
A Brief Introduction to Optimal Control, Fall 2009
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. Prepared for my
Fall 2009 class on the Calculus of Variations.

Topics considered here include: examples of optimal control problems; dynamic program-
ming and the Hamilton-Jacobi-Bellman equation; verification theorems; the Pontryagin
Maximum Principle Principle. The examples include many with an economic flavor, but
others too (including the Hopf-Lax solution formula for ut + H(Du) = 0 with H convex).
There’s much more here than we’ll have time to do in lecture.

These notes are an abridged version of material I prepared some years ago for the class
“PDE for Finance.” So they do not go deeply into the associated PDE issues such as
viscosity solutions. Evans’ PDE book is highly recommended for further reading in that
direction. A brief treatment emphasizing economic applications (same level, more or less,
as these notes) can be found in chapters 10 and 11 of A.K. Dixit, Optimization in Economic
Theory (Oxford Univ Press, 1990). The book by Jost and Li-Jost has chapters on Hamilton-
Jacobi equations and the Pontryagin Maximum Principle; they’re worth reading, but quite
different from my approach and rather terse, with relatively few examples.

***********************

What is optimal control? A typical problem of optimal control is this: we have a system
whose state at any time t is described by a vector y = y(s) ∈ Rn. The system evolves in
time, and we have the ability to influence its evolution through a vector-valued control
α(s) ∈ Rm. The evolution of the system is determined by an ordinary differential equation

ẏ(s) = f(y(s), α(s)), y(0) = x, (1)

and our goal is to choose the function α(s) for 0 < s < T so as to maximize some utility or
minimize some cost, e.g.

max
∫ T

0
h(y(s), α(s)) ds+ g(y(T )). (2)

The problem is determined by specifying the dynamics f , the initial state x, the final time
T , the “running utility” h and the “final utility” g. The problem is solved by finding the
optimal control α(s) for 0 < s < T and the value of the maximum.

The mathematical and engineering literature often focuses on minimizing some sort of cost;
the economic literature on maximizing utility. The two problems are mathematically equiv-
alent.

One needs some hypotheses on f to be sure the solution of the ODE defining y(s) exists
and is unique. We do not make these explicit since the goal of these notes is to summarize
the main ideas without getting caught up in fine points. See Evans for a mathematically
careful treatment. Another technical point: it’s possible (even easy) to formulate optimal
control problems that have no solution. If the utility is bounded above, then for any ε > 0
there’s certainly a control αε(s) achieving a value within ε of optimal. But the controls αε
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might not converge to a meaningful control as ε→ 0. Note however that even if an optimal
control doesn’t exist, the optimal value (the maximum utility) is still well-defined.

An optimal control problem is evidently a special type of optimization problem. What’s
special is that we’re dealing with functions of time, and decisions that must be made as time
proceeds. Often the optimal control is described by a feedback law. Such a law determines
the optimal control α(s) as having the form α(s) = F (y(s), s) for some function F (the
feedback law).

Example 1: Here is a simple example which already has financial interest. (It’s a deter-
ministic version of Merton’s famous example of optimal investment and consumption; we’ll
do the version with investment in a few weeks). Consider an individual whose wealth today
is x, and who will live exactly T years. His task is to plan the rate of consumption of wealth
α(s) for 0 < s < T . All wealth not yet consumed earns interest at a fixed rate r. The state
equation is thus

ẏ = ry − α, y(0) = x. (3)

The control is α(s) ≥ 0, and the state is constrained by y(s) ≥ 0 (he cannot consume wealth
he doesn’t have). The goal is

max
∫ T

0
e−ρsh(α(s)) ds

where ρ is the discount rate and h(α) is the utility of consumption. (The function h,
which must be given as part of the formulation of the problem, should be monotonically
increasing and concave. A typical choice is h(α) = αγ with 0 < γ < 1.) We have, for
simplicity, assigned no utility to final-time wealth (a bequest), so the solution will naturally
have y(T ) = 0. Our goal is not strictly of the form (2) due to the presence of discounting;
well, we omitted discounting from (2) only for the sake of simplicity.

The state constraint y(s) ≥ 0 is awkward to deal with. In practice it tells us that if the
investor ever runs out of wealth (i.e. if y(s) ever reaches 0) then α = 0 and y = 0 thereafter.
This state constraint can be avoided by reformulating the goal as

max
∫ τ

0
e−ρsh(α(s)) ds

where τ is the first time y reaches 0 if this occurs before T , or τ = T if y is positive for all
s < T . With this goal we need not impose the state constraint y(s) ≥ 0.

Control theory is related to – but much more general than – the one-dimensional calculus
of variations. A typical calculus of variations problem is

max
y(s)

∫ T

0
W (s, y(s), ẏ) ds

subject, perhaps, to endpoint conditions on y(0) and y(T ). The example just formulated
can be expressed in this form,

max
y(s)

∫ T

0
h(ry − ẏ) ds, subject to y(0) = x,
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except that we have additional constraints ry(s)− ẏ(s) ≥ 0 and y(s) ≥ 0 for all s.

We will shortly discuss the method of dynamic programming as a scheme for solving optimal
control problems. The key to this method is to consider how the solution depends on the
initial time and initial state as parameters. Thus rather than start arbitrarily at time 0,
it is better to introduce a variable initial time t. And it is fruitful to consider the value
function u(x, t), the optimal value achievable using initial time t and initial state x. In the
context of our basic framework (1) this means changing the state equation to

ẏ(s) = f(y(s), α(s)), y(t) = x.

The control α(s) is now to be determined for t < s < T , and the value function is

u(x, t) = max
∫ T

t
h(y(s), α(s)) ds+ g(y(T )).

In the context of Example 1 it means changing the state equation to

ẏ = ry − α, y(t) = x,

and the objective to

u(x, t) = max
∫ T

t
e−ρsh(α(s)) ds.

(Warning: with this definition u(x, t) is the utility of consumption discounted to time 0.
The utility of consumption discounted to time t is eρtu(x, t).)

We started by formulating the “typical” optimal control problem (1)-(2). Now let’s discuss
some of the many variations on this theme, to get a better sense of the scope of the subject.
We repeat for clarity the state equation:

ẏ(s) = f(y(s), α(s)) for t < s < T with initial data y(t) = x.

Sometimes we may wish to emphasize the dependence of y(s) on the initial value x, the
initial time t, and the choice of control α(s), t < s < T ; in this case we write y = yx,t,α(s).
The control is typically restricted to take values in some specified set A, independent of s:

α(s) ∈ A for all s;

the set A must be specified along with the dynamics f . Sometimes it is natural to impose
state constraints, i.e. to require that the state y(s) stay in some specified set Y :

yx,t,α(s) ∈ Y for all s;

when present, this requirement restricts the set of admissible controls α(s). Our basic
example (2) is known as a finite horizon problem; its value function is

u(x, t) = max
α

{∫ T

t
h(yx,t,α(s), α(s)) ds+ g(yx,t,α(T ))

}
. (4)
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For the analogous infinite horizon problem it is customary to set the starting time to be
0, so the value function depends only on the spatial variable x:

u(x) = max
α

∫ ∞
0

e−ρsh(yx,0,α(s), α(s)) ds. (5)

Discounting is important for the infinite-horizon problem, since without it the integral
defining u could easily be infinite. (As already noted in our example, it is also often natural
to include discounting in a finite-horizon problem.)

The minimum time problem is a little bit different. It minimizes the time it takes y(s)
to travel from x to some target set T . The value function is thus

u(x) = min
α
{time at which yx,0,α(s) first arrives in T } . (6)

The minimum time problem is somewhat singular: if, for some x, the solution starting
at x cannot arrive in T (no matter what the control) then the value is undefined. The
discounted minimum time problem avoids this problem: its value function is

u(x) = min
α

∫ τ(x,α)

0
e−s ds (7)

where τ(x, α) is the time that yx,0,α(s) first arrives in T , or infinity if it never arrives.
Notice that the integral can be evaluated: the quantity being minimized is

∫ τ(x,α)
0 e−s ds =

1 − e−τ(x,α). So we’re still minimizing the arrival time, but the value function is 1 −
exp(−arrival time) instead of the arrival time itself.

Example 2. Here is a simple example of a minimum-time problem, with the great advan-
tages that (a) we can easily visualize everything, and (b) we know the solution in advance.
In its simplest form the problem is: given a point x in Rn, and a set T not containing x, find
the distance from x to T . We recognize this as a minimum time problem, by reformulating
it in terms of paths travelled with speed ≤ 1. The state equation is

dy/ds = α(s), y(0) = x,

and the controls are restricted by
|α(s)| ≤ 1.

The minimum arrival time

u(x) = min
α
{time of arrival at T }

is of course the distance from x to T , and the optimal strategy is to travel with constant
velocity (and unit speed) toward the point in T that is closest to x. We remark that
u(x) = dist (x, T ) solves the differential equation

|∇u| = 1

in its natural domain Ω = Rn − T , with boundary condition u = 0 at ∂Ω. This is an
example of a (time-independent) Hamilton-Jacobi equation. The solution is typically not
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smooth: consider for example the case when Ω is a circle or a square. The optimal control
is determined by a feedback law (“wherever you are right now, proceed at unit speed
toward the nearest point on the target T ”). The non-smoothness of u reflects the fact
that the feedback law is discontinuous, with nonuniqueness where ∇u is discontinuous.
There is clearly nothing pathological about this example: non-smooth value functions, and
discontinuous feedback laws, are commonplace in deterministic optimal control.

***********************

Dynamic programming. There are basically two systematic approaches to solving opti-
mal control problems: one known as the Pontryagin Maximum Principle, the other known
as Dynamic Programming. The two approaches are fundamentally equivalent, though in
specific problems one may be easier to apply than the other. We’ll discuss the Pontryagin
Maximum Principle later.

The essence of dynamic programming is pop psychology: “today is the first day of the rest
of your life.” More: every day is the first day of the future thereafter. How to use this
insight? One way is to make it the basis of a numerical solution scheme. Another way is
to use it to derive a PDE for u(x, t). These two ideas are of course closely related: our
numerical solution scheme is in fact a crude numerical scheme for solving the PDE.

Let’s start with the numerical scheme, concentrating on the finite-horizon problem (4), and
keeping space one-dimensional for simplicity. Our goal is to compute (approximately) the
value function u(x, t). Of course any numerical scheme must work in discrete space and
time, so t is a multiple of ∆t, and x is a multiple of ∆x. It’s also natural to consider that
the controls are discretized: α(s) is piecewise constant with mesh ∆t. Now work backward
in time:

First Consider the problem with initial time t = T . In this case the dynamics is irrelevant.
So are the control and the running utility . Whatever the value of x, the associated
value function is g(x). In other words: u(x, T ) = g(x).

Next Consider the problem with initial time t = T −∆t. Approximate the dynamics as

y(s+ ∆t) = y(s) + f(y(s), α(s))∆t.

Since there is just one time interval between the initial time t and the final time
T = t + ∆t, and since the control is piecewise constant, the unknown is now just a
single vector α = α(t) (not a function). It is determined by optimization. We may
approximate the objective integral by a sum (dropping terms of higher order in ∆t),
leading to

u(x, T −∆t) = max
α
{h(x, α)∆t+ g (x+ f(x, α)∆t)} .

This must be evaluated for each x (i.e. every multiple of ∆x), and the maximization
over α must be done globally (we need the global optimum, not just a local opti-
mum). For a real numerical scheme some further structure is needed here: we should
solve a problem in a bounded spatial domain, and impose concavity hypotheses as-
suring that there are no local optima. For the present conceptual discussion let us
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ignore such practical issues and proceed. (One might worry that when the spatial
dimension is greater than 1 this scheme is utterly impractical, since the number of
grid points x to be considered at each time t is of order (∆x)−n in dimension n.
This worry is well-founded: our scheme is impractical in higher dimensions. However
there are good numerical schemes for multidimensional problems. One option is to
solve the Hamilton-Jacobi-Bellman equation we’ll derive presently, using a suitable
finite-difference scheme.) At the end of this step we have computed u(·, T −∆t) as a
function of space.

Next Consider the problem with initial time t = T−2∆t. For any initial state x = y(t), the
possible controls are now represented by a pair of vectors α(t), α(t+ ∆t). However we
can still solve the problem by considering just the current control α = α(t), since the
optimal choice of α(t + ∆t) has already been determined in the course of evaluating
u(x, T −∆t). Making crucial use of the fact that the “running utility” is an integral
in time, we may determine the optimal value u(x, T − 2∆t) by solving

u(x, T − 2∆t) = max
α
{h(x, α)∆t+ u (x+ f(x, α)∆t, T −∆t)} .

Here the unknown is just the control α to be used during the time interval from
T − 2∆t to T −∆t. The optimal α depends of course on x, and the optimization in
α must be done for each choice of x separately. (Again, this is the conceptual but
impractical version; numerical optimal control uses various workarounds to make it
more practical.) At the end of this step we have computed u(·, T −2∆t) as a function
of space.

Continue The scheme continues, working backward time-step by time-step. Notice that
for computing u(x, T − (j + 1)∆t) we need only save the values of u(x, T − j∆t).
However if we wish to synthesize an optimal control starting at an arbitary point x
and time t = T−(j+1)∆t we must save much more information: namely the feedback
law α = F (y, s), obtained in the course of calculating u(y, s) for s > t. (This is the
optimal initial-time-period value of the control, when the initial state is y and the
initial time is s). This information permits us to synthesize the optimal control and
solve the state equation at the same time: starting from x at time t, the state evolves
by

yα(s+ ∆t) = yα(s)) + f(yα(s), α(s))∆t

with α(s) determined by
α(s) = F (yα(s), s) .

We remark that a similar philosophy can be used in many other settings. One example is
this standard scheme for computing the shortest path between two nodes of a graph. Pick
one of the nodes (call it an endpoint). Find all nodes that lie distance 1 from it, then all
points that lie distance 2 from it, etc. Stop when the other endpoint appears in the set you
come up with.

The discrete-time, discrete-space scheme described above can be viewed as a crude nu-
merical scheme for solving the PDE satisfied by the value function. This is known as the
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Hamilton-Jacobi-Bellman equation. We shall derive it, in essence, by taking the for-
mal limit ∆t → 0 in our numerical discussion. This viewpoint can be used for all the
optimal control problems we’ve discussed (finite-horizon, infinite-horizon, least-time, with
or without discounting) but to fix ideas we concentrate on the usual finite-horizon example

u(x, t) = max
α

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}

where the controls are restricted by α(s) ∈ A, and the state equation is

dy/ds = f(y(s), α(s)) for t < s < T and y(t) = x.

(Space can be multidimensional here.) The Hamilton-Jacobi-Bellman equation in this case
is

ut +H(∇u, x) = 0 for t < T (8)

with
u(x, T ) = g(x) at t = T ,

where H (the “Hamiltonian”) is defined by

H(p, x) = max
a∈A
{f(x, a) · p+ h(x, a)}. (9)

(Note that p is a vector with the same dimensionality as x; a is a vector with the same
dimensionality as α.)

To explain, we start with the dynamic programming principle, which was in fact the
basis of our discrete scheme. It says:

u(x, t) = max
α

{∫ t′

t
h(yx,t,α(s), α(s)) ds+ u(yx,t,α(t′), t′)

}
(10)

whenever t < t′ < T . The justification is easy, especially if we assume that an optimal
control exists (this case captures the main idea; see Evans for a more careful proof, without
this hypothesis). Suppose the optimal utility starting at x at time t is achieved by an
optimal control αx,t(s). Then the restriction of this control to any subinterval t′ < s < T
must be optimal for its starting time t′ and starting position yx,t,α(t′). Indeed, if it weren’t
then there would be a new control α′(s) which agreed with α for t < s < t′ but did
better for t′ < s < T . Since the utility is additive – the running utility is

∫ T
t h(y, α) ds =∫ t′

t h(y, α) ds +
∫ T
t′ h(y, α) ds – this new control would be better for the entire time period,

contradicting the optimality of α. Therefore in defining u(x, t) as the optimal utility, we can
restrict our attention to controls that are optimal from time t′ on. This leads immediately
to (10).

Now let us derive (heuristically) the Hamilton-Jacobi-Bellman equation. The basic idea is
to apply the dynamic programming principle with t′ = t+∆t and let ∆t→ 0. Our argument
is heuristic because (i) we assume u is differentiable, and (ii) we assume the optimal control
is adequately approximated by one that is constant for t < s < t+ ∆t. (Our goal, as usual,
is to capture the central idea, referring to Evans for a more rigorous treatment.) Since ∆t is
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small, the integral on the right hand side of (10) can be approximated by h(x, a)∆t, where
a ∈ A is the (constant) value of α for t < s < t+ ∆t. Using a similar approximation for the
dynamics, the dynamic programming principle gives

u(x, t) ≥ h(x, a)∆t+ u(x+ f(x, a)∆t, t+ ∆t) + errors we wish to ignore

with equality when a is chosen optimally. Using the first-order Taylor expansion of u this
becomes

u(x, t) ≥ h(x, a)∆t+ u(x, t) + (∇u · f(x, a) + ut)∆t+ error terms

with equality when a is optimal. In the limit ∆t→ 0 this gives

0 = ut + max
a∈A
{∇u · f(x, a) + h(x, a)},

i.e. ut + H(∇u, x) = 0 with H as asserted above. The final-time condition is obvious: if
t = T then the dynamics is irrelevant, and the total utility is just g(x).

That was easy. Other classes of optimal control problems are treated similarly. Let’s look
at the minimum-time problem, where the state evolves by

dy/ds = f(y, α), y(t) = x,

and the controls are restricted by

α(s) ∈ A for all s

for some set A. The associated Hamilton-Jacobi-Bellman equation is

H(∇u, x) = −1 for x /∈ T

with Hamiltonian
H(p, x) = min

a∈A
{f(x, a) · p} = 0.

The boundary condition is
u = 0 for x ∈ T .

To see this, we argue essentially as before: the value function (the time it takes to arrive at
T ) should satisfy

u(x) ≤ ∆t+ u(x+ f(x, a)∆t) + error terms

for any a ∈ A, with equality when a is optimal. Using Taylor expansion this becomes

u(x) ≤ ∆t+ u(x) +∇u · f(x, a)∆t+ error terms.

Optimizing over a and letting ∆t→ 0 we get

1 + min
a∈A
{f(x, a) · ∇u} = 0,

which is the desired equation.

Let us specialize this to Example 2. In that example the set A is the unit ball, and
f(y, α) = α, so H(p, x) = min|a|≤1 p · a = −|p| and the Hamilton-Jacobi equation becomes
|∇u| = 1, as expected.
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***************

Solutions of the Hamilton-Jacobi-Bellman equation are not unique (at least, not when we
understand “solution” in the naive almost-everywhere sense). For example, there are many
Lipschitz continuous solutions of |∇u| = 1 in a square, with u = 0 at the boundary. If
one were smooth we might prefer it – however there is no smooth solution. So, is the HJB
equation really of any use?

The answer is yes, it’s very useful, for three rather distinct reasons. The first is obvious; the
second is elementary but not obvious; the third is subtle, representing a major mathematical
achievement that’s surprisingly recent (early 1980’s).

(a) In deriving the HJB equation, we deduced a relation between the optimal control and
the value of ∇u: briefly, α(s) achieves the optimum in the definition of H(p, x) with
p = ∇u(y(s), s) and x = y(s). Thus the derivation of the HJB equation tells us the
relation between the value function and the optimal control. In many settings, this
argument permits us to deduce a feedback law once we know the value function.

(b) The argument used for the HJB equation can often be reorganized to show that a
conjectured formula for the value function is correct. This sort of argument is called
a verification theorem.

(c) There is a more sophisticated notion of “solution” of a Hamilton-Jacobi equation,
namely the notion of a viscosity solution. Viscosity solutions exist, are unique, and
can be computed by suitable numerical schemes. Moreover the value function of a
dynamic programming problem is automatically a viscosity solution of the associated
HJB equation. (Chapter 10 of Evans’ book gives an excellent introduction to the
theoretical side of this topic. The book Level Set Methods by J. Sethian, Cambridge
Univ Press, provides a readable introduction to the numerical side, concentrating on
the special class of HJB equations associated with geometric evolution problems –
closely connected with our minimum time example.)

Point (a) should be clear, and it will be illuminated further by various examples later on.
Point (c) is an interesting story, but beyond the scope of the present discussion. Our present
intention is to concentrate on point (b). We focus as usual on the setting of the finite-horizon
problem. As usual, u(x, t) denotes the value function (the maximal value achievable starting
from state x at time t). Our plan is to develop schemes for proving upper and lower bounds
on u. If we do a really good job the upper and lower bounds will coalesce – in which case
they will fully determine u.

There’s always one type of bound that is easy. Since we’re maximizing utility, these are the
lower bounds. Any scheme for choosing the control – for example a conjectured feedback law
specifying α(s) as a function of y(s) – provides a lower bound v(x, t) = the value achieved
by this scheme. The inequality

v(x, t) ≤ u(x, t)

is obvious, since u is the maximal value obtainable using any control – including the ones
used to define v.
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The verification theorem provides the other bound. In its most basic form – specialized
to the present setting – it says the following. Suppose w(x, t) is defined (and continuously
differentiable) for t < T , and it solves the Hamilton-Jacobi equation (8) with w = g at
t = T . Then w is an upper bound for the value function:

u(x, t) ≤ w(x, t).

To see why, consider any candidate control α(s) and the associated state y = yx,α(s) starting
from x at time t. The chain rule gives

d

ds
w(y(s), s) = ws(y(s), s) +∇w(y(s), s) · ẏ(s)

= ws(y(s), s) +∇w(y(s), s) · f(y(s), α(s))
≤ ws +H(∇w, y)− h(y(s), α(s)) (11)
= −h(y(s), α(s)),

using for (11) the relation

H(p, y) = max
a∈A
{f(y, a) · p+ h(y, a)} ≥ f(y, α) · p+ h(y, α)

with y = y(s), α = α(s), and p = ∇w(y(s), s). Now integrate in time from t to T :

w(y(T ), T )− w(x, t) ≤ −
∫ T

t
h(y(s), α(s)) ds.

Since w(y(T ), T ) = g(y(T )) this gives

g(y(T )) +
∫ T

t
h(y(s), α(s)) ds ≤ w(x, t).

The preceding argument applies to any control α(s). Maximizing the left hand side over all
admissible controls, we have

u(x, t) ≤ w(x, t)

as asserted.

We presented the task of finding lower and upper bounds as though they were distinct, but
of course they are actually closely correlated. A smooth solution w of the Hamilton-Jacobi
equation comes equipped with its own feedback law (as discussed in point (a) above). It
is natural to consider the lower bound v obtained using the feedback law associated with
w. I claim that this v is equal to w. To see this, follow the line of reasoning we used for
the verification theorem, noticing that (11) holds with equality if α is determined by the
feedback associated with w. Therefore integration gives

w(x, t) = g(y(T )) +
∫ T

t
h(y(s), α(s)) ds

and the right hand side is, by definition, v(x, t). In conclusion: if w is a (continuously
differentiable) solution of the HJB equation, satisfying the appropriate final-time condition
too, then w is in fact the value function u(x, t).
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It sounds like a great scheme, and in many ways it is. There is however a small fly in the
ointment. Sometimes the value function isn’t continuously differentiable. (Consider, for
example, the minimum time problem). In such a case our proof of the verification theorem
remains OK for paths that avoid the locus of nonsmoothness – or cross it transversely. But
there is a problem if the state should happen to hug the locus of nonsmoothness. Said more
plainly: if w(x, t) has discontinuous derivatives along some set Γ in space-time, and if a
control makes (y(s), s) move along Γ, then the first step in our verification argument

d

ds
w(y(s), s) = ws(y(s), s) +∇w(y(s), s) · ẏ(s)

doesn’t really make sense (for example, the right hand side is not well-defined). Typically
this problem is overcome by using the fact that the verification argument has some extra
freedom: it doesn’t really require that w solve the HJB equation exactly. Rather, it requires
only that w satisfy the inequality wt +H(∇w, t) ≤ 0.

To give an example where this extra freedom is useful consider our geometrical Example 2,
with target T the complement of the unit square in R2. The HJB equation is |∇u| = 1 in
Ω=unit square, with u = 0 at ∂Ω. The value function is defined as u(x)=minimum time of
arrival to ∂Ω (among all paths with speed ≤ 1). Simple geometry tells us the solution is
the distance function dist (x, ∂Ω), whose graph is a pyramid. We wish to give an entirely
PDE proof of this fact.

One inequality is always easy. In this case it is the relation u(x) ≤ dist (x, ∂Ω). This is clear,
because the right hand side is associated with a specific control law (namely: travel straight
toward the nearest point of the boundary, with unit speed). To get the other inequality,
observe that if w ≤ 0 at ∂Ω and |∇w| ≤ 1 in Ω then

d

ds
w(y(s)) = ∇w(y(s)) · ẏ(s)

= ∇w(y(s)) · α(s)
≥ −|∇w(y(s))| ≥ −1.

(Here y(s) solves the state equation ẏ = α, with initial condition y(0) = x and any admissible
control |α(s)| ≤ 1.) If τ is the time of arrival at ∂Ω then integration gives

w(y(τ))− w(x) ≥
∫ τ

0
(−1) ds.

Since w(y(τ)) ≤ 0 we conclude that
w(x) ≤ τ.

Minimizing the right hand side over all admissible controls gives

w(x) ≤ u(x).

We’re essentially done. We cannot set w equal to the distance function itself, because this
choice isn’t smooth enough. However we can choose w to be a slightly smoothed-out version
of the distance function minus a small constant. It’s easy to see that we can approach the
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distance function from below by such functions w. Therefore (using these w’s and passing
to a limit)

dist (x, ∂Ω) ≤ u(x),

completing our PDE argument that the value function is in this case the distance function.

As another example, let’s give the solution to Example 1 for a power-law utility. The
state equation is

ẏ = ry − α, y(t) = x

where x is the initial wealth and α is the consumption rate, restricted by α ≥ 0 (an explicit
constraint on the controls). We consider the problem of finding

u(x, t) = max
α

∫ T

t
e−ρsαγ(s) ds,

which amounts to the utility of consumption with the power-law utility function h(α) = αγ .
Utility functions should be concave so we assume 0 < γ < 1.

First, before doing any real work, let us show that the value function has the form

u(x, t) = g(t)xγ

for some function g(t). It suffices for this purpose to show that the value function has the
homogeneity property

u(λx, t) = λγu(x, t), (12)

for then we can take g(t) = u(1, t). To see (12), suppose α(s) is optimal for starting
point x, and let yx(s) be the resulting trajectory. We may consider the control λα(s) for
the trajectory that starts at λx, and it is easy to see that the associated trajectory is
yλx(s) = λyx(s). Using the power-law form of the utility this comparison demonstrates
that

u(λx, t) ≥ λγu(x, t).

This relation with λ replaced by 1/λ and x replaced by λx gives

u(x, t) ≥ λ−γu(λx, t),

completing the proof of (12).

Now let’s find the HJB equation. This is almost a matter of specializing the general cal-
culation to the case at hand. But we didn’t have a discount term before, so let’s redo the
argument to avoid any doubt. From the dynamic programming principle we have

u(x, t) ≥ e−ρtaγ∆t+ u(x+ (rx− a)∆t, t+ ∆t) + error terms

with equality when a ≥ 0 is chosen optimally. Using the first-order Taylor expansion of u
this becomes

u(x, t) ≥ e−ρtaγ∆t+ u(x, t) + (ux(rx− a) + ut)∆t+ error terms
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with equality when a is optimal. In the limit ∆t→ 0 this gives

ut + max
a≥0
{ux(rx− a) + e−ρtaγ} = 0.

This is the desired HJB equation, to be solved for t < T . The final-time condition is of
course u = 0 (since no utility is associated to final-time wealth).

It’s obvious that ux > 0. (This follows from the observation that u(x, t) = g(t)xγ . Or it’s
easy to prove using the original problem formulation and a suitable comparison argument.)
Therefore the optimal a is easy to find, by differentiation, and it is positive:

γaγ−1 = eρtux.

This is the feedback law, determining the optimal control (once we know ux). Remembering
that u(x, t) = g(t)xγ , we can write the feedback law as

a =
[
eρtg(t)

]1/(γ−1)
x

To find g (and therefore u) we substitute u = g(t)xγ into the HJB equation. This leads,
after some arithmetic and cancelling a common factor of xγ from all terms, to

dg

dt
+ rγg + (1− γ)g(eρtg)1/(γ−1).

This equation (with the end condition g(T ) = 0) is entirely equivalent to the original HJB
equation. It looks ugly, however it is not difficult to solve. First, multiply each term by eρt

to see that G(t) = eρtg(t) solves

Gt + (rγ − ρ)G+ (1− γ)Gγ/(γ−1) = 0.

Next, multiply by (1−γ)−1Gγ/(1−γ) to see that H(t) = G1/(1−γ) satisfies the linear equation

Ht − µH + 1 = 0 with µ = ρ−rγ
1−γ .

This is a linear equation! The solution satisfying H(T ) = 0 is

H(t) = λ−1
(
1− e−λ(T−t)

)
.

Unraveling our changes of variables gives finally

g(t) = e−ρt
[

1− γ
ρ− rγ

(
1− e−

(ρ−rγ)(T−t)
1−γ

)]1−γ
.

We’ve solved the HJB equation. Have we actually found the value function and the optimal
feedback (consumption) policy? Yes indeed. The verification theorem given above supplies
the proof. (Well, it should be redone with discounting, and with the more precise formu-
lation of the objective which integrates the utility only up to the first time τ when y = 0,
if this occurs before T . These modifications require no really new ideas.) Nothing fancy is
needed since u(x, t) is smooth.
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***************

The Hopf-Lax solution formula provides another class of examples. Consider what
becomes of the finite-horizon problem when f (the right hand side of the state equation)
and h (the running utility) are independent of x. The state equation is thus

dy/ds = f(α(s)) with y(t) = x

and the value function is

u(x, t) = max
α(s)∈A

[∫ T

t
h(α(s)) ds+ g(y(T ))

]
.

The HJB equation has the form ut +H(∇u) = 0 for t < T , with final-time condition u = g
at t = T and with Hamiltonian

H(p) = max
a∈A
{f(a) · p+ h(a)}.

Notice that H is always a convex function of p, since the definition expresses it as a maximum
of linear functions of p.

The function H does not determine f and h – different f ’s and h’s can lead to the same
HJB equation. But for any convex H there’s an especially simple choice of an associated f
and h, namely

f(a) = a, h(a) = min
p
{H(p)− a · p}. (13)

(Comments on the latter formula: (a) h is concave, as it should be, since it is a minimum of
linear functions; (b) −h = maxp{a · p−H(p)} is the “Fenchel transform” of H). To justify
this assertion we must show that when H is convex and f , h are given by (13), the resulting
Hamiltonian

max
a∈A
{f(a) · p+ h(a)}

is equal to H(p). The definition of h shows that

h(a) ≤ H(p)− a · p

for all p, with equality when p is chosen optimally (depending on a). We can rewrite this
as

H(p) ≥ a · p+ h(a)

for all a and p, with equality when a is chosen optimally (depending on p). Maximization
over a gives the desired relation.

The preceding calculation is best understood in a more general context, as a fact about
Fenchel transforms. For any function F (z) defined for z ∈ Rn, its Fenchel transform is
defined as

F ∗(w) = max
z
{w · z − F (z)}.

(We can effectively restrict the maximization to z ∈ A by choosing F (z) =∞ when z /∈ A.)
Here are two basic facts about the Fenchel transform:
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• The double Fenchel transform (F ∗)∗(z) is the convexification of F , i.e. its graph is
the convex hull of the graph of F .

• If F is convex then its double Fenchel transform (F ∗)∗ is equal to F .

The proof of these facts follows the argument sketched briefly above. The fact that when
H is convex the choice (13) leads to a HJB with Hamiltonian H is just an application of
the second bullet.

Summarizing the above: if H is convex, we can define a “dynamic programming” solution of
the HJB equation ut+H(∇u) = 0 (with u = g at t = T ) as the solution of the finite-horizon
dynamic programming problem associated with (13). This optimal control problem is easy
to solve more or less explicitly. The key observation is that when f(a) = a and h(a) is
concave, the optimal control is constant and the associated trajectory is a constant-velocity
path. In fact, f(a) = a means the control is the velocity of the path y(s). The concavity of
h gives

h[average velocity] ≥ average of h[velocity].

Notice moreover that the average velocity of a path depends only on its endpoints, since

1
T − t

∫ T

t

dy

ds
ds =

1
T − t

(y(T )− y(t)).

Thus replacing any path by one with the same endpoints and constant velocity can only
improve the utility. We thus arrive at the Hopf-Lax solution formula: when f(a) = a
and h(a) is concave, the solution of the associated dynamic programming problem (with
final-time utility g) is

u(x, t) = max
z

{
(T − t)h

(
z − x
T − t

)
+ g(z)

}
. (14)

Here z represents the state at time T – the only remaining unknown – and (z − x)/(T − t)
is the velocity of the associated path starting at x at time t and ending at z at time T . We
view (14) as specifying the (dynamic programming) solution of the associated HJB equation
ut +H(∇u) = 0 with final-time condition u = g at t = T .

Let’s bring this down to earth by considering the specific example: f(a) = a, H(p) = 1
2 |p|

2,
and h(p) = −1

2 |a|
2. Then the Hamilton-Jacobi-Bellman equation is

ut +
1
2
|∇u|2 = 0, u(x, T ) = g(x)

and the solution formula is

u(x, t) = max
z

{
g(z)− |z − x|

2

2(T − t)

}
.

An important fact is immediately evident: the Hamilton-Jacobi-Bellman equation has many
(almost-everywhere) solutions, only one of which agrees with the solution formula. For
example, suppose g = 0. Then the solution formula gives u(x, t) = 0, which does solve the
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Hamilton-Jacobi equation. However the PDE has lots of other solutions: for example the
function

u(x, t) =

{
1
2(T − t)− |x| if |x| ≤ 1

2(T − t)
0 otherwise.

This example is easy to generalize, yielding infinitely many “solutions” of the PDE, all
equal to 0 at t = T . This should not be a great surprise: we already noted the analogous
nonuniqueness for the eikonal equation |∇u| = 1, the HJB equation associated with a
geometrical minimum-time problem.

Another point to note: the Hamilton-Jacobi equation is nonlinear. If u1 solves it with final
data g1 and u2 solves it with final data g2, we should not expect u1 +u2 to solve it with final
data g1 + g2. When H(p) = H(−p), for example when H(p) = |p|2/2, one might imagine
that if u is the correct solution with final data g then −u is the correct solution with final
data −g. But even this is false, at least if we understand “correct solution” as “dynamic
programming solution” in the sense developed above. Indeed, when H(p) = |p|2/2 and
g(y) = |y| the solution formula gives

u(x, t) =
T − t

2
+ |x|

(the optimal z is z = x+(T−t)x/|x|), but when the final-time data is changed to g(y) = −|y|
the solution formula gives

u(x, t) =

{
(T − t)/2− |x| if |x| ≥ (T − t)
−|x|2/2(T − t) otherwise

(the optimal z is z = x− (T − t)x/|x| if |x| ≥ (T − t), z = 0 otherwise).

***************

We turn now to a discussion of Pontryagin’s maximum principle. Many books on
optimal control hardly mention dynamic programming and the HJB equation at all. Instead
they use an alternative (ultimately equivalent) approach known as Pontryagin’s maximum
principle. (Example: Leslie Hocking, Optimal Control: An Introduction to the Theory with
Applications, Oxford University Press 1991 – a really good book, with lots of examples.)

From a strictly PDE viewpoint, the Pontryagin Maximum Principle is closely related to the
method of characteristics. Roughly speaking: the principle identifies the characteristics of
the HJB equation (and a bit more: it identifies the characteristic that’s directly relevant to
the specific optimization problem under consideration). In short: it solves the HJB equation
by the method of characteristics.

From the optimization viewpoint, the Pontryagin Maximum Principle provides optimal-
ity conditions – in much the same way that the convex dual gave us a substitute for the
Euler-Lagrange equations in connection with convex variational problems. [I’m simplifying
matters a bit: the preceding statement is accurate when the problem is sufficiently con-
vex so that optimal controls exist; the Pontryagin maximum principle also addresses what
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happens when optimal controls don’t exist. That part of the theory is closely connected
with relaxation, which we’ll discuss (for nonconvex variational problems) soon. But it lies
beyond the scope of these notes.]

The following (formal) derivation relies on the saddle-point principle that minx maxy F (x, y) =
maxy minx F (x, y) when F is convex in x and concave in y – the same principle we used to
understand linear programming (see Peter Lax’s Linear Algebra book for a similar but fully
rigorous analysis) and convex duality (see the book by Ekeland and Temam for rigorous
analysis in that setting). A treatment of the Pontryagin Maximum Principle pretty close
to the one given here is given by Dixit’s book.

We focus as usual on the finite-horizon problem with equation of state

ẏ(s) = f(y(s), α(s)), y(t) = x

and value function

u(x, t) = max
α∈A

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.

The equation of state determines y(s) for all s, once the control α(s) is given. However for
the present purposes we’d like to view both y(s) and α(s) as unknowns, and the equation
of state as a constraint coupling them. Thus we think of the problem as:

u(x, t) = max
dy/ds=f(y,s), y(t)=x

α∈A

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.

A standard means of handling constrained optimization is the method of Lagrange multi-
pliers. In the present setting the constraint is an equation, valid for all s; so the Lagrange
multiplier is a function of s, call it π(s). The preceding definition of u can be written as

u(x, t) = max
y(t)=x
α∈A

min
π(s)

{∫ T

t
π(s) · [f(y(s), α(s))− dy

ds ] ds+
∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}

since the minimum over π is −∞ unless dy/ds = f(y(s), α(s)) for all s. (Note: if y takes
values in Rn then so does π, and the expression π · [f − dy/ds] is the inner product of the
two n-vectors π and f − dy/ds.)
Let’s assume it’s correct to interchange the max and the min. Integrating by parts as well,
we get

u(x, t) = min
π(s)

max
y(t)=x
α∈A

{∫ T

t

[
y · dπds + f(y, α) · π + h(y, α)

]
ds+ g(y(T )) + x · π(t)− y(T ) · π(T )

}
.

Now maximize over α. For any given π(s) and y(s), the best choice of α(s) is the one that
maximizes f · π + h. Therefore

u(x, t) = min
π(s)

max
y(t)=x

{∫ T

t

[
y · dπds +H(π, y)

]
ds+ g(y(T )) + x · π(t)− y(T ) · π(T )

}
(15)
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with
H(p, x) = max

a∈A
[p · f(x, a) + h(x, a)] . (16)

The connection with the HJB equation is now evident: the HJB equation for this problem is
ut +H(∇u, x) = 0 with the same function H. Since the optimization (15) involves H(π, y)
and the HJB equation involves H(∇u, x), it’s natural to guess that the optimal π is equal
to ∇u(s). This is indeed the case. (I leave the justification as an exercise: it suffices to
check that the Pontryagin maximum principle, stated below, identifies the characteristics
of the HJB equation.)

The formula (16) has two important consequences. The first is

∂H

∂p
= f(x, a∗) where a∗ = a∗(p, x) is the optimal a in the definition of H(p, x). (17)

The explanation is simplest when the control is unconstrained (i.e. there is no constraint
α(s) ∈ A). Applying the chain rule to the relation H(p, x) = p ·f(x, a∗(p, x))+h(x, a∗(p, x))
gives

∂H

∂p
= f(x, a∗) +

∂

∂a
[p · f(x, a) + h(x, a)]

∣∣∣∣
a=a∗

∂a∗
∂p

.

But the second term is zero, because a∗ is optimal, and this shows (17). When the control
is constrained to stay in some set A the argument must be modified a bit, but the idea is
the same. The second fact is that if we choose the control at time s to be a∗(π(s), y(s))
then the state y(s) satisfies

dy/ds = ∇pH(π(s), y(s)). (18)

This is an immediate consequence of (17), using the equation of state dy/ds = f .

We return now to the min-max representation of u, equation (15). The inner maximization
is over all functions y(s) such that y(t) = x. They need not satisfy any differential equation
or correspond to any control. So y(s) is an independent variable at each time s > t, and the
optimization over y can be done separately for each s. The expression y · dπ/ds+H(π, y)
is maximized when its derivatives with respect to each yi are zero. We thus conclude that

dπ/ds = −∂H
∂y

. (19)

A similar argument at the final time gives

π(T ) = ∇g(y(T )) at the final time T . (20)

Collecting the information in (17)–(20), we have shown Pontryagin’s maximum princi-
ple:

(a) At each time s, the control α(s) should be the value of a ∈ A that maximizes
π · f(y, a) + h(y, a) with π = π(s) and y = y(s).

(b) The evolution of y(s) and π(s) are governed by the differential equations

dy/ds = ∇πH(π(s), y(s))
dπ/ds = −∇yH(π(s), y(s))

for t < s < T .
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(c) The initial condition for y(s) is known from the initial formulation of the problem,
y(t) = x. The initial condition for π(s) is not given to us explicitly; rather it is
determined implicitly by the final-time condition π(T ) = ∇g(y(T )).

The ODE system in (b) has the same form as that of Hamiltonian mechanics. That’s why
H is called the Hamiltonian.

The advantage of this approach is that it is in some sense more local than dynamic pro-
gramming. Rather than calculate u(x, t) everywhere in space and time, we need only solve
certain ODE’s along a single trajectory y = y(s), π = π(s) for t < s < T . Doing so, we
get the optimal control, the associated path, and even the gradient of the value function
∇u(y(s)) = π(s) along that path.

In the end, however, the method is less local than it looks. This is due to the lack of an
initial condition for π(t). In its place we have a final-time condition for π(T ). To determine
the optimal trajectory and control strategy one must somehow determine the special value
of π(t) that makes the solution of the requisite ODE’s (the Hamiltonian system specified in
(b) above) satisfy the final-time condition π(T ) = ∇g(y(T )) at time T .

Let’s bring this down to earth by considering how it applies to Example 1. To keep matters
as simple as possible we restrict attention to the power law utility, and we don’t discount
consumption. The equation of state is then

dy/ds = ry − α

and the goal is

max
α

∫ T

t
[α(s)]γ ds.

The Hamiltonian is
H(p, x) = max

a
{p(rx− a) + aγ}.

The optimal choice is a = (p/γ)1/(γ−1), resulting in

H(p, x) = prx− cγpγ/(γ−1)

with cγ = (1/γ)1/(γ−1) − (1/γ)γ/(γ−1). Therefore the evolution of π and y satisfy

dy/ds = ∂H/∂p = ry(s)− (π(s)/γ)1/(γ−1)

(the algebra is simplest if you make use of (17)) and

dπ/ds = −∂H/∂x = −rπ(s).

Solving for π(s) is easy: evidently

π(s) = π(t)e−r(s−t).

To finish the problem using this approach we should:

(a) Substitute this π(s) into the equation for y and solve the resulting ODE, using the
initial condition y(t) = x. This gives a formula for y(T ) in which π(t) is a parameter.
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(b) Use the condition y(T ) = 0 to determine π(t).

This calculation is clearly possible, though a bit laborious to do by hand. (A good symbolic-
integration package such as Matlab, Maple, or Mathematica can help here.) Another ex-
ample, close to problem 4 at the end of these notes, is worked out in detail in Dixit.

Notice that while a complete solution by this method is somewhat laborious, some valuable
qualitative information comes easily, even without determining the exact value of π(t). In
fact, Pontryagin’s maximum principle tells us the qualitative time-dependence of the optimal
consumption rate: since π(s) decays exponentially at rate r, the optimal consumption rate
increases exponentially in time at rate r/(1 − γ), i.e. α(s) = Cers/(1−γ) for some constant
C. This situation is fairly typical: the Pontryagin maximum principle is a good source of
qualitative information, though some additional more global argument is usually needed to
determine the precise solution associated with a given initial state x.

*************************

Suggested exercises. More than usual in fact (don’t feel you must to do them all).

1. Consider the finite-horizon utility maximization problem with discount rate ρ. The
dynamical law is thus

dy/ds = f(y(s), α(s)), y(t) = x,

and the optimal utility discounted to time 0 is

u(x, t) = max
α∈A

{∫ T

t
e−ρsh(y(s), α(s)) ds+ e−ρT g(y(T ))

}
.

It is often more convenient to consider, instead of u, the optimal utility discounted to
time t; this is

v(x, t) = eρtu(x, t) = max
α∈A

{∫ T

t
e−ρ(s−t)h(y(s), α(s)) ds+ e−ρ(T−t)g(y(T ))

}
.

(a) Show (by a heuristic argument similar to those in the notes) that v satisfies

vt − ρv +H(x,∇v) = 0

with Hamiltonian

H(x, p) = max
a∈A
{f(x, a) · p+ h(x, a)}

and final-time data
v(x, T ) = g(x).

(Notice that the PDE for v is autonomous, i.e. there is no explicit dependence
on time.)

20



(b) Now consider the analogous infinite-horizon problem, with the same equation of
state, and value function

v̄(x, t) = max
α∈A

∫ ∞
t

e−ρ(s−t)h(y(s), α(s)) ds.

Show (by an elementary comparison argument) that v̄ is independent of t, i.e.
v̄ = v̄(x) is a function of x alone. Conclude using part (a) that if v̄ is finite, it
solves the stationary PDE

−ρv̄ +H(x,∇v̄) = 0.

2. Recall Example 1 of the notes: the state equation is dy/ds = ry − α with y(t) = x,
and the value function is

u(x, t) = max
α≥0

∫ τ

t
e−ρsh(α(s)) ds

with h(a) = aγ for some 0 < γ < 1, and

τ =

{
first time when y = 0 if this occurs before time T
T otherwise.

(a) We obtained a formula for u(x, t) in the notes, however our formula doesn’t make
sense when ρ− rγ = 0. Find the correct formula in that case.

(b) Let’s examine the infinite-horizon-limit T → ∞. Following the lead of Problem
1 let us concentrate on v(x, t) = eρtu(x, t) = optimal utility discounted to time
t. Show that

v̄(x) = lim
T→∞

v(x, t) =

{
G∞x

γ if ρ− rγ > 0
∞ if ρ− rγ ≤ 0

with G∞ = [(1− γ)/(ρ− rγ)]1−γ .

(c) Use the stationary PDE of Problem 1(b) (specialized to this example) to obtain
the same result.

(d) What is the optimal consumption strategy, for the infinite-horizon version of this
problem?

3. Consider the analogue of Example 1 with the power-law utility replaced by the loga-
rithm: h(a) = ln a. To avoid confusion let us write uγ for the value function obtained
in the notes using h(a) = aγ , and ulog for the value function obtained using h(a) = ln a.
Recall that uγ(x, t) = gγ(t)xγ with

gγ(t) = e−ρt
[

1− γ
ρ− rγ

(
1− e−

(ρ−rγ)(T−t)
1−γ

)]1−γ
.
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(a) Show, by a direct comparison argument, that

ulog(λx, t) = ulog(x, t) +
1
ρ
e−ρt(1− e−ρ(T−t)) lnλ

for any λ > 0. Use this to conclude that

ulog(x, t) = g0(t) lnx+ g1(t)

where g0(t) = 1
ρe
−ρt(1 − e−ρ(T−t)) and g1 is an as-yet unspecified function of t

alone.

(b) Pursue the following scheme for finding g1: Consider the utility h = 1
γ (aγ − 1).

Express its value function uh in terms of uγ . Now take the limit γ → 0. Show
this gives a result of the expected form, with

g0(t) = gγ(t)|γ=0

and
g1(t) =

dgγ
dγ

(t)
∣∣∣∣
γ=0

.

(This leads to an explicit formula for g1 but it’s messy; I’m not asking you to
write it down.)

(c) Indicate how g0 and g1 could alternatively have been found by solving appropriate
PDE’s. (Hint: find the HJB equation associated with h(a) = ln a, and show that
the ansatz ulog = g0(t) lnx+ g1(t) leads to differential equations that determine
g0 and g1.)

4. Our Example 1 considers an investor who receives interest (at constant rate r) but
no wages. Let’s consider what happens if the investor also receives wages at constant
rate w. The equation of state becomes

dy/ds = ry + w − α with y(t) = x,

and the value function is

u(x, t) = max
α≥0

∫ T

t
e−ρsh(α(s)) ds

with h(a) = aγ for some 0 < γ < 1. Since the investor earns wages, we now permit
y(s) < 0, however we insist that the final-time wealth be nonnegative (y(T ) ≥ 0).

(a) Which pairs (x, t) are acceptable? The strategy that maximizes y(T ) is clearly
to consume nothing (α(s) = 0 for all t < s < T ). Show this results in y(T ) ≥ 0
exactly if

x+ φ(t)w ≥ 0

where
φ(t) =

1
r

(
1− e−r(T−t)

)
.

Notice for future reference that φ solves φ′ − rφ+ 1 = 0 with φ(T ) = 0.
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(b) Find the HJB equation that u(x, t) should satisfy in its natural domain {(x, t) :
x+φ(t)w ≥ 0}. Specify the boundary conditions when t = T and where x+φw =
0.

(c) Substitute into this HJB equation the ansatz

v(x, t) = e−ρtG(t)(x+ φ(t)w)γ .

Show v is a solution when G solves the familiar equation

Gt + (rγ − ρ)G+ (1− γ)Gγ/(γ−1) = 0

(the same equation we solved in Example 1). Deduce a formula for v.

(d) In view of (a), a more careful definition of the value function for this control
problem is

u(x, t) = max
α≥0

∫ τ

t
e−ρsh(α(s)) ds

where

τ =

{
first time when y(s) + φ(s)w = 0 if this occurs before time T
T otherwise.

Use a verification argument to prove that the function v obtained in (c) is indeed
the value function u defined this way.

5. (An example of nonexistence of an optimal control.) Consider the following control
problem: the state is y(s) ∈ R with y(t) = x; the control is α(s) ∈ R; the dynamics is
dy/dt = α; and the goal is

minimize
∫ T

t
y2(s) + (α2(s)− 1)2.

The value function u(x, t) is the value of this minimum.

(a) Show that when x = 0 and t < T , the value is u(0, t) = 0.

(b) Show that when x = 0 and t < T there is no optimal control α(s).

[The focus on x = 0 is only because this case is most transparent; nonexistence occurs
for other (x, t) as well. Food for thought: What is the Hamilton-Jacobi-Bellman
equation? Is there a modified goal leading to the same Hamiltonian and value function,
but for which optimal controls exist?]

6. The Hopf-Lax solution formula solves the finite-horizon problem with state equation
dy/ds = α and value function

u(x, t) = max
α

{∫ T

t
h(α(s)) ds+ g(y(T ))

}

with h concave. The key step was to show that an optimal trajectory has constant
velocity. Give an alternative justification of this fact using Pontryagin’s maximum
principle.
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7. Early in these notes we discussed a “minimum travel time” problem whose value
function u solves |∇u| = 1 for x /∈ E with u = 0 at ∂E.

(a) Find a related dynamic programming problem whose value function (if smooth)
should solve |∇u| = 1 for x /∈ E with u = g at ∂E, where g is a specified function
on ∂E.

(b) Consider the 2D case, with E a planar region with smooth boundary ∂E. De-
scribe the optimal controls and paths, if g is smooth and its derivative (with
respect to arc-length) on E satisfies |g′| < 1.

(c) What changes if |g′| is bigger than 1 on some part of ∂E?

8. This problem is a special case of the “linear-quadratic regulator” widely used in en-
gineering applications. The state is y(s) ∈ Rn, and the control is α(s) ∈ Rn. There is
no pointwise restriction on the values of α(s). The evolution law is

dy/ds = Ay + α, y(t) = x,

for some constant matrix A, and the goal is to minimize∫ T

t
|y(s)|2 + |α(s)|2 ds+ |y(T )|2.

(In words: we prefer y = 0 along the trajectory and at the final time, but we also
prefer not to use too much control.)

(a) What is the associated Hamilton-Jacobi-Bellman equation? Explain why we
should expect the relation α(s) = −1

2∇u(y(s)) to hold along optimal trajectories.

(b) Since the problem is quadratic, it’s natural to guess that the value function u(x, t)
takes the form

u(x, t) = 〈K(t)x, x〉

for some symmetric n× n matrix-valued function K(t). Show that this u solves
the Hamilton-Jacobi-Bellman equation exactly if

dK

dt
= K2 − I − (KTA+ATK) for t < T , K(T ) = I

where I is the n × n identity matrix. (Hint: two quadratic forms agree exactly
if the associated symmetric matrices agree.)

(c) Show by a suitable verification argument that this u is indeed the value function
of the control problem.
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