Information Theory and Predictability
Lecture 7: Gaussian Case

1 Gaussian distribution

The general multivariate form of this density for a random n dimensional vector
x can be written as

p(x) = [(2m)" det(0)] " exp | 5 (x %) o (x ~ %)

where o is the n X n covariance matrix for the random variables which is

given by:
oij = Tit; — (T3)(7;)

Notice that such a distribution is specified exactly by its mean vector and
covariance matrix.

Such distributions are encountered frequently in systems with many degrees
of freedom where random variables often have such distributions to a good
approximation. One possible reason why this occurs is the central limit theorem
of statistics. In classical form this states that given n iid random variables with a
general distribution of finite variance then the average of these random variables
has a distribution that approaches a Gaussian as n — oo. The condition that
the random variables be iid can be weakened considerably and the result still
holds. Since such distributions are ubiquitous it is of value as an analysis tool to
consider their entropic functionals. This is further facilitated by the ease with
which analytical expressions may be obtained and elementary linear algebra
techniques used in their analysis.

2 Entropic functionals

Consider firstly the differential entropy. This is easily evaluated because the
logarithm of the distribution is a quadratic form plus another constant piece.
The expectation of this quadratic form actually reduced to a constant and so
only the normalization of the distribution contributes anything of interest:

h(X) = % log [(2r¢)" det(cr)]

Consider now a linear transformation of our vector random variable that
diagonalizes the covariance matrix (this is always possible since it is symmetric).
These transformed random variables are commonly called EOFs or principal
components in the geophysical and statistical literature respectively. In such a
basis it is clear that the differential entropy is simply the sum of the logarithms
of all the standard deviations of the principal components plus a constant. This
corresponds nicely to our intuition of entropy as total uncertainty.



The relative entropy can be evaluated almost as easily although now the
different means of the two Gaussian distributions comes into play and we obtain
the following analytical expression

D(plle) = 3 {log (det (o) /det (05)) +tr (0'z (ay)fl) - n} Dispersion
+ ;X -y, (x—y) Signal
(1)
where the subscripts x and y refer to the distributions p and ¢ respectively
while x and y are the respective values of the random vectors. We have de-
liberately separated this expression into two pieces one depending only on the
covariance of the p distribution while the other piece only depends on the means
of this distribution. Notice that the first piece of the “dispersion” terms is sim-
ply the difference of the differential entropies of p and ¢ i.e. it is the difference
in the uncertainties of the two distributions. The second term is often small in
the applications we shall consider later. The “signal” term can be understood
by transforming to the principal component basis for the g distribution. In that
basis this term is proportional to the sum of the squares of the difference in
means normalized by the variances of the principal components.

Finally it is interesting to evaluate the mutual information of two Gaussian
distributions since it is a measure of their independence as random variables.
Since this is the relative entropy of the joint distribution with the product of the
marginal distributions we can use equation (1) for its evaulation. The means of
these two distributions are the same so the signal term vanishes. Additionally
it is easily shown by elementary matrix manipulation that the second and third
terms of the dispersion cancel. We are left therefore with just the first dispersion
term and we can reduce this to

| det(ox ) det(oy)
I(X;Y) = log (W)

where the subscripted covariance matrices are those for the appropriate
marginal distributions i.e. for X and Y. The unsubscripted matrix is for the
full 2n x 2n dimensional covariance matrix. Note that when n = 1 this reduces

to
1
I(X:Y)=1 —1
(X;Y) =logy /17—

where r is the usual correlation coefficient. We could use this form and the
previous equation to define a multivariate correlation coei—cient but this is not
yet common in statistical circles.



