
CHAPTER 1

Tropical Atmosphere/Ocean Coupling and El Nino

1.1. Fundamentals of the coupling

It is well known that Sea Surface Temperature (SST ) is a major con-
trol on tropical convection (thunderstorm rainfall) and hence the over-
all atmospheric circulation since the latent heat release associated with
convection drives huge overturning cells. As the SST increases tropical
convection increases since more moisture is generally available in the
surface layers of the atmosphere. You can see therefore that the at-
mospheric circulation is likely to be sensitive to this oceanic field. We
now consider what influences this variable. Generally the mixed layer
near the surface of the ocean has relatively uniform properties so we
may write down an equation for its temperature and this will also be
the equation for SST :

(1.1.1) Tt + uTx + vTy +
w

Hm

(T − Tb) =
Q

ρoCpHm

where Hm is the depth of the mixed layer; Tb is the temperature of
water below the mixed layer; Q is the surface heat flux into the ocean;
ρo is the ocean density and Cp is the ocean specific heat. We note that
SST is controlled by the ocean flow field (u, v, w) and by the subsurface
temperature Tb as well as the heat flux from the atmosphere.

Now in general, currents near the surface of the equatorial ocean
are generated by wind forcing as we saw in the under-current lecture.
In addition Tb is controlled by the depth of the thermocline which again
as we saw previously is strongly influenced by wind forcing. In sum-
mary then SST is strongly influenced by atmospheric forcing. This
circular situation where ocean controls atmosphere via SST and at-
mosphere controls ocean via wind stress and heat flux implies that we
need to consider both medium together in order to explain tropical
climate variations. This situation is particularly true for the El Nino
phenomenon. A typical event is associated with large scale warm SST
anomalies such as those depicted in Figure 1.1.1.
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Figure 1.1.1. Sea surface temperature anomalies in de-
grees Celcius during the 1997-98 El Nino. Shown is the
three month average from January 1998 through March
1998.

The typical (atmospheric) wind stress anomalies that occur are
those seen in Figure 1.1.2.

Figure 1.1.2. Windstress Anomalies during a strong
El Nino. The maximum arrow length corresponds with
a magnitude of approximately 0.1Nm−2.

Finally heat flux anomalies tend to oppose the SST change. If a
good ocean computer model (such as the one we looked at in the pre-
vious Chapter) is forced by the mean wind stress for the Pacific and
then the anomalies from Figure 1.1.2 are added and the model rerun
then the new SST will be greater than the first runs SST by close to
the amount given in Figure 1.1.1. Conversely if a good atmospheric
computer model is forced firstly by the normal Pacific SST and then
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the anomalies from Figure 1.1.1 are added then the difference in wind
stresses between the two runs will strongly resemble Figure 1.1.2. This
clearly indicates that a coupled model is required to describe the dy-
namics of El Nino.

The atmospheric effects of El Nino have profound societal impli-
cations since they cause global circulation changes in response to the
anomalous latent heating. Figure 1.1.3 summarizes the major effects.
Oceanic effects are restricted to fisheries in the Americas.

Figure 1.1.3. Atmospheric (and hence societal) anom-
alies associated with El Nino. Diagram courtesy of
N.O.A.A.

It is worth analyzing in more detail the dynamical terms in the
SST equation most responsible for causing changes in the equatorial
Pacific. Let us linearize equation (1.1.1) about the mean state of the
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equatorial Pacific:
(1.1.2)

T
′

t +uT
′

x +u
′
T x + v

′
T y + vT

′

y +
w

Hm

(T
′−T ′

b) +
w

′

Hm

(T − Tb) =
Q

′

ρoCpHm

On the equator where coupling originates, a number of simplifica-
tions are possible. Firstly meridional currents and temperature gradi-
ents are small; secondly the mean zonal current in the mixed layer tends
to be small as a result of the large vertical shear there (remember un-
dercurrent model results from the previous lecture); thirdly variations
in T

′

b are strongly related to the anomalous thermocline position h; fi-
nally heat flux tends overwhelmingly to be a negative feedback. Thus
our linearized equation may be reduced to the approximate form

(1.1.3) T
′

t + u
′
T x +

w

Hm

(T
′ − rh) +

w
′

Hm

(T − Tb) = −sT ′

We see therefore that the major controls on variations in equatorial
SST are

(1) Zonal current anomalies. Transient zonal currents with uni-
form vertical structure in the mixed layer can be large as you
may have noted in the undercurrent model. In addition there
is a strong east west gradient in Pacific mean SST so the sec-
ond term in equation (1.1.3) may be large.

(2) Thermocline depth variations. We saw previously that there
is a large east west gradient in the climatological thermocline
depth which is a consequence of the trade-winds. Changes
in trade winds cause changes in this i.e. result in non-zero h.
Note however that the mean equatorial upwelling w is required
to bring this signal into the mixed layer. Thus the effects
of thermocline variations tends to be greatest in the eastern
Pacific where mean upwelling is largest.

(3) Upwelling anomalies. The equatorial upwelling is a result
of surface Ekman divergence at the equator and that this is
caused directly by the trade winds and their strong easterly
zonal windstress (see first question on previous assignment).
Changes in this stress can obviously drive changes in upwelling.
Note that for upwelling anomalies to be important we require
that the mean temperature difference between mixed layer and
subsurface be large. This generally only occurs in the eastern
Pacific where windstress changes during El Nino are not strong
(see Figure 1.1.2 above). Thus this term tends to be less im-
portant than the first two. This reduced importance is less
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true for the seasonal cycle however where significant changes
in far eastern Pacific zonal windstress are more important.

1.2. Coupled Instabilities

When the atmosphere and ocean are coupled together the combined
system has the potential for linear instability and hence rapid growth
of climate system anomalies such as SST . We consider a linear system
of equations describing this situation and solve these with certain ap-
proximations. In this section since we are considering linear instability
we drop primes on anomalous fields.

A revealing simple model was proposed by Neelin (around 1990)
in order to explore the growth rate and propagation direction of in-
stabilities. Here the atmospheric model is reduced considerably: It is
assumed that positive zonal wind anomalies occur to the west of the
heating and negative anomalies occur to the east. A useful way of view-
ing this is to say that there is a zonal phase shift between the heating
and the zonal wind. Motivated by this we introduce the atmospheric
model for the (complex) Fourier component with respect to the zonal
coordinate x of zonal wind U

(1.2.1) U = eiφQ = αeiφT

where φ is a phase shift angle (typically taken to be around π/4) and
we also assume that heating is proportional (via the positive coefficient
α) to SST anomaly T. Note that Q and T are also taken to be Fourier
components.

Two further simplifying assumptions can be made by assuming that
the thermocline perturbations are in approximate Sverdrup balance and
that the zonal current anomalies are approximately proportional to the
windstress anomalies (see undercurrent lecture notes to work out for
yourself the validity of these simplifying approximations). Neelin refers
to this steady state assumption as the “fast wave limit” as the slow ad-
justment of the ocean has been eliminated and while its limitations are
obvious, the simplification is fairly reasonable under the circumstances
of a growing disturbance with timescales of a month or two. Thus we
write

hx = cU(1.2.2)

u = dU

where c and d can be checked to be positive. We can write down
the equatorial SST equations in simplified form as

Tt + uT x − eh = −rT
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where we are taking into account the two main processes controlling
equatorial SST and we are combining two forms of decay of anomalies
into the right hand side. The effects of equatorial upwelling anom-
alies could easily also be added since such anomalies are proportional
to zonal windstress anomalies in the same way as zonal currents are
assumed to be in the second equation of (1.2.2). If we now assume as
usual that the Fourier components have the form

T = T0e
i(kx−ωt)

U = U0e
i(kx−ωt)

u = u0e
i(kx−ωt)

h = h0e
i(kx−ωt)

then we obtain firstly that

h =
−i
k
cU

and hence that

(−iω + r)T = −T xdU −
i

k
ceU

= eiφα

(
−dT x −

ice

k

)
T

hence upon expansion we obtain

iω = (sinφ+ i cosφ)

(
αdT x +

icαe

k

)
+ r

and so

ωr = αdT x cosφ+
cαe

k
sinφ(1.2.3)

ωi =
cαe

k
cosφ− dαT x sinφ− r

Now all the coefficients are positive except for T x which is negative
for the Pacific so therefore according to the first equation of (1.2.3) the
zonal advection term of the SST equation induces westward propaga-
tion1 while the thermocline term induces eastward propagation. The
second equation shows that both terms cause instability. Of course this
is all under the assumption that the phase φ is between 0 and π/2.

1It is easily checked that positive values for ωr occur when a Fourier component
corresponds with a wave moving in a positive i.e. eastward direction. Likewise
positive values of ωi are easily checked to correspond with exponential growth while
negative values imply exponential decay.



1.3. THE DYNAMIC CHARACTER OF EL NINO 7

These mechanisms are easily understood conceptually as follows.
Let us assume that a small sinusoidal windstress anomaly occurs. This
will generate a sinusoidal anomaly in h which is phase shifted π/2 to the
east because of the Sverdrup balance assumption. The h will induce an
SST anomaly with the same zonal phasing as itself. The SST anomaly
will then induce a zonal wind stress anomaly phase shifted φ to the
west. If the phase shift is π/4 then the resulting additional windstress
anomaly will act to reinforce the original anomaly and also to shift it to
the east. Similar comments apply to explaining the westward growing
disturbance associated with zonal advection.

All the above coupled instability mechanisms ignore the slow ocean
adjustment process mediated by Rossby and Kelvin waves that we ex-
amined in the undercurrent Lecture. In models of El Nino able to
successfully predict the phenomenon it turns out that this slow process
is fundamental. Despite this limitation, the above analysis explains
well the rapid instability properties of the coupled system. It may also
be extended to cover the case of Ekman upwelling anomalies which
behaves the same way as the zonal advection anomaly case.

1.3. The dynamic character of El Nino

This phenomenon is by far the largest form of variability in the climate
system for frequencies less than 100 years. The basic structure of SST
and zonal wind stress variations are depicted in Figure 1.3.1 which
shows anomalies for the past decade or two. These were collected from
a large observational array of oceanic buoys located within 300km of
the equator right across the Pacific. The Figure shows an equatorial
time section of the variables and a number of things are apparent.

(1) As was noted above the SST anomalies occur in the eastern
half of the basin where the mean position of the thermocline
is shallow.

(2) The zonal wind stress anomalies occur with a significant west-
erly displacement relative to the SST anomalies. Convection
anomalies (not shown) also have this westerly displacement
but to a lesser extent. As we noted above this displacement is
important for the development of coupled instabilities.

(3) There is little or no evidence of significant propagation in the
SST anomalies which grow in a stationary pattern right across
the eastern part of the basin.

(4) The fluctuations are irregular but a time scale of roughly four
years may be discerned.
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Figure 1.3.1. Equatorial Time-Longitude plots of SST
and Zonal Wind anomalies for years 1986-2000. Courtesy
of the Pacific Marine Environment Laboratory.

An adequate theory of ENSO must be able to explain convincingly
all four of these fundamental features. We have seen above how the
first two features are explicable in terms of atmospheric and oceanic
dynamics. The last two have been clarified in the past 5 years although
some controversy still remains concerning the irregularity of ENSO.

Consider now the implications of the third feature of ENSO: We
saw in the previous Lecture that plausible instability mechanisms exist
which can explain the growth of anomalies. Eastward propagation is
associated with thermocline processes while westward propagation is
connected with zonal current processes. One could theoretically elimi-
nate propagation by combining these two effects however no convincing
model without boundaries has been able to reproduce satisfactorily this
feature of the observations. Realistic models with this feature and the
ability to predict ENSO require zonal boundaries. We consider now
the first such model which was introduced some 25 years ago by Mark
Cane and Steve Zebiak from Columbia University.
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1.4. A “simple” but realistic model of ENSO

The Cane and Zebiak model consists of a depiction of the tropical
Pacific basin (taken to be rectangular). It is an anomaly model in that
it depicts deviations from mean (seasonally varying) variables and has
three components which we now discuss in detail

1.4.1. Ocean dynamics. The upper H = 150m of the tropical
Pacific is divided into two layer of mean depths 100m and 50m with
the latter layer taken to be the mixed layer. The total flow uH in
the two layers is assumed to obey shallow water equations for the first
baroclinic mode on an equatorial β plane:

(1.4.1)
(uH)t + auH − βyvH = −hx +X/ρoH
(vH)t + avH + βyuH = −hy + Y/ρoH
ht + ah+ c2∇ · −→u H = 0

This is a fairly good approximation for this flow as the first baro-
clinic mode is the major mode stimulated by wind stress in the central
Pacific and the anomalous flow in the first 150m is controlled (in a lin-
ear sense) by the first three or so baroclinic modes. The linear damping
a is chosen to have a time scale of around 3 years which is of the same
order that the McCreary undercurrent model discussed previously had
for the first vertical mode.

The difference in flow between the mixed layer and the lower layer
is controlled by the shear flow which as we saw in the undercurrent
model is mainly due to high-order baroclinic modes. These are heavily
damped and so Cane and Zebiak assumed that all these modes could
be combined into a simple heavily dissipated and steady state equation
for the shear or Ekman flow:

(1.4.2)
εuS − βyvS = X/ρoHm

εvS + βyuS = Y/ρoHm

where the damping ε is assumed to be of order several days and
Hm = 50m is the mixed layer depth. In some loose sense then the ocean
component of the model of Cane and Zebiak is a simplified version of
McCreary’s linear model of equatorial dynamics. The simplification
results in degradation in the depiction of zonal currents but thermocline
displacements (h) are still done quite well.

1.4.2. SST equation. Above we considered the temperature equa-
tion for the ocean mixed layer as this is essentially an equation for SST .
Cane and Zebiak used the perturbation form of this equation (i.e. per-
turbed about the mean state of the tropical Pacific) but assumed that
the mixed layer has a constant depth of 50m. They also introduced a
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fairly complicated parametrization of T
′

b (the subsurface temperature
anomaly) in terms of the thermocline displacement anomaly h. This
parametrization has a number of features which we briefly describe

(1) T
′

b varies directly and monotonically with h. For “moderate”
values of h the relationship is approximately linear.

(2) The relationship is strongly dependent on zonal location. In
the eastern Pacific the relationship is much stronger than in
the central Pacific.

(3) The relationship has an“amplitude limiting”non-linearity. Thus
if the magnitude of h becomes large enough then T

′

b approaches
a limiting value.

These features can be justified physically and cause the model to oscil-
late realistically.

All the anomalous currents and h required for calculation of the
SST anomaly are obtained from equations (1.4.1) and (1.4.2).

1.4.3. Atmospheric component. The diabatic heating is given
by a crude convection parametrization but for all practical purposes
it is approximately proportional to the SST anomaly. The windstress
response can be modeled quite simply using steady damped linear shal-
low water equations and solutions resemble the observations depicted
in Figure 1.1.2 quite well.

1.4.4. Model behavior. The model is integrated numerically and
develops oscillations which are depicted in Figure 1.4.1. These oscilla-
tions show a number of strong similarities with the observations seen
in Figure 1.1.1: The SST anomalies are standing in character and are
confined to the eastern part of the basin; the wind stress anomalies
are displaced to the west of the SST anomalies; and finally the period
of the oscillation is around 3-4 years which is where the spectral peak
is seen in observed data.. There are a number of disagreements still
with data with the principal one being that oscillations are located too
far to the east in the model. Nevertheless the agreement with data is
remarkable given the relative simplicity of the model described above.
The nature of the model behavior has therefore attracted much anal-
ysis (see below) and has been reproduced in a wide range of different
models since.

1.5. The delayed action oscillator paradigm

The model of Cane and Zebiak was analyzed in much detail by Battisti
and Hirst in the late 1980s. At the same time a somewhat more complex
model due to Schopf and Suarez was similarly analyzed (by that models
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Figure 1.4.1. Cane and Zebiak model oscillatory be-
havior. Depicted are various dynamical fields and their
evolution. A snapshot of SST anomaly is also included
during an El Nino.
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authors) with the same basic conclusion as to mechanisms. The Schopf
and Suarez model exhibited a very similar oscillation to that seen in
the Cane and Zebiak model. We concentrate our discussion here on
the analysis due to Battisti and Hirst.

By means of a series of careful sensitivity experiments a number of
things were discovered concerning the oscillations seen in Figure 1.4.1.
These included

(1) The rapid growth of disturbances in the eastern Pacific was
a result of the three coupled instability mechanisms discussed
earlier i.e. it was due to zonal advection; thermocline pertur-
bation and upwelling anomaly processes in the SST equation.

(2) The western boundary condition of the model was critical.
Without it no oscillation occurred.

Why should the western boundary in particular be important?
Consider the effects on the ocean of an increasing westerly zonal

wind anomaly in the central Pacific: This anomaly will generate a pos-
itive Kelvin wave which will propagate to the east causing the coupled
instability noted previously. It will then reflect from the eastern bound-
ary as positive Rossby waves which will tend if anything to reinforce
the instability growth taking place in the eastern part of the basin. At
the same time as this process is taking place another is taking place
in the western part of the basin. Here the westerly wind anomalies
generate a packet of negative Rossby waves. These do not affect SST
all that much immediately because there is little mean upwelling in the
western part of the Pacific. After some time interval, determined by
the distance between the wind anomalies and the western boundary
as well as the Rossby wave speed, the Rossby waves reach the west-
ern boundary and are reflected as a negative Kelvin wave. This wave
moves rapidly to the eastern part of the basin where most of the action
is taking place and acts as a powerful negative feedback on the coupled
instability there. This negative feedback, which occurs with some time
delay, therefore has the potential to terminate or even reverse the large
SST anomalies occurring in the eastern Pacific. This was indeed the
process occurring in the Cane and Zebiak oscillations.

Since most of the variability in particular climate variables is tak-
ing place in fixed spatial locations (the oscillation is standing) we can
legitimately simplify the Cane and Zebiak model oscillation into the fol-
lowing useful “toy” model describing area averaged eastern equatorial
Pacific SST anomaly:

(1.5.1) T (t)t = cT (t)− bT (t− τ)
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Here the coefficients c and b are assumed positive and τ is the
time delay involved in propagation of the Rossby waves to the west-
ern boundary and there subsequent return as a Kelvin wave. We are
ignoring amplitude limiting non-linearities and the eastern boundary
reflections for simplicity as these do not change the qualitative conclu-
sions. The reason we use a term proportional to T (t−τ) to describe the
negative feedback is because the wind stress which forced the Rossby
waves at this earlier time was of course proportional to the SST anom-
aly at that time.

Equation (1.5.1) is known as a delay differential equation and is
soluble in principle. If we choose solutions of the form

T = T0 exp (σt)

where σ is complex then substitution into (1.5.1) results in the
complex equation

(1.5.2) σ = −b exp (−στ) + c

Solutions for this are readily found by numerical solution (or analyt-
ically using the Lambert W function) and have the following properties:
When

0 < b < exp (cτ) /τ

only exponentially growing solutions occur (with reduced growth
rate compared to the case b = 0). When b > exp (cτ) /τ oscillatory
solutions become possible either damped or growing. This shows that
the delayed negative feedback must be sufficiently strong for oscillatory
solutions to occur, a rather intuitively obvious situation. The situation
is displayed graphically in Figure 1.5.1 which shows the complex dis-
persion relation corresponding to solutions of (1.5.2). The differing
curves are for different values of b while the shaded areas are those
corresponding to best estimates of b and c for the Cane and Zebiak
model. The x-axis is the coupled instability parameter c which clearly
influences both the growth rate (intuitively obvious) and the period
of the oscillation (less obvious). The delay time for this diagram is
chosen to be half a year. The conclusion of this analysis is that os-
cillatory solutions are possible for a broad range of model parameters
and that the period of the oscillation is set in a rather complex fash-
ion by the coupled instability timescale; the delayed negative feedback
timescale and also the reflection efficiency from the western boundary.
In the Cane and Zebiak model which has a self-sustaining oscillation,
clearly the growing linear oscillatory solution is appropriate however
the amplitude limiting non-linearity on the thermocline term discussed
previously ensures a finite amplitude weakly non-linear solution.
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Figure 1.5.1. Complex dispersion relations for the de-
layed differential equation underlying El Nino. The real
and imaginary parts of the frequency correspond to the
period and growth rate of solutions.

More complex and realistic modeling done since Cane and Zebiak
has confirmed that the so-called “delayed action oscillator” mode of
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coupled variability is a very robust feature of coupled models and it
is now widely believed by most climate scientists that the paradigm
outlined above describes the basic dynamics of ENSO.

1.6. Model Description

We use a coupled ocean atmosphere model which is conceptually
similar to the Cane and Zebiak model detailed above. It was developed
in the early 1990s by the author to study the nature and dynamics
underlying El Nino predictability. Complete documentation can be
found in Kleeman (1991) and Kleeman (1993). We provide a brief
summary here on the ways in which it differs from the Cane and Zebiak
(CZ) model.

The basic ocean dynamics are essentially identical to CZ in that
equations (1.4.1) and (1.4.2) are used to describe the currents within
the upper mixed layer of the ocean which is assumed like CZ to have a
constant depth of 50m. The temperature equation for the mixed layer
is a significant simplification of the CZ version. Equation (1.1.2) is used
on the equator and off-equatorial temperature anomalies are simply as-
sumed to be proportional to equatorial temperatures with a constant
of proportionality which drops according to a Gaussian profile away
from the equator. This simplification is valid because in reality SST
anomalies are mainly created on the equator and transmitted north
and south fairly rapidly by meridional advection. The equatorial equa-
tion (1.1.2) is simplified by dropping several small advection terms and
simplifying the vertical advection and heat flux terms. The resulting
equatorial SST anomaly equation reads

T ′t = f(x)M(h′)− κT ′

where in order to ensure finite amplitude behaviour we set

M(h′) = h′ |h′| < hmax

= hmax h′ > hmax

= −hmax h′ < −hmax
This“cutoff”function reflects the reality that if the thermocline gets

too deep, further deepening has little further effect on SST. Similarly if
the thermocline surfaces (i.e. h′ is very negative) little further cooling
influence can be expected for more negative thermocline anomalies.
Thus SST anomalies never really exceed an amplitude of around 4 or
5 degrees.

The function f(x) increases from west to east and reflects the
greater sensitivity of SST to thermocline movements in the eastern
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rather than western Pacific. This occurs partly because the upwelling
is much greater in the former region.

In some rough sense this ocean model of SST anomaly represents a
minimal realistic simulation of equatorial variations.

The atmospheric model incorporates a simplified steady state moist
convection formulation which forces a Gill (1980) linear damped shallow
water set of equations. The difference from the CZ model is that due
to a different convection formulation, the atmosphere responds much
more strongly to SST anomalies in regions of high mean SST (mainly
the western Pacific) rather than low mean SST (the eastern Pacific).

This model coupled model has been used extensively to predict El
Nino and exhibits a level of skill comparable with those exhibited by
more complex models used today for routine forecasts.

As was discussed above any model explanation of El Nino must
also explain the irregularity of El Nino as well as its spectral peak
which occurs at roughly 4 years. One explanation for this is that large
scale tropical weather patterns are able to disrupt regular oscillations.
Such a disruption is inherently a random process since on climate time
scales weather acts like noise. This effect has been incorporated into
the present model by forcing the model with large scale patterns of
heat flux and wind stress which resemble certain weather phenomenon
(e.g. the Madden Julian Oscillation). With this inclusion the present
model exhibits quite realistic variability as documented in Moore and
Kleeman (1999).
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1.7. Model Interface

As in previous chapters a Matlab graphical user interface is provided
for easy model operation. An example of this interface is shown in
Figure 1.7.1

Figure 1.7.1. Matlab graphical interface for the El
Nino model

As in previous chapters ensure that all parameter values are
reset before running the model. The model is initialized by a
constant equatorial SST anomaly of 1◦C and may be integrated inex-
pensively for many decades. The model parameters are explained in
Table 1

The panels on the right of the interface have the following signifi-
cance:

Top left: Longitude-time plot of equatorial thermocline (dynamic
height) anomaly.

Top right: Longitude-time plot of equatorial SST anomaly.
Center left: Longitude-time plot of equatorial zonal wind anomaly.
Center right: Longitude-time plot of equatorial pressure driven

zonal currents.
Bottom left: Longitude-Latitude plot of SST anomaly at the end

of the integration.
Bottom right: Longitude-Latitude plot of wind anomaly at the end

of the integration.
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Model Parameter Meaning

wbound Western boundary reflection efficiency coefficient.
A value of 1.0 means perfect reflection of

incoming Rossby waves into Kelvin waves.
Values less than unity imply some absorption

or transmission of the Rossby waves.
ebound Eastern boundary reflection efficiency coefficient.

Same as wbound but the reflection
coefficient of Kelvin waves into

Rossby waves at the eastern boundary.
cuple Atmosphere Ocean coupling coefficient.

The greater this parameter the greater
the feedback between the media.

A value of unity corresponds approximately
with observed conditions in the Pacific.

stochstr Stochastic forcing with spatial patterns
of the large scale tropical weather

have been added to the model.
A value of 1.0-3.0 corresponds

approximately with observations.
nnyears Number of years to integrate model forward.
speed Factor to multiply the

shallow water/Kelvin wave speed.
A value of 1.0 corresponds

to a speed of 2.3 m/s.

Table 1. El Nino model parameter meanings.
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1.8. Model Exercises

(1) (Theory question) Derive the complex dispersion relation for
the delayed action oscillator model considered above i.e. equa-
tion (1.5.1). By using the following substitutions:

b ≡ εexp(cτ)/τ > 0
z ≡ (c− σ)τ

write these in a particularly simple form involving only ε and
z. After further (obvious) manipulation use the matlab zero
finding facility (or any method you desire) to find solutions as
a function of ε. This is a potentially challenging exercise and
full marks will be given for good partial attempts.

(2) (Model question) In the gui choose solutions with the sto-
chastic forcing set to zero and the coupling strength at 1.5.
How does the period of the oscillation vary with shallow water
speed? By varying the coupling strength study the effect of
the shallow water speed on the model stability.

(3) (Model question) Repeat question 2 but study the effect of the
western boundary reflection coefficient. Are these relations
consistent with the dispersion relations derived in class and
displayed in Figure 1.5.1? Provide a convincing argument for
your belief.

(4) (Model question) By varying the stochastic forcing and the
coupling strength derive some conclusions about when a self-
sustaining oscillation is possible in this model. Hint: the input
of stochastic forcing acts as an energy source for the system.
Compare the solutions critically with those of Figure 1.3.1 from
the Lecture notes.

(5) (Model question) What effect does the eastern boundary have
on solutions?

(6) (Model question) Study the (sometimes large) pressure driven
currents in the solutions. Speculate on why they are appar-
ently only in the western part of the basin. Why do they show
so much high frequency variability (for example, being large
and positive right at the start of a warm event and weak and
negative towards the end)?


