Fourier Series

\[s_n(x) = \sum_{j=-n}^{n} c_j e^{i j x} = \sum_{j=-n}^{n} \left(\frac{1}{2\pi} \int_{a}^{b} f(x-e) e^{i j x} \, dx \right) e^{i j x} = \frac{1}{\pi} \int f(x) D_n(x) \, dx \]

Dirichlet Kernel

\[D_n(x) = \sum_{j=-n}^{n} e^{i j x} \]

1. Lebesgue constants
 \[L_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |D_n(x)| \, dx = 2 \ln(n) \]

2. \(D_n(x) \) is real-valued, continuous, \(2\pi \)-periodic for \(n \geq 0 \), positive and non-negative valued.

3. \(D_n \) is even.

4. \(D_n(x) = \frac{\sin((n+1)x)}{2 \sin x} \)

5. \(D_n \) is odd if \(n \) is odd.

6. For each \(n \), \(|D_n(x)| \leq 1 \) for each \(x \in \mathbb{R} \)

7. For each \(n \), \(\int |D_n(x)| \leq \frac{\pi}{2n+1} \)

Fejer Kernel

\[\sigma_n(f) = \frac{1}{n+1} \sum_{j=-n}^{n} s_j(f) = \frac{1}{n+1} s_{n+1}(f) \]

\[\sigma_n(f) = \frac{1}{n+1} \int f(x) K_n(x) \, dx = \frac{1}{n+1} \int f(x) \sum_{j=-n}^{n} \delta_j(x) \, dx \]

1. \(K_n(x) \) is real-valued, non-negative (continuous)

2. Even Function

3. For each \(n \), \(\frac{1}{n+1} \int_{-\pi}^{\pi} K_n(x) \, dx = \frac{\pi}{n+1} \int_{-\pi}^{\pi} s_n(x) \, dx = 1 \)

4. For each \(n \), \(K_n \) is symmetric

5. For each \(n \), \(K_n(x) = \frac{1}{2\sin(x/2)} \left(\frac{\sin((n+1)x/2)}{\sin(x/2)} \right) \)

6. For each \(n \), \(0 \leq K_n(x) \leq \frac{\pi}{(n+1)^2} \)
Convergence of Cesàro means

Thus \(f \in L^1(\mathbb{T}) \), \(\hat{f}(x) = \hat{f}(x) \) exist and

\[
\lim_{n \to \infty} \sigma_n(x) = \frac{1}{2} \left[f(x) + f(x + \pi) \right].
\]

Thus (non locally) \(f \in L^1(\mathbb{T}) \) if \(\lim_{n \to \infty} \sigma_n(f(x)) = f(x) \) at every Lebesgue point of \(f \).

Then a.e., \(2\pi \)-periodic as \(\lim_{n \to \infty} \sigma_n(f(x)) = f(x) \) uniformly.

Fourier coefficients

The Fourier coefficients of \(f \in L^1(\mathbb{T}) \) need not converge.

\[
\text{Lusin - Lebesgue: } \quad \lim_{n \to \infty} \sum_{j=-n}^{n} \hat{f}(j) = 0,
\]

or

\[
\sum_{j=-n}^{n} |\hat{f}(j)| \leq M_n.
\]

Thus mapping \(f \mapsto \hat{f} \) from \(L^1(\mathbb{T}) \) into \(c_0(\mathbb{Z}) \) is bounded but not onto.

Proof: Use a specific mapping principle.

Approximation

Thus \(f \in L^p(\mathbb{T}) , \quad 1 < p < \infty \)

\[
\lim_{n \to \infty} \|f - \sigma_n(f)\|_p = 0.
\]
Idea of measure → σ-algebra → measurable spaces, finite, complete, non-negative, countable, disjoint sets → Borel σ-algebra

Borel measure on \mathbb{R}^n

Loeb measure in opposite direction: \mathcal{F} increasing, right continuous

Loeb measure - Strichartz measure

Integration

Measurable Functions

Lebesgue vs. Borel

Composition $f \circ g$ needs both measures to be finite

Measurable Functions

Simple functions: finite, non-negative → standard representation

Non-negative functions: $\int_{\mathbb{R}^n} f \, d\mu$ non-negative → standard representation

Fatou's Lemma

Convergence: uniform, pointwise, etc., in measure \mathcal{F}_σ Measurable

Produce measure
Real Analysis

Proof 1

\[\sum \binom{n}{k}^2 \binom{2n}{2k} = 1 \]

\[\sum \binom{n}{k}^2 \binom{2n}{2k} = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n+1} \]

\[\sum \binom{n}{k}^2 \binom{2n}{2k} = \sum \binom{n}{k}^2 \binom{n}{k} \]

\[\sum \binom{n}{k}^2 \binom{2n}{2k} = \sum \binom{n}{k}^2 \binom{n}{k} = 2^{2n} \binom{n}{k} \]

\[\sum \binom{n}{k}^2 \binom{2n}{2k} = \frac{2}{2n+1} \sum \binom{n}{k} \binom{2n}{2k} \]

Proof 2

Let \(k \in \mathbb{N} \) and \(k_n \in \mathbb{N} \) be sequences such that \(n \to \infty \) implies \(k_n

For \(n \in \mathbb{N} \) and \(k \in \mathbb{N} \), let \(f : \mathbb{N} \to \mathbb{N} \)

\[\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2n}{2k} \]

\[\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2n}{2k} = 2^{2n} \binom{n}{k} \]

\[\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2n}{2k} = \frac{2}{2n+1} \sum_{k=0}^{n} \binom{n}{k} \binom{2n}{2k} \]

Note: These can be approximated by poly.

Note: \(f \) can grow to \(\binom{n}{k} \) as \(n \to \infty \), so \(\binom{n}{k} \) is approximately \(\binom{2n}{2k} \) for \(n \) large enough.
Proof

1. Suppose \(\varphi(x) \in \mathcal{C}(X, Y) \) is a uniformly continuous function. Let \(\epsilon > 0 \). For each \(x \), \(|\varphi(x) - \varphi(y)| < \epsilon \) whenever \(\|x - y\| < \delta \). Let \(\delta_0 = \delta \).

2. For \(\varphi \) to be uniformly continuous, define \(\delta \) as follows:

\[\|x - y\| < \delta \Rightarrow |\varphi(x) - \varphi(y)| < \epsilon \]

where \(\epsilon > 0 \) is arbitrary. Choose \(\delta \) such that

\[|\varphi(x) - \varphi(y)| < \epsilon \quad \text{whenever} \quad \|x - y\| < \delta \]

in a neighborhood of \(x \). Hence, \(\varphi \) is uniformly continuous.

Observation:

\(\varphi \) is uniformly continuous if and only if \(\varphi \) is a uniform limit of uniformly continuous \(\varphi_n \).

Conclusion:

If \(\varphi \) is uniformly continuous, then \(\varphi \) is continuous.

\[\lim_{n \to \infty} \varphi_n(x) = \varphi(x) \quad \text{uniformly} \]

for each \(x \) in \(X \).
Convex Functions

Definition: A function f is convex if $f(ax + (1-a)y) \leq af(x) + (1-a)f(y)$ for all x, y in the domain of f and all $a \in [0, 1]$.

Examples:
- **Line segment:** $f(c) = f(x) + \lambda (y-x)$
- **Parabola:** $f(c) = f(x) + \lambda (y-x)$

Properties:
- **Function values:** $f(x) \leq f(c) \leq f(y)$
- **Function derivatives:** $f'(c)$ is a weighted average of $f'(x)$ and $f'(y)$.

Convexity Tests:
- **Second derivative:** $f''(x) \geq 0$ for all x.
- **Subdifferential:** $\partial f(c)$ contains 0.

Applications:
- **Economic theory:** Convex functions are used in optimizing problems.
- **Optimization:** Convex optimization problems have unique solutions.

Continuity & Differentiability

Continuity:
- f is continuous at c if $\lim_{x \to c} f(x) = f(c)$.

Differentiability:
- f is differentiable at c if $f'(c)$ exists.
- f is differentiable on an interval if it is differentiable at every point in the interval.

Lipschitz Continuity:
- A function f is Lipschitz continuous on a set S if there exists a constant $L > 0$ such that $|f(x) - f(y)| \leq L|x - y|$ for all $x, y \in S$.

Examples:
- **Linear functions:** $f(x) = ax + b$ are Lipschitz continuous with $L = |a|$.
- **Absolute value function:** $f(x) = |x|$ is Lipschitz continuous with $L = 1$.

Convex Functions

Definition: A function f is convex if $f(ax + (1-a)y) \leq af(x) + (1-a)f(y)$ for all x, y in the domain of f and all $a \in [0, 1]$.

Examples:
- **Line segment:** $f(c) = f(x) + \lambda (y-x)$
- **Parabola:** $f(c) = f(x) + \lambda (y-x)$

Properties:
- **Function values:** $f(x) \leq f(c) \leq f(y)$
- **Function derivatives:** $f'(c)$ is a weighted average of $f'(x)$ and $f'(y)$.

Applications:
- **Economic theory:** Convex functions are used in optimizing problems.
- **Optimization:** Convex optimization problems have unique solutions.

Continuity & Differentiability

Continuity:
- f is continuous at c if $\lim_{x \to c} f(x) = f(c)$.

Differentiability:
- f is differentiable at c if $f'(c)$ exists.
- f is differentiable on an interval if it is differentiable at every point in the interval.

Lipschitz Continuity:
- A function f is Lipschitz continuous on a set S if there exists a constant $L > 0$ such that $|f(x) - f(y)| \leq L|x - y|$ for all $x, y \in S$.

Examples:
- **Linear functions:** $f(x) = ax + b$ are Lipschitz continuous with $L = |a|$.
- **Absolute value function:** $f(x) = |x|$ is Lipschitz continuous with $L = 1$.
Measures

A C(X) algebra \(\mu : A \to [0, \infty] \) is measureable if:

1. \(\mu(\emptyset) = 0 \)
2. \(\mu(A \cup B) = \mu(A) + \mu(B) \) if \(A \cap B = \emptyset \)
3. \(\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) \)

Outer Measure

On a measurable space \(X \) is a finite \(\mu : P(X) \to [0, \infty] \) s.t.

1. \(\mu(\emptyset) = 0 \)
2. \(\mu(A) \leq \mu(B) \) if \(A \subseteq B \)
3. \(\mu(B) = \sum_{i=1}^{\infty} \mu(B_i) \) if \(B = \bigcup_{i=1}^{\infty} B_i \)

Examples of C(X) algebra

Family of Borel measurable functions \(\mathcal{E} \)

\(\mathcal{E} \) is a family of additive sets.

A C(X) algebra \(A \) is a measure algebra if \(\mu \) and \(\gamma \) are measures.

Characterization of measure algebra

A C(X) algebra \(A \) is a measure algebra if it is complete and separable.

Closed under \(\gamma \)-additivity.

Closed under \(\mu \)-additivity.

Only \(\mathcal{E} \) \(\gamma \)-measurable if \(\mu(A) = \gamma(A) \) for all \(A \in \mathcal{E} \).

Outer measures \(\gamma \) and measures \(\mu \) are related by:

\[\gamma(A) = \inf \{ \mu(B) : B \supseteq A \} \]

Corollary

If \(\mu \) is a measure on \(X \), then \(\gamma \) is a measure on \(X \) if \(\gamma(\emptyset) = 0 \) and for all \(A \in \mathcal{E} \),

\[\gamma(A) = \inf \{ \mu(B) : B \supseteq A \} \]

Measure \(\gamma : \mathcal{E} \to [0, \infty] \) is additive:

\[\gamma(A \cup B) = \gamma(A) + \gamma(B) \] for \(A \cap B = \emptyset \)

Additive measure \(\gamma \) on \(\mathcal{E} \) is a measure:

\[\gamma(A) = \sum_{i=1}^{\infty} \gamma(A_i) \] for \(A = \bigcup_{i=1}^{\infty} A_i \)

Theorem

A C(X) algebra \(A \) is a measure algebra if it is complete and separable.

By completeness, \(\gamma \)-measurable functions \(f \) are \(\mu \)-measurable.

For any measure \(\mu \) on \(A \), \(\mu \) is \(\gamma \)-measurable.

V. \(\gamma \)-measurable functions \(f \) satisfy \(\gamma(f) = \mu(E) \) for \(E \in \mathcal{E} \) and \(f \) is \(\mu \)-measurable.

If \(\mu \) is a measure on \(A \), then \(\gamma \) is the unique extension of \(\mu \) to a measure on \(A \).
Preliminary Theorems

Weak convergence theorem: If \(X_n \to X \) in distribution, \(n \to \infty \), then
\[
\mathbb{E} f(X_n) \to \mathbb{E} f(X)
\]
for every bounded and continuous function \(f \).

Mann iteration converges
\[
\text{If }
\begin{align*}
\alpha_n &\geq 0, \\
\sum_{n=0}^{\infty} \alpha_n &< \infty,
\end{align*}
\text{ then } x_{n+1} = \beta x_n + (1-\beta) f(x_n)
\]
for some \(\beta \in (0,1) \).

Fejér's Lemma: \(\sum_{n=0}^{N-1} f(n) \leq \frac{1}{N} \sum_{n=0}^{N-1} f(n) \)

Dominated convergence

Lemma: \(a \geq 0, b \geq 0 \), \(c \geq 0 \), \(a+b+c \leq a + b + c \)

Holder's inequality: \(\| f \|_p \leq \| f \|_r \leq \| f \|_1 \) for \(p, r \) such that \(\frac{1}{p} + \frac{1}{r} = 1 \).

Lemma: \(a = |f(x)|^2, \quad b = |g(x)|^2 \).

Weak convergence: \(f_n(x) \to f(x), \quad g_n(x) \to g(x) \Rightarrow \| f_n - f \|_p \to 0 \) for \(p \in [1,\infty] \).
\[F_{EAC} = f(0) - f(0) - \int_{b}^{a} f'(x) \, dx \]

Note:
1. \(F_{EAC} = f_a \)
2. Every functional integral is AC
3. \(F_{EAC} = 0 \) \(F_{EAC} = f_{a} \) \(\frac{d}{dx} f_{a} = C_{EAC} \)
4. \(f_{EAC} = f_{EAC} \)
5. \(f_{EAC}, a \Rightarrow f_{EAC} \)
6. Space derivative \(\rightarrow \) Galip

\[f_{EAC} = \frac{d}{dx} f_{a} \]

\[x \in [a, b] \]

Every AC is the absolute integral of its derivative

\(F_{EAC} \) is an absolute integral \(\iff \) \(F_{EAC} \) is a constant

Proof:
- \(F_{EAC} \) by Prop 4.14
- \(F_{EAC} = f_{EAC} - f_{EAC} + \int_{a}^{b} f'(x) \, dx \) \(\text{Galois integral} \)
- \(f_{EAC} \) is a.e. \(\Rightarrow \) \(f_{EAC} \) is a.e. \(\text{Galois integral} \)
- \(\int_{a}^{b} f'(x) \, dx + f_{EAC} = f_{EAC} \)
- \(\int_{a}^{b} f'(x) \, dx \)
- \(f_{EAC} = f_{a} \)
- \(f_{EAC} = f_{a} \) G.L.
- \(\text{Lemma} \) \(f_{EAC} = \int f'(x) \, dx \)
- \(f_{EAC} = f_{EAC} - f_{EAC} + \int_{a}^{b} f'(x) \, dx \) \(\text{Galois integral} \)
- \(f_{EAC} \) is a.e. \(\Rightarrow \) \(f_{EAC} \) is a.e. \(\text{Galois integral} \)
- \(f_{EAC} = f_{a} \) constant
- \(\Rightarrow \) \(f_{EAC} = f_{a} \) is a.e. \(\text{Galois integral} \)
Convergence means many things.

NUS, norm, norm, Equivalence of norms

Banach: NUS complete ⇒ every absolutely convergent series converges

\[\overline{\text{closed}} \quad \overline{\text{continuous}} \quad \overline{\text{continuous}} \]

\[Y \text{ complete} \Rightarrow (X,Y) \text{ complete} \]

FUNCTIONS

中小企业 \(\Rightarrow \) Non-Banach Theorem \(\Rightarrow \) shows \(\Rightarrow \) using \(\Rightarrow \) and \(\Rightarrow \)

Prove \(\forall x \in X, \lim_{n \to \infty} f(x_n) = f(x) \Rightarrow \exists f \in X^* \to Y \text{ in } M_{X,Y} \]

Riemann Lemma.

Basic Category

- Complete metric space
 - \(\Rightarrow \) Hausdorff space
 - \(\Rightarrow \) discrete \(\Rightarrow \)
 - \(\Rightarrow \) metric space

Open Mapping
- \(T \) is open \(\Rightarrow \) \(T^{-1}(U) \) open
- \(T \) is closed \(\Rightarrow \) \(T^{-1}(U) \) closed

Closed Graph
- \(T \) is closed \(\Rightarrow \) \(T^{-1}(U) \) closed

Linear Algebra
- \(T \) is linear \(\Rightarrow \) \(T^{-1}(U) \) open

Hilbert Spaces

Inner Product

\[\langle x,y \rangle \text{ inner product} \]

Conjugate Symmetry

\[\langle x,y \rangle = \overline{\langle y,x \rangle} \]

Hilbert space: complete metric space

Banach space: linear space \(\Rightarrow \) complete metric space

Pythagorean Theorem

- \(\text{In a Hilbert space } H = A \perp A^* \)
- \(f(x) = \langle x,y \rangle + \sum_{n=1}^{\infty} \langle x_n,y \rangle \]

Orthogonal projection \(\Rightarrow \) \(f \) is \(\text{in } H \)

F CA \[\Rightarrow \text{Hilbert space } \Rightarrow \text{Banach space} \]

\[\text{Orthogonal projection} \]

- \(\langle x,y \rangle = 0 \) \text{ orthogonal}
- \(\langle x,x \rangle = 1 \) \text{ inner product}
- \(\langle x,x \rangle = 0 \) \text{ orthogonal}
- \(\langle y,y \rangle = 1 \) \text{ inner product}
- \(\text{Hilbert space } \Rightarrow \text{Banach space} \)

Separation

- \(\langle x,y \rangle = 0 \) \text{ orthogonal}
- \(\langle x,x \rangle = 1 \) \text{ inner product}
- \(\langle y,y \rangle = 1 \) \text{ inner product}