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The heat transfer of fluid can be greatly enhanced by natural convection, leading to the fa-
mous Nusselt-Rayleigh number scaling that has been a focus of modern fluid dynamics. Our work
explores natural convection in an annular domain, where the annular geometry reinforces the large-
scale circulation and leads to an altered Nusselt-Rayleigh number scaling. To understand the heat
transfer and flow pattern in this novel geometry, we derive a reduced model from the Navier-Stokes-
Boussinesq equations where the equations of flow and heat are transformed to a system of low-order
partial differential equations, whose solution preserves the same boundary layer structures seen in
the direct numerical simulation. By matching the solutions inside and outside the boundary layer,
we recover all the scaling laws observed in the direct numerical simulation, further demonstrating
the accuracy of this reduced model. Our results also provide a systematic way of analyzing thermal
convection in an annular domain, which brings us one step closer to understanding the origin of
large-scale circulation and the mechanism of convective heat transfer.

I. INTRODUCTION

Buoyancy variations resulting from the uneven heating of a fluid create a complex motion known as thermal
convection. On a planetary scale, thermal convection brings motion to an otherwise motionless world, leading to
atmospheric and oceanic flows [1, 2], mantle and liquid-core convection [3–7], solar magneto-hydrodynamics [8], and
more.

As a relative measure between the buoyancy and viscous forcing, the Rayleigh number Ra dictates the dynamics of
thermal convection: Below a critical number Ra < Ra∗1, viscosity damps any motion and the fluid conducts heat as
a solid would; At high Ra, convective motion becomes turbulent, leading to dynamical features such as a large-scale
circulation (LSC) and enhanced heat transfer [9].

Dimensionlessly, heat transfer is characterized by the Nusselt number, which is the ratio of convective to conductive
heat transfer. For Ra ≤ Ra∗1, heat transfer is purely conductive, giving Nu = 1. For Ra ≫ Ra∗1, vigorous convective

motion enhances the heat transfer considerably, and a power-law relationship Nu ∝ Raβ has been observed in the
range from Ra = 106 to Ra = 1014 [10, 11]. The classical scaling of β = 1/3 can be shown from the boundary layer
analysis [12, 13]. In the turbulent regime, the scaling β = 2/7 is found instead [14]. Recently, a theory developed by
Grossmann and Lohse [9, 15, 16] incorporates the heat transfer contributed by both the thermal boundary layers and
the bulk mixing, and is found to be consistent with experimental measurements and numerical simulations.

In this limit of high Ra, a large-scale circulation (LSC) can spontaneously develop, whereby the upwelling and
downwelling motions combine to form a circulatory flow with overall direction determined by myriad factors such as
domain geometry, external forces (e.g. Coriolis), random perturbations, etc. Under certain conditions, the LSC can
change its orientation through either a reversal of the circulation direction [17] or a slow migration of the orientation
[18]. The development and reversal of LSC have been observed in controlled laboratory experiments [14, 19–27] and
numerical simulations [24, 28], leading to many theories exploring its origin and control [17, 22, 29, 30].

[31] used direct numerical simulations (DNS) to examine LSC dynamics in the annular domain shown in Fig. 1(a).
The fluid fills the annulus and is heated from below via a linear temperature profile imposed along the outer ring. As
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FIG. 1. Thermal convection in an annular domain. (a) The 2-dimensional annular fluid domain r ∈ [r0,
1
2
] is embedded in a

solid background with constant vertical temperature gradient. (b) At low Ra, the fluid is motionless and the heat only conducts.
(c) Increasing Ra beyond critical, the fluid circulates unidirectionally. (d) Further increasing Ra leads to the reversals of LSC.
In (b)-(d), Pr = 4 and r0 = 0.4, and the Rayleigh numbers are (b) Ra = 1.4× 105, (c) Ra = 2.2× 106, and (d) Ra = 1.6× 109.
Movies of (b)-(d) are included as Supplemental Material.

Ra increases, a sequence of dynamical states emerge, including a state of pure conduction [Fig. 1(b)], a state of steady
circulation in either the clockwise or counterclockwise direction [Fig. 1(c)], and a state in which the LSC reverses
direction spontaneously [Fig. 1(d)]. Numerical simulations of these states are included in Supplemental Material. By
exploiting simplifications made possible by the annular geometry, [31] systematically derived a low-dimensional ODE
model from the governing Navier-Stokes Boussinesq equations that successfully recovers the range of dynamical states
with quantitative accuracy.

While the LSC dynamics have been carefully characterized, the heat transfer properties associated with the annular
geometry have received less attention. Interestingly, the nature of heat transfer in an annulus may fundamentally
differ from the case of classical Rayleigh-Bénard convection (RBC). In RBC, three mechanisms contribute significantly
to heat transfer: thermal boundary layers, circulatory motion, and bulk motion through the center of the domain.
In the annulus, however, the inner boundary acts as an obstacle that severely impedes motion through the center.
In this way, the annular geometry mitigates the effect of bulk motion, so that circulatory and boundary-layer effects
can be examined in isolation. How does Nu scale with Ra in this geometry? Can we derive a model that accurately
captures the heat transfer mechanism there? We answer these questions by reducing the Navier-Stokes-Boussinesq
equations to a set of low-dimensional PDEs, whose solutions recover the boundary layer structure of the full equations
and agree with results obtained from full DNS.

In what follows, we will outline the equations and DNS method in Sec. II, summarize the DNS results and the
previous ODE model in Sec. III, and derive the PDE model and show how its results match the DNS in Sec. IV.
Finally, we will summarize the present results and discuss future directions in Sec. V.

II. EQUATIONS AND DNS METHOD

The dimensionless Navier-Stokes-Boussinesq equations for velocity u, pressure p, and temperature T are

∂u

∂t
+ u · ∇u = −∇p+ Pr∇2u+ PrRaTey, (1)

∂T

∂t
+ u · ∇T = ∇2T, (2)

∇ · u = 0. (3)

Here, we have rescaled length by the domain height h, time by the diffusive time scale h2/κ (κ is the thermal
diffusivity), and temperature by difference ∆T between the top and bottom temperatures imposed on the outer
ring. After rescaling, the annular domain of fluid is bounded between radius r0 and r1 = 1/2 as shown in Fig. 1(a),
and the temperature lies in the range T ∈ [0, 1]. Three dimensionless numbers arise: the Rayleigh number Ra =
(βT∆Th3g)/(νκ), the Prandtl number Pr = ν/κ, and the domain aspect ratio r0 = R0/h, where βT is the thermal
expansion coefficient, g is the acceleration due to gravity, ν is the kinematic viscosity, and R0 is the dimensional
radius of the inner boundary.
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In polar coordinates, u = ueθ + ver where er and eθ are the unit vectors in the r and θ directions, the boundary
conditions become

u = v = 0 at r = r0 and r = 1/2, (4)

∂T

∂r
= 0 at r = r0, (5)

T =
1− sin θ

2
at r = 1/2. (6)

We use a pseudo-spectral Chebyshev-Fourier method with implicit-explicit time stepping to solve Eqs. (1) to (3)
with boundary conditions Eqs. (4) to (6). In particular, the method recasts Eqs. (1) to (3) in streamfunction-vorticity
form [32–34]. The details of our numerical implementation can be found in [31], where second-order convergence in
time and spectral accuracy in space were verified.

Without fluid motion (u = 0), it is easy to solve Eq. (2) and obtain the temperature distribution of the conductive
state, Tcond = 1/2 − (r + r20/r) sin θ/(1 + 4r20). With fluid motion, we can define two dimensionless numbers: the
Nusselt number measuring the heat transfer rate and the Reynolds number reflecting the flow rate,

Nu =
⟨
∫ π

0
(∂rT )|r=1/2 dθ⟩∫ π

0
(∂rTcond)|r=1/2 dθ

, Re = Pr−1⟨max |u|⟩, (7)

where ⟨·⟩ is the long-time average operation.
We introduce three coarse-grained variables to describe the heat and flow structures that emerge during annular

convection, namely the fluid center of mass (CoM) (X,Y ) and the fluid angular momentum L. The angular momentum
describes, to leading order, the overall circulatory motion that arises, while (X,Y ) quantifies how buoyancy variations
alter the CoM. For example, heating the annulus from below, with no flow response, raises the CoM above the annulus
center, Y > 0, whereas circulatory motion may offset the CoM horizontally. These variables are defined by,

X = − 1

A0

∫
Ω

r T cos θ dA , Y = − 1

A0

∫
Ω

r T sin θ dA , L =
1

A0

∫
Ω

ru dA, (8)

where A0 = π(1− 4r20)/4 is the area of the annulus Ω and dA = r drdθ is the area element.

III. AN ODE MODEL RECOVERING THE LSC DYNAMICS

[31] derived an ODE system from the Navier-Stokes-Bousinesq equations that describes the evolution of the coarse-
grained variables X, Y , and L. Here, we briefly sketch the derivation of the ODE system in a way that will generalize
to the new PDE model.

To begin, we expand each of the temperature T and the flow velocity u = ueθ + ver fields as a Fourier series in θ,

T (r, θ, t) = a0(r, t) +

∞∑
n=1

an(r, t) cosnθ + bn(r, t) sinnθ, (9)

u(r, θ, t) =

∞∑
n=−∞

un(r, t)e
inθ, v(r, θ, t) =

∞∑
n=−∞

vn(r, t)e
inθ. (10)

In the thin channel limit r0 → 1/2, the dominant balance of incompressibility Eq. (3) implies v → 0 and ∂θu → 0,
giving u = u0(r, t) and v = 0 at leading order. Making these substitutions and integrating the u component of
Navier-Stokes Eq. (1) over θ gives

r2
∂u0

∂t
=

r2

2
Pr · Ra · a1 + Pr

[
−u0 + r

∂

∂r

(
r
∂u0

∂r

)]
. (11)

Meanwhile, inserting the truncation u = u0(r, t) into Eq. (2) decouples the temperature modes,

r2ȧn = −nr u0(r, t) bn − n2an + r∂r (r∂ran) , (12)

r2ḃn = +nr u0(r, t) an − n2bn + r∂r (r∂rbn) . (13)
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FIG. 2. Trajectories of (L,X, Y ) obtained from the DNS result and the ODE model. (a) Conductive state at Ra = 1.4× 105.
(b) Circulating state at Ra = 2.2× 106. (c) Reversal state at Ra = 5× 107. In all simulations, Pr = 4 and r0 = 0.4.

The boundary conditions for Eqs. (11) to (13) are

u0 = ∂ran = ∂rbn = 0 at r = r0, (14)

u0 = 0, a0 = 1/2, b1 = −1/2, all others vanish at r = r1. (15)

for n = 0, 1, 2, · · · .
By representing u0, a1, and b1 each as a truncated Laurent series in r and inserting into Eqs. (11) to (13), [31]

obtained the following dynamical system for the evolution of (L,X, Y ):

L̇ = −RaPrX − αPrL, (16)

Ẋ = −kLY + γL− βX, (17)

Ẏ = +kLX + δ − βY, (18)

where α, β, δ, γ, k are positive constants.
Linear stability analysis of Eqs. (16) to (18) reveals two critical Rayleigh numbers [31]: Ra∗1 marks the loss of stability

of the conductive state (Fig. 1(b)) and the simultaneous emergence of the (bistable) circulating states (Fig. 1(c)),
while Ra∗2 marks the loss of stability of the circulating state and the subsequent onset of LSC reversals (Fig. 1(d)). As
Ra increases, Fig. 2 shows trajectories of (L(t), X(t), Y (t)) obtained from DNS (top) and the ODE system (bottom),
both exhibiting the same state transition that was shown in Fig. 1. In Fig. 2, the initial conditions are the same for
the DNS and ODE, and Pr = 4 and r0 = 0.4 are set for all simulations, yielding Ra∗1 = 7.3× 105 and Ra∗2 = 1.6× 107.
In Fig. 2(a), Ra < Ra∗1 so the fluid is motionless and the heat conducts through; In Fig. 2(b), Ra∗1 < Ra < Ra∗2 and
the flow circulates unidirectionally, converging to a steady circulating state; In Fig. 2(c), Ra∗2 < Ra, LSC reversal is
possible and the dynamics are chaotic.

For the parameters selected in Fig. 2, the ODE system Eqs. (16) to (18) recovers LSC dynamics with surprising
detail. To evaluate the accuracy of the model over a wider range of parameters, we next focus on the coarse-grained
variables Nu and Re, defined in Eq. (7), along with the root-mean-square average of L, which reflects the overall
strength of the LSC. These quantities can be directly obtained from the ODE solutions as

Lrms =
√
⟨L2⟩, Re =

12(1−
√
2r0)

Pr(1 +
√
2r0)

Lrms, (19)

Nu =
48(1 + 2r0)(1 + 4r20)

(1− 2r0)2(1 + 6r0 + 16r20)

[
1 + 2r0 + 4r20
12(1 + 2r0)

− ⟨Y ⟩
]
. (20)
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FIG. 3. Re, Lrms, Nu measured from the DNS and the ODE model. Reynolds number (a) and fluid angular momentum (b)
are zero when Ra < Ra∗1 but have a 0.5 power-law scaling at high Ra. Both the DNS (symbols) and the ODE (curves) solutions
capture this scaling. (c) Nusselt number is unity for the conductive state Ra < Ra∗1 and has a 0.25 power-law scaling for high
Ra. In this limit, the ODE model approaches a constant Nu, thus it fails to capture the heat transfer of annular convection. In
all simulations, Pr = 4 and r0 = 0.4, and two critical Rayleigh numbers are identified as Ra∗1 = 7.3× 105 and Ra∗2 = 1.6× 107.

Here, Nu is computed by its definition Eq. (7) with the truncated temperature field T = a1(r, t) cos θ + b1(r, t) sin θ,
and ⟨Y ⟩ is the mean height of the fluid CoM. Physically, higher value of ⟨Y ⟩ means the cold fluid stays higher in
space, thereby lowering the heat flux leaving the top boundary.

In Fig. 3, Re, Lrms, and Nu are plotted for both the DNS (symbols) and ODE (curves). The Reynolds number and
LSC strength in Fig. 3(a)-(b) show good agreement between the ODE and the DNS: For Ra < Ra∗1, there is no fluid
motion so both Re and Lrms vanish; For high Ra, a common power law with exponent 0.5 exists as Eq. (19) indicates
that Re and Lrms are proportional to each other. The scaling Re ∼ Ra0.5 is also present in the classic RBC [9], and
we will later verify this scaling through a dominant-balance analysis.

Figure 3(c) shows the heat transfer rate as quantified by the Nusselt number, Nu. Below the threshold Ra < Ra∗1,
Nu is identically one as heat transfer is purely conductive. For Ra > Ra∗1, Nu increases with Ra as convective motion
sets in and then grows in strength. The ODE model predicts the Nu-Ra behavior reasonably well in the range
Ra∗1 < Ra < Ra∗2, but for Ra > Ra∗2 there is considerable discrepancy. The DNS shows that Nu continues to grow
as Ra increases, with the measured data points suggesting the power law Nu ∼ Ra0.25. The ODE model, however,
predicts Nu to approach an asymptote. In fact, the analysis of [31] shows that the ODE-model prediction for the
CoM height, ⟨Y ⟩, becomes independent of Ra for large Ra, which through Eq. (20) implies the Nu asymptote seen in
Fig. 3(c). The discrepancy in the Nu behavior at large Ra suggests that the ODE model may have oversimplified the
temperature field, so its gradient is not correctly captured in the thermal boundary layer. To address this deficiency,
we next present a PDE model that accurately resolves the boundary layer structure of annular convection.

IV. PDE MODEL AND BOUNDARY LAYER ANALYSIS

Instead of expanding each of u0(r, t), a1(r, t), b1(r, t) in a Laurent series, we observe that Eqs. (11) to (13) form a
closed PDE system:

∂u0

∂t
=

1

2
Pr · Ra · a1 +

Pr

r2

[
−u0 + r

∂

∂r

(
r
∂u0

∂r

)]
. (21)

∂a1
∂t

= −u0b1
r

+
1

r2

[
−a1 + r

∂

∂r

(
r
∂a1
∂r

)]
, (22)

∂b1
∂t

= +
u0a1
r

+
1

r2

[
−b1 + r

∂

∂r

(
r
∂b1
∂r

)]
, (23)
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FIG. 4. Steady-state PDE solutions of the flow and temperature fields. (a)-(c) show the PDE solutions with increasing Ra.
Thermal and momentum boundary layers develop at high Ra as shown in the zoom-in view (inset) of (c). (d)-(f) show the
distribution of a1, b1, and u0 corresponding to (a)-(c). In all simulations, Pr = 4 and r0 = 0.4.

with Eqs. (14) and (15) giving boundary conditions,

u0 = 0, ∂ra1 = 0, ∂rb1 = 0 at r = r0, (24)

u0 = 0, a1 = 0, b1 = −1/2 at r = r1. (25)

Equations (21) to (25) can be interpreted as a reaction-diffusion system, and it can be solved by standard numerical
methods [32, 35]. Here, we use a pseudo-spectral Chebyshev-Fourier method to discretize u0, a1, b1 in space and an
implicit-explicit method to step forward in time [31]. In particular, our numerical solutions suggest that Eqs. (21)
to (25) approaches a steady-state for all Ra and Pr tested. Hereafter, our main focus is the steady-state solutions
a1 = a1(r), b1 = b1(r), and u0 = u0(r).
Figure 4 shows the steady solutions of Eqs. (21) to (23) at 3 different Rayleigh numbers. In Fig. 4(a)-(c), the

temperature field is recovered by evaluating T = 1/2+a1(r) cos θ+ b1(r) sin θ, and the flow profile u = u0(r) is shown
in the insets. The distribution of a1, b1, and u0 is shown in Fig. 4(d)-(f).
For Fig. 4(a) and (d), Ra < Ra∗1 so there is no fluid motion. An exact solution a1 = u0 = 0 and b1(r) =

−(4r + r20)/(4 + 16r20) exists which recovers the conductive temperature distribution Tcond in Eq. (7). Increasing
Ra > Ra∗1, the circulating state emerges and it is shown in Fig. 4(b) and (e). The flow speed u0(r) is no longer 0 in
this case, and the distribution of a1 and b1 is modified by the advection of this flow field.
Further increasing Ra, Fig. 4(c) and (f) show a boundary layer forms near r = r1, where the flow speed rapidly

drops to 0 and the temperature converges to its boundary value. A length scale, the boundary layer thickness δ, thus
marks the region near r = r1 where higher-derivatives in Eqs. (21) to (23) dominate, and we call this the inner region.
Outside this inner region, the solution of Eqs. (21) to (23) changes slowly and we name this the outer region.

In the outer region, dominant balance indicates that both a1 and b1 vanish in the limit of high Ra, and the flow
has a profile u0 = c0(r − r20/r) where c0 is a constant. Taking the limit of r → r1, we have a1 → 0, b1 → 0, and
u0 → c0(r1 − r20/r1) – these limits set the matching conditions for the inner solution.
For the inner region, we stretch the coordinate by defining R = (r1 − r)/δ, and we denote A(R) = a1(r(R)),

B(R) = b1(r(R)), and U(R) = u0(r(R)). The most dominant terms in Eqs. (21) to (23) for small δ are thus

δ−2A′′ = UB, δ−2B′′ = −UA, δ−2U ′′ = −1

2
RaA, (26)
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scaling Re ∝ Pr−1Ra1/2. (b) Fluid angular momentum scales as Lrms ∝ Ra1/2. (c) Nusselt number has a 1/4 power-law,

Nu ∝ Ra1/4. Here r0 = 0.4, leading to Ra∗1 = 7.3× 105.

together with boundary and matching conditions:

U(0) = A(0) = 0, B(0) = −1/2; A(∞) = B(∞) = 0, U(∞) = c0(r1 − r20/r1). (27)

At high Ra, we assume A = O(Raµ), B = O(Raν), U = O(Raλ), and δ = O(Raϵ). Balancing Eq. (26) thus
indicates µ = ν, λ = −2ϵ, and −4ϵ = 1 + µ, so we have 3 equations for 4 exponents. To obtain another equation, we
consider the magnitude of F = A2 +B2, which is the power of the first Fourier mode of the temperature.

From Eq. (26), we have A′′A+B′′B = 0, thus

F ′′ = 2
[
A′′A+B′′B + (A′)2 + (B′)2

]
= 2

[
(A′)2 + (B′)2

]
> 0. (28)

The boundary conditions of A and B also indicate F (0) = 1/4 and F (∞) = 0.
The Laplace inequality (28) indicates that F satisfies the maximum principle: F (R) can only attain its maximum

at either R = 0 or R = ∞, thus F ≤ F (0) = 1/4. The proof here is straightforward, as otherwise F would attain its
maximum at R∗, so F ′(R∗) = 0 and F ′′(R∗) ≤ 0, contradicting Eq. (28).
The range of F = A2+B2 is thus [0, 1/4], so A and B are O(1) and µ = ν = 0. This enables us to conclude λ = 1/2

and ϵ = −1/4, leading to the scaling

A = O(1), B = O(1), U = O(Ra1/2), δ = O(Ra−1/4). (29)

From Eq. (7), we have Re = O(Pr−1U), Lrms = O(U), Nu = O(δ−1), so

Re ∝ Pr−1Ra1/2, Lrms ∝ Ra1/2, Nu ∝ Ra1/4. (30)

These scaling laws can indeed be verified against the DNS data. Figure 5 shows the DNS results (symbols) from
solving the full Navier-Stokes-Boussinesq equations, the PDE results (solid curves) from solving the reduced Eqs. (21)
to (23), and the scaling Eq. (30). Clearly, the PDE solution recovers the boundary layer structure and the correct
Nu–Ra scaling, where a simple 1/4 exponent is revealed.

V. DISCUSSIONS

In this manuscript, we have identified three scaling laws of the annular convection: Re ∝ Ra1/2, Lrms ∝ Ra1/2,
and Nu ∝ Ra1/4. The first two scalings agree with the classic RBC, but the Nu-Ra scaling shows an exponent of 1/4
instead. Through our analysis, we derive a PDE model from the governing Navier-Stokes-Boussinesq equations and
identify the heat transfer within thermal boundary layer is most responsible for this scaling. In contrast to the classic
RBC, the annular geometry of this study does not have a bulk and the flow structure is dominated by a LSC that
connects to the no-slip boundary condition through a boundary layer. In the theory of [15], it is shown that both the
boundary layer and the bulk mixing contribute to the heat transfer of RBC, thus leading to a different scaling. Our
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study, on the other hand, singles out the heat transfer contributed solely by the boundary layer, enabling us to derive
a low-dimensional PDE model that recovers the flow and thermal properties of annular convection.

In the ODE model presented in Sec. III, spontaneous reversals of LSC become possible and persistent once
Ra > Ra∗2. However such reversals do not present in the long-term dynamics of Eqs. (21) to (23), where a steady
state exists for arbitrarily high Ra. This steady state captures the Nu-Ra scaling but it precludes the possibility of
LSC reversals, as a steady velocity field can only be associated with a unidirectional LSC. We believe this discrepancy
arises from the truncation procedure, where only the lowest nontrivial Fourier modes are retained. Including higher
order Fourier modes can better resolve the temperature and flow fields and introduce nonlinearity that associates
them, and the dynamics of annular convection can be fully recovered only if all Fourier modes are kept in the analysis
– this is the basis of our Fourier spectral DNS method.

The higher-order expansion is also needed for annular convection with small r0. In this case, the fluid is less
constrained so radial component of the flow velocity v cannot be taken as 0. Because fo this, our current PDE model
works the best for the thin channel (r0 → 1/2), and we are working on a higher-order expansion of the governing
equations so we can analyze the dynamics of small r0 convection.

As the fluid becomes less constrained, the role of bulk flow and its mixing can potentially modify the LSC dynamics
and the heat transfer. This effect is most visible in the limit of r0 → 0, where the annular convection becomes a disk
convection. The LSC reversals there are less regular and the Nu-Ra scaling is closer to the classic RBC [25, 26]. A
model, systematically derived from the Navier-Stokes-Boussinesq equations, is still missing for the disk convection.
Extending our model to that geometry is thus another future direction, in which case a Fourier-Taylor expansion
could probably reveal the dynamics of LSC reversals and capture the heat transfer.

SUPPLEMENTAL MATERIAL

Supplementary movies are available at https://math.nyu.edu/~jinzi/research/AnnularConvectionHeatTransfer/.
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