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The evolution of landscapes, landforms and other natural structures

involves highly interactive physical and chemical processes that of-

ten lead to intriguing shapes and recurring motifs. Particularly in-

tricate and fine-scale features characterize the so-called karst mor-

phologies formed by mineral dissolution into water. An archetypal

form is the tall, slender and sharply-tipped karst pinnacle or rock

spire that appears in multitudes in striking landforms called stone

forests, but whose formative mechanisms remain unclear due to

complex, fluctuating and incompletely understood developmental

conditions. Here we demonstrate that exceedingly sharp spires also

form under the far simpler conditions of a solid dissolving into a

surrounding liquid. Laboratory experiments on solidified sugars in

water show that needlelike pinnacles, as well as bed-of-nails-like ar-

rays of pinnacles, emerge robustly from the dissolution of solids with

smooth initial shapes. Although the liquid is initially quiescent and

no external flow is imposed, persistent flows are generated along the

solid boundary as dense, solute-laden fluid descends under grav-

ity. We use these observations to motivate a mathematical model

that links such boundary layer flows to the shape evolution of the

solid. Dissolution induces these natural convective flows that in turn

enhance dissolution rates, and simulations show that this feedback

drives the shape toward a finite-time singularity or blow-up of apex

curvature that is cut off once the pinnacle tip reaches microscales.

This autogenic mechanism produces ultra-fine structures as an at-

tracting state or natural consequence of the coupled processes at

work in the closed solid-fluid system.
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The tall and pointed rock spires or pinnacles of Fig. 1 stand in1

sharp contrast to the smoothed shapes and shallow slopes com-2

monly associated with erosion and weathering. That pinnacles appear3

in multitudes in vast arrays called stone forests (1, 2), and that such4

landforms are found worldwide (3–7), suggests robust mechanisms5

underlying their development. These structures are examples of karst6

topographies that form by mineral dissolution in water (2, 8), but the7

environmental and hydrological conditions essential to their forma-8

tion are unclear. Geomorphological studies have detailed the rich9

developmental histories of stone forests involving, among many other10

complexities, periods of complete or partial submersion under water,11

burial under loose sediment, and exposure to surface erosion (3–7, 9).12

While superficial features such as channels and grooves seem linked13

to rain runoff (2), it is unclear how much shape development occurred14

prior to surface processes. Further, stone forests have been discovered15

buried under loose sediment (10), suggesting that surface erosion is16

not essential to the pinnacle motif. Mineral spires can result from17

complete submersion under water followed by drainage (11), though18

the degree of shape development during these stages is unclear. Given19

the uncertainties regarding which factors are most critical, the study of20

pinnacle formation may benefit from laboratory experiments in which21

Fig. 1. Natural pinnacles and stone forests. (A)-(C) Photographs showing lime-

stone structures of different scales in the Tsingy de Bemaraha National Park in

Madagascar. Image credits to Steven Alvarez. (D) Similar limestone formations in the

Gunung Mulu National Park of Malaysia. Image credit to Grant Dixon.

conditions can be imposed and cleanly controlled and the relevant 22

shape developments observed and measured. 23

Viewed mathematically and physically, the action of erosion, dis- 24
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Fig. 2. Emergence of pinnacles in experiment and simulation. (A) Laboratory experiments. An upright object cast from solidified sugars dissolves in a large tank of water.

One camera captures full-view images of the solid as it develops in time, and a second is zoomed-in and follows the apex region. (B) Overlaid full-view images spaced at an

interval of 50 minutes. (C) Solid-liquid boundary profile extracted from full-view images and displayed every 25 minutes. (D) Corresponding boundary profiles as computed by

the simulation. (E) and (F) Development of the apex region in experiment and simulation. These profiles are shown in the moving frame of the apex, revealing a trend towards

sharper structures. (G) and (H) Flow visualization via streakline photography of microparticles illuminated by a laser sheet. Flows descend along the surface and entrain fluid

from the sides at both early and later times.

solution or melting on stone, soil, sand, ice and other natural materials25

can be categorized as free- or moving-boundary problems (12, 13).26

This perspective is especially useful for understanding fundamental27

shape changing mechanisms and for disentangling the interdepen-28

dent solid and fluid dynamics that arise when boundaries are carved29

by flowing air or water (14–16). The study of shape-flow interac-30

tions also benefits from laboratory experiments, which complement31

geomorphological field studies by permitting observation and mea-32

surement on tractable length and time scales and under controlled33

and reproducible conditions (17). Experiment and mechanistic theory,34

including mathematical modeling and simulation, have been usefully35

applied towards problems ranging from the growth and form of icicles36

(18) to landforms such as dunes (19), large-scale landscapes (20–22)37

and even global-scale flow-structure couplings such as continental38

drift driven by mantle convection (23, 24).39

These past successes motivate the application of the moving-40

boundary approach to dissolution and towards understanding karst41

morphologies and pinnacles specifically. Here, we show experimen-42

tally and theoretically that ultra-sharp pinnacles emerge robustly as43

natural consequences of dissolution in the presence of gravity. Build-44

ing on recent work (25–27), we conduct clean and controlled labo-45

ratory experiments aimed at understanding the minimal conditions46

needed to form pinnacles. Precision measurements allow for close47

comparison with a moving-boundary mathematical model that in-48

corporates the relevant flow physics and chemistry of dissolution.49

Together these methods uncover a self-sculpting process by which the50

flows naturally generated during dissolution also reshape solids into51

microscopically-sharp spikes. Because it is at work under common-52

place conditions, we speculate that this mechanism contributes to the53

formation of pinnacles in nature.54

Laboratory experiments55

To assess experimentally the development of a dissolving solid under56

idealized and controlled conditions, we consider objects made of57

solidified sugars cast into simple initial shapes and submerged into a58

large tank of water (Fig. 2A). The relatively high solubility of sugars59

in comparison to natural minerals allows for tractable run times of60

hours. The initial form resembles an upright cylinder supported 61

from below, and its apex is smooth and blunt. This starting shape 62

can be viewed as analogous to the vertical columns formed between 63

intersecting planar fissures that are thought to initiate pinnacle karst 64

(3–7, 9). The choice of a tall column extends the dissolution process 65

and allows for observation of the long-time shape dynamics. The 66

object, which is observed to retain axisymmetry, is photographed 67

over time by two cameras, one of which is fixed and captures the 68

entire boundary and the other mounted to a moving stage to follow 69

the apex and capture zoomed-in images. Additional experimental 70

details are available in Materials and Methods and as Supplementary 71

Information. 72

The overlaid images of Fig. 2B and the corresponding Supplemen- 73

tary Video 1 show a typical trial. The initially rounded column is seen 74

to sharpen into a needlelike spire as the boundaries recede. Boundary 75

profiles extracted from photographs are shown in Figs. 2C and E, the 76

latter in the frame of the descending tip. Strikingly, these data indicate 77

that the object becomes ever more slender and its tip ever sharper 78

throughout the dissolution process. These observations are repro- 79

ducible across trials and for different initial geometries, as supported 80

by the extended data figures in the Supplementary Information. 81

A critical but unseen factor in these shape dynamics is the role of 82

flow. Although the water is initially quiescent and no external flow is 83

imposed throughout our experiments, the fluid is brought into motion 84

by the dissolution process itself. To visualize these flows, we perform 85

separate experiments in which we seed the water with microparticles 86

and illuminate from above with planar laser light. As shown in Figs. 87

2G and H, time-exposed photographs capture streaklines indicative of 88

flows of speeds on the order of 1 cm/s that descend along the surface. 89

This effect can be attributed to the fact that the solid is denser than 90

the liquid and that flows are generated along the surface as the dense, 91

solute-laden fluid descends under gravity. 92

A moving-interface model 93

Close inspection of the experimental shapes of Fig. 2B and C reveals 94

that the pinnacle tip experiences higher dissolution rate than other 95

locations on the surface, and yet the apex is not blunted but rather 96

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Huang et al.
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Fig. 3. Pinnacle formation as a geometric shock or curvature singularity. (A) Schematic defining the model and its variables. A solid of axisymmetric shape dissolves

into surrounding liquid, and boundary layer flows are induced as dense, solute-laden fluid descends under gravity. (B) Shape evolution near the apex from simulation. The

singularity or shock formation time ts is associated with the intersection of characteristic curves (red). (C) Shape development as quantified by tangent angle θ versus arclength

s. The approach to a step function is a signature of a geometric shock. (D) Shape development as quantified by curvature κ. The blow up of the apex curvature is a signature of

a mathematical singularity. (E) Unbounded growth of apex curvature in experiment and simulation. The gray region represents error bars propagated based on the experimental

resolution. (F) Power law behavior of curvature in the lead-up to the shock or singularity.

sharpens. Such paradoxes are best resolved by mathematical treatment97

as a free- or moving-boundary problem (12), in which the solid-98

liquid interface is viewed as a receding surface whose dynamics are99

dictated by the physics, chemistry and fluid dynamics of dissolving100

(28, 29). The natural convective flows observed in experiments are101

expected to play the important role of transporting solute along the102

surface. These flows thus modify the local solute concentration and103

the local dissolution rate, which Fick’s law of diffusion dictates as104

proportional to the gradient in solute concentration normal to the105

surface (28). These effects are incorporated into a mathematical106

model using boundary layer theory (29), which describes the flow107

and concentration fields that vary strongly within a thin region of the108

fluid surrounding the solid. In this way, we arrive at an evolution109

equation for the interface in which the local normal velocity is related110

to the global shape. The dissolution rate is also subject to the Gibbs-111

Thomson effect, which acts to enhance dissolution rates in proportion112

to local curvature (30, 31). Complete model derivations as well as113

details of their numerical solution are given in Materials and Methods114

and as Supplementary Information.115

Our model furnishes boundary dynamics in remarkable agreement116

with experiments, as shown in Figs. 2D and F and the Supplementary117

Video 2. Notably, we recover the observed tendency towards a sharp118

pinnacle, and this behavior is robust to initial shape and to model119

parameters (see Supplementary Information). Taken together, these120

results indicate that pinnacles emerge as the shape attractors for solids121

dissolving into fluids in the presence of gravity.122

Pinnacle formation as a geometric shock & curvature123

singularity124

Further analysis of the shape dynamics in experiment and theory125

reveals a common approach to the formation of a sharp apex. The126

boundary shape can be represented by revolving a planar curve γ that127

is characterized by its tangent angle θ(s, t) as a function of arclength128

s and time t, as defined in Fig. 3A. As shown in the plot of Fig. 3C,129

curves of θ(s, t) over time for the simulations of Fig. 2 show an130

approach to an abrupt drop in the tangent angle, which is suggestive131

of a geometric shock (32). As shown in Fig. 3B, another signature132

of a shock can be seen in the converging characteristic curves that133

represent trajectories of points propagated normally to the boundary 134

(32). Further, local curvature is given by κ(s, t) = −∂θ/∂s and 135

plotted in Fig. 3D, where unbounded growth of curvature quantifies 136

the sharpening dynamics. 137

These observations are further elucidated by an analysis of our 138

model equations showing that, if only hydrodynamic (boundary layer 139

flows) but not thermodynamic (Gibbs-Thomson) effects are included, 140

then the pinnacle evolves to infinite apex curvature κ0(t) = κ(s = 141

0, t) in finite time. We derive a power law for this mathematical 142

singularity as κ0(t) = κ0(0)(1−t/ts)−4/5, where κ0(0) is the initial 143

tip curvature and ts > 0 is the time at which the singularity develops 144

(see Supplementary Information). This analysis motivates a recasting 145

of the curvature dynamics as κ̄0(t)−5/4 = [κ0(t)/κ0(0)]−5/4, and 146

indeed the experimental and model data of Fig. 3F follow the expected 147

linear trend until late times. 148

In the later stages of dissolution, Fig. 3F shows that the curvature 149

growth continues but at a nonsingular pace. This may be attributed to 150

the Gibbs-Thomson effect, which strongly enhances the dissolution 151

rate at the apex, blunting the tip and cutting off the singularity. In 152

experiments, the radius of curvature of the tip eventually reaches tens 153

of micrometers and approaches the imaging resolution of our system 154

(see Materials and Methods and Supplementary Information). Theory 155

predicts an ultimate fineness on the order of ten micrometers, a value 156

set by material parameters. 157

Pinnacle forests from dissolution of porous solids 158

Returning to the motivating landforms of Fig. 1, we next ask how 159

dissolution and the dissolutive sharpening mechanism described above 160

might produce many spires in parallel. We hypothesize that the fluid- 161

filled pores or fissures in a porous, soluble material serve as conduits 162

for the flows produced during dissolution. Initially small, such cavities 163

expand as their walls are consumed by the dissolving action and 164

eventually merge or collide into one another. The interstitial solid 165

regions may be shaped into pillars by the downward convective flows 166

and then sharpened into pinnacles by the mechanism studied here. 167

We experimentally test this picture in a highly idealized scenario of 168

a soluble solid block seeded with an array of pores and immersed 169

in liquid. Casting molten sugars in a mold containing thin wires, 170

Huang et al. PNAS | April 28, 2020 | vol. XXX | no. XX | 3
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TFig. 4. Bed-of-nails morphology from dissolution of a porous solid. (A) Temporal progression of a dissolving block seeded with vertical pores. The openings widen and

in their interstices develop into rounded hills, which then steepen into pillars. (B) The pillars sharpen to form an array of pinnacles. (C) Experimental schematic. A block of

solidified sugar is cast with vertical pores and then immersed in water and imaged. (D) Interpretive schematic showing shape progression and expected flow structure.

which are removed after solidification, yields a large block spanned171

by vertical pores that are arranged in a square lattice (Materials and172

Methods). The block is supported on an elevated base and entirely173

submerged under water where it is photographed over time (Fig. 4C).174

The pores run the height of the block and base, allowing fluid to be175

conveyed downward during the dissolution process.176

As shown in the photographs of Figs. 4A and B and Supplemen-177

tary Video 3, the solid undergoes dramatic changes in shape as it178

dissolves. At early times, the openings of the pores on the upper179

surface widen, and the pores thus take on a fluted sectional profile,180

as shown schematically in Fig. 4D. This may be attributed to higher181

dissolution rates near the openings as fresh water from above is drawn182

downward by natural convective flows. As they widen further, each183

set of four neighboring pores in the square lattice begin to collide or184

merge near their tops, yielding soft hilltops in their interstices and thus185

a gently rolling landscape dotted with sinkholes. The hillslopes then186

steepen to form distinct pillars whose rounded tops later sharpen into187

spires. In this final stage, each pinnacle in the array may be thought188

to develop independently and by the mechanism studied here, as the189

flows responsible for sculpting are confined to thin boundary layers.190

These events yield a bed-of-nails morphology, here a square lattice of191

spikes that reflects the initial lattice of pores. More random seeding of192

pore locations is expected to generate disordered arrays of pinnacles193

of varying girth and height, which may more closely resemble natural194

pinnacles and stone forests.195

Discussion and conclusions196

The tendency towards sharp structures can be understood qualitatively197

by noting that the entrainment into the surface flows of fresh fluid198

from the sides (Figs. 2G and H) tends to thin the concentration199

boundary layer and thus enhance dissolution rates. This mechanism of200

dissolutive sharpening requires only the commonplace conditions of a201

solid dissolving into liquid and the consequent density variations and 202

natural convective flows. It relies on stably attached boundary layers, 203

which can be expected of the upper surface of a solid if the solute- 204

laden fluid is denser than the far-field fluid (29). Gravitationally stable 205

boundary layers in an inverted situation can be expected for lower 206

surfaces and low-density, upwardly-buoyant flows, as is expected 207

for the underside of an iceberg melting in cold waters (17). More 208

generally, one anticipates parallels between melting and dissolution, 209

with temperature playing a role analogous to solute concentration (29). 210

For both processes, our model framework is general and versatile 211

enough to address further questions of shape dynamics. 212

The conditions studied here are purposefully idealized, permitting 213

clear identification and clean characterization of dissolutive sharpen- 214

ing, its chemophysical mechanism and mathematical structure. By 215

showing that pinnacle-like shapes arise spontaneously in closed solid- 216

fluid systems, under constant conditions, and without external forcing 217

beyond that of gravity, this study reveals a minimal set of ingredients 218

essential to the needle and bed-of-nails motifs. Our experimental 219

pinnacles are carved by boundary layer flows generated by the dis- 220

solution process itself, whereas in nature the responsible flows may 221

include subsurface drainage and surface runoff (2, 4, 9, 11). Our 222

pinnacle arrays form via dissolutive widening of pores, whose initial 223

arrangement set the pattern of pinnacles, and a similar progression 224

towards stone forests is thought to be initiated by vertical columns 225

between intersecting fissures (3–7, 9). Ultimately, similar shapes are 226

observed in both the synthetic and natural systems, the former being 227

associated with an attractor of the shape dynamics that emerges as 228

details of the initial form are lost in the approach to a singularity. 229

Future work might assess the robustness of pinnacle formation for 230

differing environmental conditions through laboratory experiments, 231

models and simulations of the type presented here. For example, the 232

effect of precipitation and surface runoff could be isolated for study by 233

subjecting a soluble body in air to misting with water droplets or some 234

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Huang et al.
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other form of simulated rain (2). Corresponding theory should account235

for dissolution into thin-film flows. Pinnacle formation while buried236

under loose sediment could be tested using sand or other granular237

material saturated with water (11), a model or simulation of which238

should account for the Darcy flow conditions in the porous medium.239

In such scenarios, the hydrological conditions may be held constant as240

in our study, or subject to time variations, say by cyclic draining and241

immersion. Results from all such studies would help to tell the origin242

story of these striking landforms whose ultra-fine features require243

special conservation efforts (33–35).244

Materials and Methods245

246

A. Materials and fabrication. Objects made of solidified sugars are manu-247

factured by combining granulated table sugar, corn syrup and water in pro-248

portion 8 : 3 : 2 by volume. The mixture is stirred continuously and brought249

to 150◦C, at which point it is abruptly taken off the heat. The molten sugars250

are immediately poured into custom-shaped molds and allowed to gradually251

set over 12 hours or longer, which permits bubbles to rise out. This recipe252

achieves so-called hard crack candy, which is an amorphous solid of about253

99% sugar content. Cylindrical molds of about 25 cm height and diameters254

between 2 cm and 6 cm are used to make the pillars in the single pinnacle255

experiments. Once removed from the mold, the solid cylinder is reshaped256

on a spinning stage by dissolving with warm water applied with a sponge.257

This gives an initial form that is axisymmetric with a rounded top and slightly258

tapered sides. A cubic mold measuring 10 × 10 × 10 cm in length, width259

and height is used for the pinnacle array experiments. The bottom of the mold260

receives metal rods of diameter 0.4 cm that stand upright in a square 7-by-7261

array of spacing 1.3 cm. After casting, the rods are removed to leave an array262

of pores that vertically span the block.263

B. Dissolution experiments and image acquisition. The experiments264

are conducted in a clear acrylic (plexiglass) tank measuring 30×30×60 cm in265

length, width and height that is filled with degassed water at room temperature266

of 23 ± 1◦C. The depth of the tank allows the dense fluid containing dissolved267

sugars to settle at the bottom and far from the test object. Image acquisition268

is accomplished by two synchronized Nikon D610 digital cameras capturing269

photographs at 1 minute intervals and directed normally to two adjacent side270

walls. Each is back lit with cold LED lights shone on a diffusive screen. On271

the screen and on either side the object are opaque sheets whose refraction272

through the object cause the boundary to appear dark on the light background.273

The zoomed-out camera is fixed in position and captures the overall shape of274

the dissolving object with resolution 11.3 pixels/mm. The zoomed-in camera275

is fitted with a macro lens and captures images around the apex at resolution276

173 pixels/mm. For the single pinnacle experiments, this camera is mounted277

on a vertical translation stage so that the apex may be maintained in the center278

of view throughout the experiment. For the pinnacle array experiments, the279

zoomed-in camera is mounted on a horizontal stage and panned across the280

upper surface as several photographs are taken. These images are later digitally281

registered and combined.282

C. Image processing and profile extraction. For the single pinnacles, the283

contour of the interface is extracted via a custom-written MATLAB code using284

the Image Processing Toolbox. For the zoomed-in images, the contour near the285

apex is fit to a 4th order polynomial, and the spatial distribution of the tangent286

angle θ(s, t) and the apex curvature κ0(t) are then computed from the fit.287

D. Boundary layer theory model and shock formation. The solid-288

liquid interface recedes with velocity proportional to the normal gra-289

dient of concentration, Vn ∼ n · ∇c, where the prefactor may290

be calculated from conservation of mass and Fick’s law of diffusion.291

The concentration field c and its gradient at the interface are ob-292

tained from boundary layer theory, yielding the expression Vn(s, t) =293

−a[r(s, t) cos θ(s, t)]1/3/[
∫ s

0
r(s′, t)4/3 cos1/3 θ(s′, t)ds′]1/4 for the lo-294

cal dissolution rate as a function of the shape, expressed here as the tangent295

angle θ(s, t) at each location s and time t. Here, the constant a ∼ 10−7
296

m5/4/s is estimated from material properties in experiment. The axisymmetric297

geometry of the dissolving object is characterized by revolving a planar curve298

γ around the z-axis, as shown in Fig. 3a. The evolution of γ is then prescribed299

by ∂tθ − Vs∂sθ = ∂sVn. The prescription of a tangential velocity Vs does300

not change the shape but is imposed in order to preserve the spacing in ar- 301

clength so that s and t remain independent variables. The s-derivative of the θ 302

equation in the limit as s → 0 leads to an ordinary differential equation for 303

the apex curvature, dκ0/dt = −∂2
s Vn(0, t) − Vn(0, t)κ2

0
∼ κ

9/4

0
, whose 304

solution diverges in finite time. 305

E. Gibbs-Thomson effect. The Gibbs-Thomson effect describes the effect 306

of curvature on the saturation concentration at a solid-liquid interface: c∗

s = 307

cs exp (ǫκ̂) for a surface of mean curvature κ̂, where cs is associated with a 308

flat interface (κ̂ = 0). Here ǫ ≈ 10 µm is a material parameter estimated for 309

our experimental conditions. As compared to a flat interface of dissolution rate 310

Vn, a curved surface has enhanced saturated concentration and thus enhanced 311

dissolution rate of the form V ∗

n = Vn(1 + ǫκ̂). In the θ dynamical equation, 312

this effect manifests as a diffusion term that suppresses high curvature by 313

enhancing dissolution rate. At the apex, the two principal curvatures are 314

identical and thus κ̂(0, t) = κ0(t), and the Gibbs-Thomson effect becomes 315

significant when 1/κ0 ≈ ǫ ≈ 10 µm. 316

F. Simulation method and implementation. A custom written numerical 317

scheme employs the θ−L method to solve dynamical equations for the tangent 318

angle θ and total arclength L (36). The numerical simulations are performed in 319

MATLAB with second order finite differences in space. In time, a second order 320

Adam-Bashforth backward differentiation method mitigates the stiffness and 321

nonlinearity of the equations. Consistent parameter values of a = 4.5 × 10−7
322

m5/4/s and ǫ = 11 µm are used throughout all examples in this Article and 323

the Extended Data Figures. These values are set by matching the evolution of 324

tip curvature κ0 and the total arclength L for the experiment in Figs. 2 and 3, 325

and the resulting choice leads to excellent agreement across all experiments. 326
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