 1/2

r0

rû0(r, t)b1(r, t) dr −
π

A0

(
r2
∂a1
∂r

− ra1

) ∣∣∣r1
r0
, (C 19)

Ẏ = − π

A0

∫ 1/2

r0

rû0(r, t)a1(r, t) dr −
π

A0

(
r2
∂b1
∂r

− rb1

) ∣∣∣r1
r0
. (C 20)

Given that the conductive-state solution Eq. (A 4) takes the form of a Laurent poly-
nomial, we consider a Laurent expansion of the variables û0(r, t), a1(r, t), b1(r, t). Trun-
cating each series to the lowest order capable of satisfying BCs (C 7)–(C 9) gives

û0(r, t) = C(t)(r − r0) (1− 2r) r−1, (C 21)

a1(r, t) =
1

2
A(t)(2r − 1)

(
1− 2r20r

−1
)
, (C 22)

b1(r, t) = −1

2
+

1

2
B(t)(2r − 1)

(
1− 2r20r

−1
)
. (C 23)

where (A,B,C) are time-dependent coefficients. We note that setting A(t) = C(t) = 0,
B(t) = −(4r20 + 1)−1 recovers the conductive-state solution, Eq. (A 4), exactly.
Inserting Eqs. (C 21) to (C 23) into Eqs. (C 16) to (C 18) gives linear relationships

between (L, X, Y ) and (A, B, C):

L(t) =
(1− 2r0)

2

12
C(t). (C 24)

X(t) =
(1− 2r0)

2(1 + 6r0 + 16r20)

48(1 + 2r0)
A(t), (C 25)

Y (t) =
1 + 2r0 + 4r20
12(1 + 2r0)

+
(1− 2r0)

2(1 + 6r0 + 16r20)

48(1 + 2r0)
B(t). (C 26)

Evaluating the right-hand-sides of Eqs. (C 4), (C 19) and (C 20) using Eqs. (C 21)
to (C 26) gives the dynamical system Eqs. (3.1) to (3.3) that is the main focus of
this article. The coefficients α, β, y0, y1, and k can be found by analytical integration
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(accelerated by symbolic programming). Each of these coefficients depends on r0 only as
given by

α =
48

(1− 2r0)2
, β =

48(1 + 4r20)

(1− 2r0)2(1 + 6r0 + 16r20)
, y0 =

1 + 12r20
16(1 + 4r20)

, (C 27)

k = 24
(1− 2r0)(1− 6r0 − 4r20 − 88r30 + 32r40)− 96r30 ln (2r0)

(1− 2r0)5(1 + 6r0 + 16r20)
, (C 28)

y1 =
(1− 4r20)(1− 8r0 − 224r30 − 80r40)− 192r30(1 + 2r0 + 4r20) ln (2r0)

24(1− 4r20)(1− 6r0 − 4r20 − 88r30 + 32r40)− 2304(1 + 2r0)r30 ln (2r0)
. (C 29)

Appendix D. Stability analysis of the ODE system

The fixed points of Eqs. (3.1) to (3.3) are obtained by setting the right-hand-sides
equal to zero. There can be up to three fixed points, given by:

(i) The conductive state:

L = 0, X = 0, Y = y0. (D 1)

(ii) The circulating states:

L = ±L1, X = ∓ α

Ra
L1, Y = y1 +

αβ

kRa
, (D 2)

where

L1 = ±β
k

√
kRa

αβ
∆y − 1. (D 3)

We note that the circulating states only exist if Ra ⩾ αβ/(k∆y) = Ra∗1.
The Jacobian of Eqs. (3.1) to (3.3) is

J(L,X, Y ) =

 −αPr −RaPr 0
−k(Y − y1) −β −kL

kX kL −β

 . (D 4)

Evaluating the Jacobian at fixed point Eq. (D 1), one can show that all eigenvalues are
negative if Ra < Ra∗1, thereby confirming the conductive state is stable when Ra < Ra∗1.
Above Ra∗1, Eq. (D 1) becomes unstable and the two circulating states given by Eq. (D 2)
appear, indicating a pitchfork bifurcation. The circulating states are stable provided that
Ra∗1 < Ra < Ra∗2, with Ra∗2 defined in Eq. (4.1). Above Ra∗2, the real part of the complex
eigenvalues become positive, rendering the circulating states unstable.

Appendix E. High-Ra LSC reversal frequency

At very high Ra, order reemerges in the system and the large-scale dynamics become
nearly periodic. The dominant frequency f∗ of the LSC reversals can be obtained by the
pendulum equivalence of Eqs. (3.1) to (3.3). In this correspondence, the gravitational
constant is geff = kl2 RaPr, which gives a small-amplitude frequency of

√
klRaPr/(2π).

The oscillation amplitude, however, is not small, which implies that f∗ depends on
both the pendulum length l and the maximum swing angle ϕmax, both of which can
be estimated through an energy balance.
Multiplying Eq. (3.2) by X, Eq. (3.3) by Y , and adding gives the exact relation

d

dt
l2 = −2βl2 + 2β∆y(Y − y1). (E 1)
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Assuming periodicity implies that the time average of dl2/dt vanishes, giving

⟨l2⟩ = ∆y⟨Y − y1⟩, (E 2)

where ⟨·⟩ indicates a time average.
Consider the effective energy of the pendulum system

Eeff =
1

2
kL2 +RaPr(Y − y1). (E 3)

Here, the terms on the right-hand-side represent the kinetic and potential energy of
the mechanical pendulum respectively. Taking a time derivative and using Eqs. (3.1)
and (3.3), gives the energy law

Ėeff = −αPr kL2 + βRaPr(y0 − Y ). (E 4)

The first term above represents energy dissipation due to damping while the second
term represents positive energy injected into the system from the external driving. The
assumption of periodicity implies ⟨Ėeff⟩ = 0, which gives

kα⟨L2⟩ = Raβ⟨y0 − Y ⟩. (E 5)

Meanwhile, directly averaging Eq. (E 3) gives

⟨Eeff⟩ =
1

2
k⟨L2⟩+RaPr⟨Y − y1⟩. (E 6)

At the bottom of the swing, Y = y1 − l, L = Lmax , the energy is

Ebot =
1

2
kL2

max − RaPr l. (E 7)

Due to periodicity, ⟨L2⟩ = L2
max/m, where m is a constant. Although energy is not

strictly conserved, it is conserved on average for periodic dynamics. We therefore make
the assumption of nearly constant energy, Ebot = ⟨E⟩ in order to solve for l and ϕmax.
Setting Eq. (E 6) equal to Eq. (E 7) and using Eqs. (E 2) and (E 5) gives

l = ∆y

(
(m− 1)β

(m− 1)β + 2αPr

)
. (E 8)

At the apex, ϕ = ϕmax and Ẋ = Ẏ = 0. Equations (3.2) and (3.3) then simplify to
X2 = (y0 − Y )(Y − y1). As X = l sinϕ and Y = y1 − l cosϕ, we have l = −∆y cosϕmax,
thus providing the value of ϕmax once l is given by Eq. (E 8). Based on Fig. 1(e), we
choose the value m = 2.5 as the midpoint of a sinusoidal (m = 2) and a triangular
(m = 3) waveform.
With the values of l and ϕmax determined, the frequency of (large-amplitude) pendulum

oscillation, and therefore the frequency of regular LSC reversals, is given by Eq. (5.1)
in the text. We note that the parameters of Fig. 4, Pr = 4 and r0 = 0.4, give values
l = 0.005 and ϕmax = 1.62.
Converting Eq. (5.1) to a dimensional frequency gives

F ∗ =
κ

h2
f∗ = cN∗,

where N∗ =
√
βT∆Tg/h is the Brunt–Väisälä frequency and

c =

√
kl

4K(sin2(ϕmax/2))
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is a constant that depends only on r0 and Pr. In particular, c is independent of the
Rayleigh number.
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